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Abstract: Vision-based weld seam extraction poses a significant challenge for weldments with
complex spatial structures in automated welding. Existing research primarily focuses on identifying
weld seams from weldments with given positions and postures, while practical weld path planning
requires multiple weld seams identified within arbitrarily placed weldments. This paper proposes
a methodology that identifies weld seams from arbitrarily placed spatial planar weldments in a
single run. First, by introducing a turntable calibrated with respect to a 3D camera, we perform 3D
reconstruction on an arbitrarily placed spatial planar weldment. Second, an improved RANSAC
algorithm based on Euclidean clustering is proposed to carry out plane segmentation, focusing on
segmentation accuracy. Finally, we present a novel weld seam extraction algorithm leveraging the half-
edge data structure to efficiently compute weld seams from the segmented planes. The experiments
conducted in this study demonstrate that the average segmentation errors (as an indirect indicator of
weld seam extraction error) are reduced by 90.3% to 99.8% over conventional segmentation methods,
and the standard deviations are reduced by 64.8% to 97.0%.

Keywords: weld seam extraction; point cloud registration; plane segmentation; Euclidean clustering

1. Introduction

The introduction of visual sensors enables the industrial robot as an actuator to
perceive the positional information of the surrounding environment. Therefore, vision-
based automatic weld seam extraction (WSE) and weld seam tracking have become an
indispensable part of robotic welding, which requires the weldment’s posture and position
to be known to the robot.

According to our research on actual production, many welding applications must
handle randomly placed weldments with uncertain position information. For these ap-
plications, the additional human labor and time cost brought by fixing the weldments
with satisfactory accuracy for WSE are unacceptable in terms of efficiency and economy,
especially in welding applications with multi-variety and small batches, as exemplified
by the samples in Section 4.2. There are two major steps to achieve this goal. The first
step is model reconstruction, from which a 2D or 3D model representing the geometric
information of the weldment is obtained; the second step is to perform WSE on the model.

Model reconstruction can be straightforward for simple weldments. A common
approach is capturing a 2D image using a laser profile sensor and extracting the weld seams
through pixel analysis [1-5]. For applications with a more complex weld seam or multiple
weld seams to be recognized, a monocular or binocular structured light 3D camera that
outputs point clouds is more commonly used [6-9]. The problem is that when the weldment
is too large for the camera’s FOV or when there are occlusions between multiple welds,
a single frame of point cloud cannot fully express all the necessary geometric features.
In this regard, the studies mentioned above focus on the WSE of a single weld seam or
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several weld seams in a single frame of a point cloud, referenced as local weld seams
in this paper. There are also scholars who work on solving this practical problem and
obtaining global weld seams. To perform 3D reconstruction on a large-size tube sheet,
Wang et al. [10] collect 2D images and laser rangefinder data simultaneously through the
sensors installed on a robot. They perform SIFT feature matching on the 2D images to
obtain the positional relationship between different frames of images, which, combined
with the depth data, leads to a complete point cloud. Yan et al. [11] first convert the 3D
point cloud into a 2D grayscale image and use an edge detection algorithm to detect the
pixel set corresponding to the weld seam from the 2D image. The weld seams are then fitted
with spline curves. The position errors are within +0.3 mm, and the standard deviations
are less than 0.4 mm. Considering the need to extract geometric features from weldments
of complex spatial structures, in this paper, we arbitrarily mount the assembled weldments
(One of the factors influencing the quality of welded joints is the appropriate sequence and
order of assembly [12]) on a one-axis turntable. By rotating a weldment along with the
turntable and capturing multiple frames of point clouds of the weldment using a binocular
structured light 3D camera, a point cloud that represents the complete geometric features
of the weldment is created through point cloud registration.

