A Comprehensive Review of Silymarin Extraction and Liposomal Encapsulation Techniques for Potential Applications in Food
Abstract
:1. Introduction
Type | Size Range | Characteristics |
---|---|---|
Multilamellar vesicles (MLV) [21] | 2–5 µm | Multiple bilayers Better lipophilic drug encapsulation efficiency Common vesicle type produced by Thin Film Hydration in the presence of an organic solvent |
Multivesicular vesicles (MVV) [22] | 0.5–5 µm | Separate compartments are present in a single MVV |
Large unilamellar vesicles (LUV) [23] | ≥50 nm | Single bilayer Efficient macromolecule capture Prepared by detergent dialysis, ether injection, reverse-phase evaporation or active loading methods |
Small unilamellar vesicles (SUV) [16] | ≤50 nm | Smallest size Thermodynamically unstable Prepared by reducing the size of MLV or LUV using probe sonication or gas extruder or by active loading or solvent injection technique |
2. Silymarin Extraction Methods: From Conventional to Novel
2.1. Solvent Extraction
2.2. Supercritical Fluid Extraction
2.3. Microwave-Assisted Extraction
2.4. Ultrasound-Assisted Extraction
2.5. Enzyme-Assisted Extraction
3. Environmental Assessment
4. Liposomal Microencapsulation Using Conventional and Innovative Methods
4.1. Conventional Methods
4.1.1. Thin Film Hydration
4.1.2. Reverse-Phase Evaporation
4.1.3. Membrane Extrusion
4.1.4. Sonication
4.2. Innovative Methods
4.2.1. Microfluidic Microencapsulation
4.2.2. Ethanol Injection Method
4.2.3. Supercritical Reverse Phase Evaporation
4.2.4. Depressurisation of an Expanded Solution into Aqueous Media
4.2.5. Supercritical Antisolvent
5. The Challenges Related to Industrial Scalability and Regulatory Considerations
6. Liposome Applications
6.1. Pharmaceutical Applications
6.1.1. Systemic Liposomal Drugs
6.1.2. Topical Liposomal Drugs
6.2. Cosmetic Applications
6.3. Food Applications
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SUVs | small unilamellar vesicles |
LUVs | large unilamellar vesicles |
MLVs | multilamellar vesicles |
MVVs | multivesicullar vesicles |
SE | solvent extraction |
SFE | supercritical fluid extraction |
MAE | microwave-assisted extraction |
UAE | ultrasound-assisted extraction |
EAE | enzyme-assisted extraction |
THF | thin film hydration |
REV | reverse-phase evaporation |
SCRPE | supercritical reverse phase evaporation |
DESAM | depressurization of an expanded solution into aqueous media |
SAS | supercritical antisolvent |
References
- Marceddu, R.; Dinolfo, L.; Carrubba, A.; Sarno, M.; Di Miceli, G. Milk thistle (Silybum marianum L.) as a novel multipurpose crop for agriculture in marginal environments: A review. Agronomy 2022, 12, 729. [Google Scholar] [CrossRef]
- AbouZid, S. Silymarin, natural flavonolignans from milk thistle. In Phytochemicals-A Global Perspective of Their Role in Nutrition and Health; InTechOpen: Rijeka, Croatia, 2012; pp. 255–272. [Google Scholar] [CrossRef]
- Abenavoli, L.; Capasso, R.; Milic, N.; Capasso, F. Milk thistle in liver diseases: Past, present, future. Phytother. Res. 2010, 24, 1423–1432. [Google Scholar] [CrossRef] [PubMed]
- Valková, V.; Ďúranová, H.; Bilčíková, J.; Habán, M. Milk thistle (Silybum marianum): A valuable medicinal plant with several therapeutic purposes. J. Microbiol. Biotechnol. Food Sci. 2020, 9, 836. [Google Scholar] [CrossRef]
- Eita, A.A.B. Milk thistle (Silybum marianum (L.) Gaertn.): An overview about its pharmacology and medicinal uses with an emphasis on oral diseases. J. Oral Biosci. 2022, 64, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.A.; Lauren, D.R.; Burgess, E.J.; Perry, N.B.; Martin, R.J. A silychristin isomer and variation of flavonolignan levels in milk thistle (Silybum marianum) fruits. Planta Medica 2005, 71, 877–880. [Google Scholar] [CrossRef]