WSE can be divided into two types according to the vision sensor used. For research
with 2D vision employed, weld seams are mostly obtained by running pixel analysis on
2D images scanned with a laser profile sensor. This approach is particularly suitable for
weldments assembled by two workpieces since their geometric features can be expressed
in 2D images with decent accuracy. As an example, Guo, Zheng, Lian and Yao [3] perform
WSE on V-shaped butt joints by extracting pixels that represent the center line of a weld
seam, with an average positional error of 0.147 mm. Chen, Ma, He, Sun and Ren [4] use
a neural network to perform semantic segmentation on the 2D image of a narrow butt
joint and extract the weld seam with an average position error of 0.207 mm. As for 3D-
vision-based applications, most researchers choose to identify geometric elements from
the point clouds. Some accomplish it through edge extraction. Zhang, Geng, Tian, Zheng,
Jiang and Lai [9] use K-Means clustering to separate boundary points identified by a new
feature descriptor. This method’s advantage is its strong adaptability (it can be used for
free surfaces). However, its 78.57% corner recognition rate for planar weldments is still
insufficient for practical use. More studies choose to segment planes from the point cloud
first. Yuankai, Yong, Xincheng, Xiaolong, Yusen and Min [6] study three cases of weldments
composed of two parallel planes and use vanilla RANSAC to detect and remove the edge
points of the two planes, and then use least squares fitting to calculate the weld seams as
the center lines of the two plane point clouds. Yang, Li, Long, Fan and Liang [7] use the
least squares method to fit the common plane of the two butted workpieces. The weld
seams are calculated by polynomial fitting on the points farthest from the plane. The RMSE
error of the fitted weld seams is less than 0.7 mm. Yang et al. [13] apply vanilla RANSAC
on the point clouds to fit TEE joints and lap joints in simple weldments. Geng et al. [14]
undertake similar work with more complex planar weldments, optimizing RANSAC to
enhance the computational efficiency and fitting accuracy compared to vanilla RANSAC.
The successful implementation of these methods all has a common prerequisite, that is,
either the structure of the weldment is simple enough for the weld seams to be extracted
through a single frame of image or the weldments must be fixed with a certain accuracy in
advance and the camera must be located (at least roughly) in a position where the weld
features can be captured. In addition, since the research objects are all single weld seams or
multiple weld seams in a frame of a point cloud, only local weld seams can be obtained
in the end rather than all global weld seams. Further research is warranted to address the
global welding path planning challenge for spatial planar weldments. Hence, this paper is
dedicated to proposing a WSE method for arbitrarily placed spatial planar weldments, i.e.,
weldments with spatial structures comprised of plate-like materials commonly observed in
construction machinery, steel structures, carriage plates, and container plate manufacturing
applications [14].
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In this paper, we propose a new approach that uses an improved RANSAC algorithm
based on Euclidean clustering to carry out plane segmentation, and a novel weld seam
extraction algorithm leveraging the half-edge data structure is developed to compute weld
seams from the segmented planes efficiently. Due to the difference in weldment sizes and
types, equipment types and accuracy levels, and error evaluation methods in the existing
literature, we cannot create a unified benchmark for various methods for comparison.
However, the process in this paper successfully solves the problem of WSE in a scenario
that is more complex than similar articles and greatly improves the accuracy compared to
traditional feature extraction methods. It provides an effective reference for applying robot
automatic welding of complex planar welded parts without precise clamping.

The structure of this paper is as follows: Section 1 introduces the research background
and briefly reviews the literature. Section 2 presents the 3D reconstruction method for point
cloud registration and proposes an improved RANSAC algorithm tailored for consecutive
plane segmentation. Section 3 introduces a WSE method based on the results of plane
segmentation. Section 4 describes several experiments conducted to practice and validate
the proposed methods. Finally, Section 5 offers concluding remarks on the study presented
in this paper.

2. Improved RANSAC for Plane Segmentation
2.1. Three-Dimensional Reconstruction

To obtain the 3D model that represents the global geometric features of a weldment,
we grab multiple point clouds of the weldment, which is randomly fixed on a turntable and
rotates with it. Three-dimensional reconstruction is carried out by point cloud registration
on all the point clouds. The setup is depicted in Figure 1.

weldment

turntable

Figure 1. Capturing point clouds of the weldment on a turntable.