- Sy-Cordero, A.; Graf, T.N.; Nakanishi, Y.; Wani, M.C.; Agarwal, R.; Kroll, D.J.; Oberlies, N.H. Large-scale isolation of flavonolignans from Silybum marianum extract affords new minor constituents and preliminary structure-activity relationships. Planta Medica 2010, 76, 644–647. [Google Scholar] [CrossRef]
- AbouZid, S.F.; Chen, S.-N.; McAlpine, J.B.; Friesen, J.B.; Pauli, G.F. Silybum marianum pericarp yields enhanced silymarin products. Fitoterapia 2016, 112, 136–143. [Google Scholar] [CrossRef]
- Upton, R.; Graff, A.; Jolliffe, G.; Länger, R.; Williamson, E. American Herbal Pharmacopoeia: Botanical Pharmacognosy-Microscopic Characterization of Botanical Medicines; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Giuliani, C.; Tani, C.; Bini, L.M.; Fico, G.; Colombo, R.; Martinelli, T. Localization of phenolic compounds in the fruits of Silybum marianum characterized by different silymarin chemotype and altered colour. Fitoterapia 2018, 130, 210–218. [Google Scholar] [CrossRef]
- Woo, J.S.; Kim, T.-S.; Park, J.-H.; Chi, S.-C. Formulation and biopharmaceutical evaluation of silymarin using SMEDDS. Arch. Pharm. Res. 2007, 30, 82–89. [Google Scholar] [CrossRef]
- Javed, S.; Kohli, K.; Ali, M. Reassessing bioavailability of silymarin. Altern. Med. Rev. 2011, 16, 239. [Google Scholar]
- Jesorka, A.; Orwar, O. Liposomes: Technologies and analytical applications. Annu. Rev. Anal. Chem. 2008, 1, 801–832. [Google Scholar] [CrossRef] [PubMed]
- Arifin, D.R.; Palmer, A.F. Physical properties and stability mechanisms of poly (ethylene glycol) conjugated liposome encapsulated hemoglobin dispersions. Artif. Cells Blood Substit. Biotechnol. 2005, 33, 137–162. [Google Scholar] [CrossRef] [PubMed]
- Nii, T.; Ishii, F. Encapsulation efficiency of water-soluble and insoluble drugs in liposomes prepared by the microencapsulation vesicle method. Int. J. Pharm. 2005, 298, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Sharma, U.S. Liposomes in drug delivery: Progress and limitations. Int. J. Pharm. 1997, 154, 123–140. [Google Scholar] [CrossRef]
- Date, A.A.; Joshi, M.D.; Patravale, V.B. Parasitic diseases: Liposomes and polymeric nanoparticles versus lipid nanoparticles. Adv. Drug. Deliv. Rev. 2007, 59, 505–521. [Google Scholar] [CrossRef]
- Mozafari, M.R.; Khosravi-Darani, K.; Borazan, G.G.; Cui, J.; Pardakhty, A.; Yurdugul, S. Encapsulation of food ingredients using nanoliposome technology. Int. J. Food Prop. 2008, 11, 833–844. [Google Scholar] [CrossRef]
- Taylor, T.M.; Weiss, J.; Davidson, P.M.; Bruce, B.D. Liposomal nanocapsules in food science and agriculture. Crit. Rev. Food Nutr. 2005, 45, 587–605. [Google Scholar] [CrossRef]
- Jo, S.-M.; Kim, J.-C. Glucose-triggered release from liposomes incorporating poly (N-isopropylacrylamide-co-methacrylic acid-co-octadecylacrylate) and glucose oxidase. Colloid Polym. Sci. 2009, 287, 379–384. [Google Scholar] [CrossRef]
- Puisieux, F.; Couvreur, P.; Delattre, J.; Devissaguet, J.-P. Liposomes, New Systems and New Trends in Their Applications; Editions de Santé: Paris, France, 1995. [Google Scholar]
- Biju, S.; Talegaonkar, S.; Mishra, P.; Khar, R. Vesicular systems: An overview. Indian. J. Pharm. Sci. 2006, 68, 141–153. [Google Scholar] [CrossRef]
- Reeves, J.P.; Dowben, R.M. Formation and properties of thin-walled phospholipid vesicles. J. Cell. Physiol. 1969, 73, 49–60. [Google Scholar] [CrossRef]
- Wallace, S.N.; Carrier, D.J.; Clausen, E.C. Batch solvent extraction of flavanolignans from milk thistle (Silybum marianum L. Gaertner). Phytochem. Anal. Int. J. Plant Chem. Biochem. Tech. 2005, 16, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Momenkiaei, F.; Raofie, F. Preparation of Silybum marianum seeds extract nanoparticles by supercritical solution expansion. J. Supercritic. Fluids 2018, 138, 46–55. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, X.; Lan, Y.; Shi, J.; Xue, S.J.; Liu, C. Application of response surface methodology to optimize microwave-assisted extraction of silymarin from milk thistle seeds. Sep. Purif. Technol. 2009, 70, 34–40. [Google Scholar] [CrossRef]
- Drouet, S.; Leclerc, E.A.; Garros, L.; Tungmunnithum, D.; Kabra, A.; Abbasi, B.H.; Lainé, É.; Hano, C. A green ultrasound-assisted extraction optimization of the natural antioxidant and anti-aging flavonolignans from milk thistle Silybum marianum (L.) gaertn. fruits for cosmetic applications. Antioxidants 2019, 8, 304. [Google Scholar] [CrossRef]
- Liu, H.; Du, X.; Yuan, Q.; Zhu, L. Optimisation of enzyme assisted extraction of silybin from the seeds of Silybum marianum by Box–Behnken experimental design. Phytochem. Anal. Int. J. Plant Chem. Biochem. 2009, 20, 475–483. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, H. Milk thistle oil extracted by enzyme-mediated assisted solvent extraction compared with n-hexane and cold-pressed extraction. Molecules 2023, 28, 2591. [Google Scholar] [CrossRef]
- Duan, L. Extraction of Silymarins from Milk Thistle, Silybum marianum, Using Hot Water as Solvent; University of Arkansas: Fayetteville, AR, USA, 2005. [Google Scholar]
- Wallace, S.N.; Carrier, D.J.; Clausen, E.C. Extraction of nutraceuticals from milk thistle: Part II. In Extraction with organic solvents. In Proceedings of the Biotechnology for Fuels and Chemicals: The Twenty-Fourth Symposium, Breckenridge, CO, USA, 4–7 May 2003; pp. 891–903. [Google Scholar] [CrossRef]
- Wianowska, D.; Wiśniewski, M. Simplified procedure of silymarin extraction from Silybum marianum L. Gaertner. J. Chromatogr. Sci. 2015, 53, 366–372. [Google Scholar] [CrossRef]
- Gilabadi, S.; Stanyon, H.; DeCeita, D.; Pendry, B.A.; Galante, E. Simple and effective method for the extraction of silymarin from Silybum marianum (L.) gaertner seeds. J. Herb. Med. 2023, 37, 100619. [Google Scholar] [CrossRef]
- Shao, P.; Sun, P.; Ying, Y. Response surface optimization of wheat germ oil yield by supercritical carbon dioxide extraction. Food. Bioprod. Process. 2008, 86, 227–231. [Google Scholar] [CrossRef]
- Javeed, A.; Ahmed, M.; Sajid, A.R.; Sikandar, A.; Aslam, M.; Hassan, T.u.; Dogar, S.; Nazir, Z.; Ji, M.; Li, C. Comparative Assessment of Phytoconstituents, Antioxidant Activity and Chemical Analysis of Different Parts of Milk Thistle Silybum marianum L. Molecules 2022, 27, 2641. [Google Scholar] [CrossRef]
- Meure, L.A.; Foster, N.R.; Dehghani, F. Conventional and dense gas techniques for the production of liposomes: A review. AAPS PharmSciTech 2008, 9, 798–809. [Google Scholar] [CrossRef] [PubMed]
- Palaric, C.; Atwi-Ghaddar, S.; Gros, Q.; Hano, C.; Lesellier, E. Sequential selective supercritical fluid extraction (S3FE) of triglycerides and flavonolignans from milk thistle (Silybum marianum L., Gaertn). J. CO2 Util. 2023, 77, 102609. [Google Scholar] [CrossRef]
- Zhang, H.-F.; Yang, X.-H.; Wang, Y. Microwave assisted extraction of secondary metabolites from plants: Current status and future directions. Trends. Food Sci. Technol. 2011, 22, 672–688. [Google Scholar] [CrossRef]