For any point fixed on the turntable, the coordinates with respect to the turntable
system and the world base system (also the camera system) are ,x and x, which satisfy

x=Pn)x+c, (1)

where 7 is the coordinate of the rotation axis, P(n) is the angle transform matrix between the
two bases and c is the coordinate of the turntable center point with respect to the world base.

After the turntable rotates about its z axis (with respect to the turntable system) with
angle 6, the coordinate becomes

g = R(z,

=xy =P(n) c

=P(n)R(z,0)x +c ()
P(n)R(z,6)
R(
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where
cosf —sinf 0
R(z,0) = | sinf cosf 0], 3)
0 0 1
and
R(n,0) = P(n)R(z,0)P~}(n) (4)

are the rotation matrices with respect to rotation axis z and #, respectively.
So, the registered point cloud of multiple frames grabbed on the turntable can be
expressed as

cg:UU[R(n,e—ej)xﬁ(I—R(n,e—ej))c}, (5)

where 0; is the angular position of the weldment in frame j and 0 is that of the registered
point cloud; x; is the position of the kth point in the point cloud.

2.2. Improved RANSAC

Before extracting weld seams from the registered point cloud, we employ RANSAC for
single-plane segmentation. As a widely utilized method in geometric feature extraction and
shape detection, RANSAC has proved its effectiveness in multiple fields such as SLAM [15],
Geographic detection in nature [16] or urban areas [17,18], and so on. As outlined in the
algorithm proposed in [19], vanilla RANSAC iteratively fits a plane from a point cloud
over k iterations. Each iteration entails four sequential steps (referred to as steps (1) to
(4) in Figure 2) to obtain a candidate plane, maximizing the count of inliers—points with
distances to the candidate plane smaller than a preset threshold.

(1) Randomly sample
three points

v

(2) Calculate the plane model
with the sampled points

v

(3) Select inliers within
distance threshold

No

=Maximu
inliers?

No

y

b4
- (4) Update maximum inliers
@ | and the best plane model

Yes

(5) Save the best plane model

v

< End of task )

Figure 2. Flowchart of vanilla RANSAC for single plane segmentation.

The iteration number k is defined as

_ log(1—p)
" fog(1 - @)’ ©

where w is the inlier ratio, i.e., is the number of inliers divided by the number of points,
and the constant variable p is normally set as 0.99 [20].

Despite its effectiveness in various applications, vanilla RANSAC encounters chal-
lenges when applied to plane segmentation tasks in spatial planar weldments. To address
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these issues, we propose several rules tailored to the different steps of the vanilla RANSAC,
and the refined algorithm is simply called “improved RANSAC” in this paper.

2.2.1. Optimization for Point Sampling

The initial challenge is “invalid sampling,” as Figure 3a illustrates. This scenario
depicts a situation where, instead of extracting the intended candidate plane, S1, an invalid
plane, Sy, is obtained as it outperforms S; by including more inliers.

) expected inliers |*actual segmented —Iactual inliers
V2222222222224 %P I plane (invalid) (invalid)

(@) % (b)

ol
i

(9] (d)

Figure 3. Situations of invalid segmentation: (a) invalid sampling; (b) invalid candidate plane;
(c) closely spaced planes; (d) erroneously included inliers.

Rule 1. Sample validation.

In the sampling step (step 1) of the algorithm in Figure 2, any pair of the three sampled
points must have similar normal vectors, which can be estimated with covariance matrices [21].
That is to say, for any three sampled points p1, p2, and p3, the sample is valid only when

|ni-nj]

i

> <og 1,j€{1,2,3},i#], )

le']‘ = arccos(

where 0, > 0 is the preset angle threshold and #; is the corresponding surface normal vector
at p; in Figure 3a.

By incorporating Rule 1, cases illustrated in Figure 3a are effectively bypassed. This
further prevents the generation of unqualified candidate planes, reducing the effort of
candidate plane validation.

2.2.2. Optimization for Candidate Plane Validation

The second challenge, termed “invalid candidate plane”, arises after the plane model
calculation step (step 2) of the algorithm depicted in Figure 2. Occasionally, invalid can-
didate planes may emerge despite the sampled points passing Rule 1, as illustrated in
Figure 3b. In this scenario, while the sampled points possess similar normal vectors, the
candidate plane’s normal vector exhibits a significant disparity.