- Meireles, M.A.A. Extracting Bioactive Compounds for Food Products: Theory and Applications; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar] [CrossRef]
- Asfaram, A.; Ghaedi, M.; Purkait, M.K. Novel synthesis of nanocomposite for the extraction of Sildenafil Citrate (Viagra) from water and urine samples: Process screening and optimization. Ultrason. Sonochem. 2017, 38, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Kazi, T.G.; Soylak, M. Rapid ionic liquid-based ultrasound assisted dual magnetic microextraction to preconcentrate and separate cadmium-4-(2-thiazolylazo)-resorcinol complex from environmental and biological samples. Spectrochimica Acta Part A Mol. Biomol. Spec. 2014, 123, 194–199. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Putnik, P.; Kovačević, D.B.; Petrović, M.; Munekata, P.E.; Gómez, B.; Marszałek, K.; Roohinejad, S.; Barba, F.J. Silymarin compounds: Chemistry, innovative extraction techniques and synthesis. Stud. Nat. Prod. Chem. 2020, 64, 111–130. [Google Scholar] [CrossRef]
- Jabłonowska, M.; Ciganović, P.; Jablan, J.; Marguí, E.; Tomczyk, M.; Končić, M.Z. Silybum marianum glycerol extraction for the preparation of high-value anti-ageing extracts. Ind. Crop. Prod. 2021, 168, 113613. [Google Scholar] [CrossRef]
- Milovanovic, S.; Lukic, I.; Stamenic, M.; Kamiński, P.; Florkowski, G.; Tyśkiewicz, K.; Konkol, M. The effect of equipment design and process scale-up on supercritical CO2 extraction: Case study for Silybum marianum seeds. J. Supercrit. Fluids 2022, 188, 105676. [Google Scholar] [CrossRef]
- Xie, P.; Huang, L.; Zhang, C.; Deng, Y.; Wang, X.; Cheng, J. Enhanced extraction of hydroxytyrosol, maslinic acid and oleanolic acid from olive pomace: Process parameters, kinetics and thermodynamics, and greenness assessment. Food Chem. 2019, 276, 662–674. [Google Scholar] [CrossRef]
- Zekovic, Z.; Gavaric, A.; Pavlic, B.; Vidovic, S.; Vladic, J. Optimization: Microwave irradiation effect on polyphenolic compounds extraction from winter savory (Satureja montana L.). Sep. Sci. Technol. 2017, 52, 1377–1386. [Google Scholar] [CrossRef]
- Al-Rubaie, M.S.; Abdullah, T.S. Multi lamellar vesicles (Mlvs) liposomes preparation by thin film hydration technique. Eng. Technol. J. 2014, 32, 550–560. [Google Scholar] [CrossRef]
- Shi, N.-Q.; Qi, X.-R. Preparation of Drug Liposomes by Reverse-Phase Evaporation. In Liposome-Based Drug Delivery Systems; Lu, W.-L., Qi, X.-R., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 37–46. [Google Scholar] [CrossRef]
- Szoka, F.; Olson, F.; Heath, T.; Vail, W.; Mayhew, E.; Papahadjopoulos, D. Preparation of unilamellar liposomes of intermediate size (0.1–0.2 μm) by a combination of reverse phase evaporation and extrusion through polycarbonate membranes. Biochim. Biophys. Acta BBA-Biomembr. 1980, 601, 559–571. [Google Scholar] [CrossRef]
- Carugo, D.; Bottaro, E.; Owen, J.; Stride, E.; Nastruzzi, C. Liposome production by microfluidics: Potential and limiting factors. Sci. Rep. 2016, 6, 25876. [Google Scholar] [CrossRef] [PubMed]
- Toniazzo, T.; Peres, M.S.; Ramos, A.P.; Pinho, S.C. Encapsulation of quercetin in liposomes by ethanol injection and physicochemical characterization of dispersions and lyophilized vesicles. Food Biosci. 2017, 19, 17–25. [Google Scholar] [CrossRef]
- Imura, T.; Otake, K.; Hashimoto, S.; Gotoh, T.; Yuasa, M.; Yokoyama, S.; Sakai, H.; Rathman, J.F.; Abe, M. Preparation and physicochemical properties of various soybean lecithin liposomes using supercritical reverse phase evaporation method. Colloids Surf. B Biointerfaces 2003, 27, 133–140. [Google Scholar] [CrossRef]