Rule 2. Candidate plane validation.
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For any candidate plane calculated using the sampled points, its normal vector must
be close to those of the sampled points. That is to say, candidate plane S is valid only when

|n;-ns| > ,
arccos| ———— | <oy, i€ {1,2,3}, (8)
(|"i|||"5|| ’

where ng is the normal vector of S.

2.2.3. Optimization for Inlier Validation and Update Criterion

In the irregular scenario depicted in Figure 3d, a correctly segmented plane erroneously
includes inliers belonging to other planes, thereby causing interference with the remaining
points to be segmented. This situation underscores the potential for a candidate plane to
occupy points intended for other planes.
Rule 3. Inlier validation.

Besides the distance threshold, the points selected as inliers must have similar normal
vectors as the segmented plane. Under this rule, a point p; is a valid inlier of plane S only if
the following conditions are satisfied:

ie{1,2,...,1}, 9)

{ distance(p;, S) < 0y,

|n;-ng| )
arccos < 0.
(H"iHH”SH a

where 0y is the distance threshold and

. |Ax; + By; + Cz; + D|
VA2 + B2+ C2

for point p; = (x;,y;,z;) and plane S representing Ax + By + Cz+ D = 0.

Another irregular situation, exemplified in Figure 3c, arises when the distance between
two parallel planes is less than the distance threshold ¢;. In this case, the central plane,
marked as S3 in Figure 3, is prioritized over S; and 5; to be chosen as the candidate plane,
as per the iteration update in Figure 2, which selects a new candidate plane if it has more
inliers than the historical best one. While a straightforward solution would be to use a
smaller gy, altering such a significant variable in RANSAC could introduce unexpected
variability in the output. Hence, there is a need to revise the update criterion accordingly.

To begin with, we introduce variable e as the local segmentation error of a
candidate plane:

distance(p;, S) (10)

l |n;-ng|
e= ydistance(p;, S) + (1 — 7)’), (11)
ZZ%( l (il |
where [ is the number of inliers of the current candidate plane S, n; is the normal vector at
pi and vy € [0, 1] is the weight to control the significance of distance errors and angle errors.

Rule 4. Update criterion.

For a new candidate plane S; in the jth iteration, it outperforms the historical best
iteration k only when

Gk, (12)

p- =
] 6]‘ (9

The introduction of the new objective value p provides a refined measure of the priority
of a candidate plane, considering not only its number of inliers but also the distance and
angle errors. This modification substantially mitigates situations akin to Figure 3c, where
parallel planes may erroneously interfere with each other.

2.2.4. Optimization for Final Output

Rule 3 and Rule 4 generally perform well for normal situations; however, there are
instances where they fall short, particularly when the angle « in Figure 3d is smaller than
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the 0, defined in Rule 3. As illustrated by S; and S, in Figure 4, the current RANSAC
algorithm would only segment one plane (e.g., plane S’ in Figure 4b) since the inliers of
both S; and S, fall within the distance and angle thresholds. This outcome inevitably
introduces additional segmentation errors in the resulting fitted planes and weld seams.

(a) (b)

Top view direction

------
e

Figure 4. Segmentation error brought by similar planes: (a) 3D view; (b) top view. In the top view, S;
and Sy, represented with blue and green solid lines respectively, are the planes to be segmented. In
contrast, the mistakenly segmented plane S’ is represented with a dotted red line. 0 is the distance
threshold for inlier selection in RANSAC.

The points in S; and Sy can be easily clustered into two groups using Euclidean
clustering: Point sets ®; and ®; are two clusters, if

min (distance (p;, p;)) > 0y (13)

holds for any i and j, where 0y is the distance threshold [22]. This definition also indicates
that for any point p; in a cluster that has more than one element, there exists at least one
point that distanced less than o to p;.

Rule 5. Final refinements.