- Tsai, W.-C.; Rizvi, S.S. Liposomal microencapsulation using the conventional methods and novel supercritical fluid processes. Trends. Food Sci. Technol. 2016, 55, 61–71. [Google Scholar] [CrossRef]
- Lesoin, L.; Crampon, C.; Boutin, O.; Badens, E. Preparation of liposomes using the supercritical anti-solvent (SAS) process and comparison with a conventional method. J. Supercrit. Fluid. 2011, 57, 162–174. [Google Scholar] [CrossRef]
- Samad, A.; Sultana, Y.; Aqil, M. Liposomal drug delivery systems: An update review. Curr. Drug. Deliv. 2007, 4, 297–305. [Google Scholar] [CrossRef]
- Karim, R.; Palazzo, C.; Laloy, J.; Delvigne, A.-S.; Vanslambrouck, S.; Jerome, C.; Lepeltier, E.; Orange, F.; Dogne, J.-M.; Evrard, B. Development and evaluation of injectable nanosized drug delivery systems for apigenin. Int. J. Pharm. 2017, 532, 757–768. [Google Scholar] [CrossRef]
- Olson, F.; Hunt, C.; Szoka, F.; Vail, W.; Papahadjopoulos, D. Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim. Biophys. Acta BBA-Biomembr. 1979, 557, 9–23. [Google Scholar] [CrossRef]
- Elmowafy, M.; Viitala, T.; Ibrahim, H.M.; Abu-Elyazid, S.K.; Samy, A.; Kassem, A.; Yliperttula, M. Silymarin loaded liposomes for hepatic targeting: In vitro evaluation and HepG2 drug uptake. Eur. J. Pharm. Sci. 2013, 50, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Szoka, F., Jr.; Papahadjopoulos, D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc. Natl. Acad. Sci. USA 1978, 75, 4194–4198. [Google Scholar] [CrossRef] [PubMed]
- El-Samaligy, M.S.; Afifi, N.N.; Mahmoud, E.A. Evaluation of hybrid liposomes-encapsulated silymarin regarding physical stability and in vivo performance. Int. J. Pharm. 2006, 319, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Semple, S.C.; Leone, R.; Wang, J.; Leng, E.C.; Klimuk, S.K.; Eisenhardt, M.L.; Yuan, Z.-N.; Edwards, K.; Maurer, N.; Hope, M.J. Optimization and characterization of a sphingomyelin/cholesterol liposome formulation of vinorelbine with promising antitumor activity. J. Pharm. Sci. 2005, 94, 1024–1038. [Google Scholar] [CrossRef] [PubMed]
- Ramedani, A.; Sabzevari, O.; Simchi, A. Processing of liposome-encapsulated natural herbs derived from Silybum marianum plants for the treatment of breast cancer cells. Sci. Iran. 2022, 29, 3619–3627. [Google Scholar] [CrossRef]
- Johnson, S.; Bangham, A.; Hill, M.; Korn, E. Single bilayer liposomes. Biochim. Biophys. Acta BBA-Biomembr. 1971, 233, 820–826. [Google Scholar] [CrossRef]
- Mendez, R.; Banerjee, S. Sonication-based basic protocol for liposome synthesis. Lipidom. Methods Protoc. 2017, 1609, 255–260. [Google Scholar] [CrossRef]
- Mohsen, A.M.; Asfour, M.H.; Salama, A.A. Improved hepatoprotective activity of silymarin via encapsulation in the novel vesicular nanosystem bilosomes. Drug. Dev. Ind. Pharm. 2017, 43, 2043–2054. [Google Scholar] [CrossRef]
- Chiesa, E.; Dorati, R.; Pisani, S.; Conti, B.; Bergamini, G.; Modena, T.; Genta, I. The microfluidic technique and the manufacturing of polysaccharide nanoparticles. Pharmaceutics 2018, 10, 267. [Google Scholar] [CrossRef]
- Jahn, A.; Vreeland, W.N.; Gaitan, M.; Locascio, L.E. Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. J. Am. Chem. Soc. 2004, 126, 2674–2675. [Google Scholar] [CrossRef]
- Yu, B.; Lee, R.J.; Lee, L.J. Microfluidic methods for production of liposomes. Methods Enzymol. 2009, 465, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Delama, A.; Teixeira, M.I.; Dorati, R.; Genta, I.; Conti, B.; Lamprou, D.A. Microfluidic encapsulation method to produce stable liposomes containing iohexol. J. Drug. Deliv. Sci. Technol. 2019, 54, 101340. [Google Scholar] [CrossRef]