After inlier validation, Euclidean clustering on the inliers is performed, resulting in m
clusters of inliers (p%, s, plll ) , (p%, el plzz) , (p{”, el p}Z}) . Choose only one cluster as the
inliers for the final segmented plane according to the following steps.

(a) Least-square fitting is performed on each cluster of inliers, leading to a corresponding
number of plane models. That is to say,

1
Sj = argmin _ ||distance (p;, S) 2 (14)
i=1
where p; annotates the ith inlier of plane S j-
(b) Choose a plane as the final output that satisfies
Sj = argmin(ej), (15)

]

where ¢; is defined as ¢ in (11). The inliers that do not belong in the selected cluster
return to the point pool for sampling in the next iteration.

Figure 5 illustrates how Rule 5 affects the segmentation results of the case in Figure 4.
Without the refinements in Rule 5, spatially isolated planes with a small angle are recognized
as a single plane. Also, the segmented planes may look incomplete if there are points (that
should be inliers of the segmented planes) distanced farther than o, to them. Both problems
are eliminated with the introduction of Rule 5.
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(b)

Figure 5. Segmentation before (a) and after (b) using Rule 5, with each segmented plane rendered in
a different color.

2.3. Consecutive Plane Segmentation

With the proposed improved RANSAC algorithm for single-plane segmentation,
consecutive segmentation becomes achievable. To consecutively segment multiple planes
from a point cloud, the fundamental concept involves iteratively executing the algorithm
on the point cloud with the inliers of the last segmented plane removed until all valid
planes are segmented from the point cloud. Figure 6 illustrates this process. The output of
the consecutive plane segmentation comprises a list of plane models segmented from the
input point cloud, along with the corresponding inliers of each segmented plane.

Figure 6. The process of consecutive plane segmentation: Each step of the segmentation fits a plane
and removes its inliers. The inliers of each plane are rendered in a different color. The color contrast
of the inliers belonging to the same plane is caused by the inconsistent density of points in the point
cloud (caused by occlusion during point cloud capturing).

In consecutive plane segmentation, two termination conditions can be considered:
the number of segmented planes and the number of remaining points. Since the former
requires clear user expectations, making automation applications less flexible, the latter
termination condition is adopted in this paper.

In the proposed improved RANSAC algorithm, comparisons of normal vectors occur
frequently, leading to time-consuming duplication of efforts. Particularly in the sampling
process, numerous invalid iterations are spent on sampling points with different normal
vectors. This inefficiency could be mitigated by clustering points based on normal vectors.
To explore this approach, the normal vectors of the point cloud are visualized in a unit ball
(Figure 7a), and the result is rendered into a temperature map representing the probability
density of the normal vectors (Figure 7b). It becomes apparent that the points can be
clustered based on their normal vectors. This insight inspires us that most points in a point
cloud can be divided into several clusters according to their normal vectors.
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(a)

(b) (c)

Figure 7. Normal vector clustering: (a) the original point cloud; (b) the temperature map representing
the probability density of the normal vectors; (¢) normal vector clustering using Euclidean clustering.

To precisely obtain cluster information, Euclidean clustering is applied to the unit ball
in Figure 7b. The result (Figure 7c) resembles the probability density result in Figure 7b.
The three major clusters in Figure 7c correspond to the three groups of orthogonal planes
in Figure 7a.

Normal vector clustering offers two significant merits. Firstly, by clustering points,
sampling is performed from a cluster rather than the entire point cloud in each iteration.
This not only enhances sampling efficiency by reducing the sample space but also
decreases the number of points to be considered in subsequent steps. Secondly, since
points with different normal vectors are segregated into distinct clusters, they do not
interfere with each other during the selection and counting of inliers, leading to improved
segmentation results.

The detailed steps of consecutive plane segmentation based on normal vector cluster-
ing are elucidated in the pseudo-code provided in Section 2.4.2.

2.4. Algorithm Implementation

For more clarified elaboration, the algorithm’s pseudo-code is separated into two
parts: the first for the improved RANSAC Algorithm and the second for the consecutive
plane segmentation.