- Batzri, S.; Korn, E.D. Single bilayer liposomes prepared without sonication. Biochim. Biophys. Acta BBA-Biomembr. 1973, 298, 1015–1019. [Google Scholar] [CrossRef] [PubMed]
- Justo, O.R.; Moraes, Â.M. Analysis of process parameters on the characteristics of liposomes prepared by ethanol injection with a view to process scale-up: Effect of temperature and batch volume. Chem. Eng. Res. Des. 2011, 89, 785–792. [Google Scholar] [CrossRef]
- Yang, S.; Chen, J.; Zhao, D.; Han, D.; Chen, X. Comparative study on preparative methods of DC-Chol/DOPE liposomes and formulation optimization by determining encapsulation efficiency. Int. J. Pharm. 2012, 434, 155–160. [Google Scholar] [CrossRef]
- Sala, M.; Miladi, K.; Agusti, G.; Elaissari, A.; Fessi, H. Preparation of liposomes: A comparative study between the double solvent displacement and the conventional ethanol injection—From laboratory scale to large scale. Colloids Surf. A Physicochem. Eng. Asp. 2017, 524, 71–78. [Google Scholar] [CrossRef]
- Bai, C.; Luo, G.; Liu, Y.; Zhao, S.; Zhu, X.; Zhao, Q.; Peng, H.; Xiong, H. A comparison investigation of coix seed oil liposomes prepared by five different methods. J. Dispers. Sci. Technol. 2015, 36, 136–145. [Google Scholar] [CrossRef]
- Gouda, A.; Sakr, O.S.; Nasr, M.; Sammour, O. Ethanol injection technique for liposomes formulation: An insight into development, influencing factors, challenges and applications. J. Drug. Deliv. Sci. 2021, 61, 102174. [Google Scholar] [CrossRef]
- Ke, Z.; Cheng, X.; Yang, H.; Niu, Y.; Cheng, X.; Ye, T.; Sun, G.; Cheng, Z.; Sun, Y. Formulation design and characterization of silymarin liposomes for enhanced antitumor activity. Pak. J. Pharm. Sci. 2024, 37, 139–145. [Google Scholar]
- Otake, K.; Imura, T.; Sakai, H.; Abe, M. Development of a new preparation method of liposomes using supercritical carbon dioxide. Langmuir 2001, 17, 3898–3901. [Google Scholar] [CrossRef]
- Sakai, H.; Gotoh, T.; Imura, T.; Sakai, K.; Otake, K.; Abe, M. Preparation and properties of liposomes composed of various phospholipids with different hydrophobic chains using a supercritical reverse phase evaporation method. J. Oleo Sci. 2008, 57, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Aburai, K.; Yagi, N.; Yokoyama, Y.; Okuno, H.; Sakai, K.; Sakai, H.; Sakamoto, K.; Abe, M. Preparation of liposomes modified with lipopeptides using a supercritical carbon dioxide reverse-phase evaporation method. J. Oleo Sci. 2011, 60, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Okada, M.; Isoda, T.; Kumano, S.; Kagawa, Y.; Araki, T.; Onishi, H.; Hori, M.; Kim, T.; Motokui, Y.; Wada, T. Serine-and mannose-modified liposomal contrast agent for computed tomography: Evaluation of the enhancement in rabbit liver VX-2 tumor model. Contrast Media Mol. Imaging 2010, 5, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Meure, L.A.; Knott, R.; Foster, N.R.; Dehghani, F. The depressurization of an expanded solution into aqueous media for the bulk production of liposomes. Langmuir 2009, 25, 326–337. [Google Scholar] [CrossRef]
- Beh, C.C.; Mammucari, R.; Foster, N.R. Formation of nanocarrier systems by dense gas processing. Langmuir 2014, 30, 11046–11054. [Google Scholar] [CrossRef]
- Bridson, R.; Santos, R.; Al-Duri, B.; McAllister, S.; Robertson, J.; Alpar, H. The preparation of liposomes using compressed carbon dioxide: Strategies, important considerations and comparison with conventional techniques. J. Pharm. Pharmacol. 2006, 58, 775–785. [Google Scholar] [CrossRef]
- Wang, Y.; Grainger, D.W. Regulatory considerations specific to liposome drug development as complex drug products. Front. Drug Deliv. 2022, 2, 901281. [Google Scholar] [CrossRef]
- Rowland, R.N.; Woodley, J.F. The stability of liposomes in vitro to pH, bile salts and pancreatic lipase. Biochim. Biophys. Acta BBA-Lipids Lipid Metab. 1980, 620, 400–409. [Google Scholar] [CrossRef]
- Uhumwangho, M.; Okor, R. Current trends in the production and biomedical applications of liposomes: A review. J. Med. Biomed. Res. 2005, 4, 9–21. [Google Scholar] [CrossRef]
- Betz, G.; Aeppli, A.; Menshutina, N.; Leuenberger, H. In vivo comparison of various liposome formulations for cosmetic application. Int. J. Pharm. 2005, 296, 44–54. [Google Scholar] [CrossRef]
- Müller-Goymann, C. Physicochemical characterization of colloidal drug delivery systems such as reverse micelles, vesicles, liquid crystals and nanoparticles for topical administration. Eur. J. Pharm. Bioplarm. 2004, 58, 343–356. [Google Scholar] [CrossRef]
- Law, B.A.; King, J.S. Use of liposomes for proteinase addition to Cheddar cheese. J. Dairy Res. 1985, 52, 183–188. [Google Scholar] [CrossRef]
Methods | Organic Solvent | Process Time | Process Type | Conditions | Efficiency | |
---|---|---|---|---|---|---|
Conventional | SE [24] | Yes | hours to days | batch | up to 100 °C | moderate |
Innovative | SFE [25] | no (CO2) | minutes | continuous | 31.1 °C, 74 bar | High |
MAE [26] | no (water) | minutes | Batch/semi-continuous | 50–100 °C | moderate | |
UAE [27] | no (water) | minutes | Batch/semi-continuous | 20–60 °C | moderate | |
EAE [28] | No | hours | batch | 30–50 °C | High |
Methods | Organic Solvent | Process Time | Process Type | Liposome Size | |
---|---|---|---|---|---|
Conventional | TFH [47] | Yes | >1 h | Batch | Variable |
REV [48] | Yes | 2–3 h | Batch | Variable | |
Membrane Extrusion [49] | Yes | 1–2 h | Batch | dependent on pore size | |
Innovative | Microfluidics Dense Gas [50] | Yes | 15–30 min | semi-continuous | 50–100 µm |
Ethanol Injection [51] | Yes | 15–30 min | semi-continuous | 200–250 nm | |
SCRPE [52] | Minimal | 2–3 h | Batch | 200 nm | |
DESAM [53] | Yes | 45–60 min | continuous | 100–400 nm | |
SAS [54] | Minimal | 2–3 h | Batch | <50 µm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makouie, S.; Bryś, J.; Małajowicz, J.; Koczoń, P.; Siol, M.; Palani, B.K.; Bryś, A.; Obranović, M.; Mikolčević, S.; Gruczyńska-Sękowska, E. A Comprehensive Review of Silymarin Extraction and Liposomal Encapsulation Techniques for Potential Applications in Food. Appl. Sci. 2024, 14, 8477. https://doi.org/10.3390/app14188477
Makouie S, Bryś J, Małajowicz J, Koczoń P, Siol M, Palani BK, Bryś A, Obranović M, Mikolčević S, Gruczyńska-Sękowska E. A Comprehensive Review of Silymarin Extraction and Liposomal Encapsulation Techniques for Potential Applications in Food. Applied Sciences. 2024; 14(18):8477. https://doi.org/10.3390/app14188477
Chicago/Turabian StyleMakouie, Sina, Joanna Bryś, Jolanta Małajowicz, Piotr Koczoń, Marta Siol, Bharani K. Palani, Andrzej Bryś, Marko Obranović, Sanja Mikolčević, and Eliza Gruczyńska-Sękowska. 2024. "A Comprehensive Review of Silymarin Extraction and Liposomal Encapsulation Techniques for Potential Applications in Food" Applied Sciences 14, no. 18: 8477. https://doi.org/10.3390/app14188477
APA StyleMakouie, S., Bryś, J., Małajowicz, J., Koczoń, P., Siol, M., Palani, B. K., Bryś, A., Obranović, M., Mikolčević, S., & Gruczyńska-Sękowska, E. (2024). A Comprehensive Review of Silymarin Extraction and Liposomal Encapsulation Techniques for Potential Applications in Food. Applied Sciences, 14(18), 8477. https://doi.org/10.3390/app14188477