2.4.1. Implementation for Improved RANSAC Algorithm

The pseudo-code for the improved RANSAC algorithm for a single segmentation is
provided in Algorithm 1 in Python style.

Line 5 initiates the main loop (lines 5 to 24) that segments a single plane. Lines 8
to 14 implement Rule 1 (sample validation) in Section 2.2.1, where unqualified samples
are bypassed before calculating the candidate plane. Line 15 calculates a candidate plane
from the sampled points. Lines 16 to 17 implement Rule 2 (candidate plane validation)
in Section 2.2.2. Lines 18 to 20 implement Rule 3 (inlier validation) in Section 2.2.3. Lines
21 and 22 update the current best candidate plane and its inliers by implementing Rule 4
(update criterion) in Section 2.2.3. Lines 23 and 24 check whether the termination condition
in Formula (6) is satisfied. Lines 25 and 26 implement Rule 5 in Section 2.2.4, performing
Euclidean clustering on the inliers and choosing the best cluster for final segmentation.
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Algorithm 1 Improved RANSAC Algorithm

1 Input: the point cloud points and the corresponding normal vectors normals;
2 Output: segmented plane model plane and its inliers inliers

3  max_rho=0

4 inlier_indices = ]

5 foriin range(max_iteration):

6 inlier_indices = ]

7

8

[a,b,c] =[-1,—-1,-1]
for j in range(max_sampling):
9 [a1,b1, c1] = sample_3_random_points_indices(points)
10 if valid_sample(normals|a], normals[b], normalsc]):
11 [a,b,c] = [al,b1,c]]
12 break
13 ifa <0:
14 continue

15 plane = get_plane(points[a], points[b], points|c])
16 if not valid_candidate_plane(plane):

17 continue

18 for j in range(len(points)):

19 if valid_inlier(j):

20 inlier_indices.append(j)

21 if get_rho(inlier_indices) > max_rho:
22 max_rho = get_rho(inlier_indices)
23 if i > get_k(len(inlier_indices)):

24 break

25  clusters = euclidean_cluster(points, inlier_indices)
26  plane, inliers = choose_from_clusters(clusters, points, normals)
27  return plane, inliers

2.4.2. Implementation for Consecutive Plane Segmentation

The pseudo-code of Consecutive Plane Segmentation is listed in Algorithm 2.
Line 5 performs Euclidean clustering on the normal vectors, which returns a list of

clusters containing the point indices. Line 6 begins the main loop, where the biggest cluster
is used as the input for single-plane segmentation in each iteration. The improved RANSAC
method in line 10 refers to the code block in Algorithm 1.

Algorithm 2 Consecutive Plane Segmentation Algorithm

O 00 NI OO W -

=
o

I e s g
NGl = W N =

Input: the point cloud points and the corresponding normal vectors normals;
Output: segmented plane models planes and their corresponding inliers inliers_groups
planes = ||
inliers_groups = ||
clusters = euclidean_cluster(normals)
while True:

cluster_index = argmax ([len(cluster) for cluster in clusters])

if len(clusters|cluster_index]) < least_points_for_segmentation:

break
plane, inliers = improved_RANSAC(

points|clusters|cluster_index||, normals[clusters|cluster_index]])
if len(inliers) == 0:
break
clusters|cluster_index] = [index for index in clusters|cluster_index] if index not in inliers]
planes.append(plane)

inliers_groups.append (inliers)
return planes, inliers_groups
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3. Weld Seam Extraction
3.1. Intersection Point Calculation

Consider all the possible topology combinations (Figure 8) of three planes.

(c)

Figure 8. The possible topologies of three planes: (a) no intersection lines; (b) one intersection line;
(c) two intersection lines; (d) three parallel intersection lines; (e) three intersection lines intersecting
at one point. The intersection lines are represented with red lines.

Upon initial observation, situations in Figure 8b—e all appear to potentially produce
weld seams. However, considering the physical thickness of any planar object, almost all
situations can be expressed as Figure 8e. Consequently, a weld seam can be conceptualized
as a set of lines connecting two intersection points, each formed by three planes. This
problem can be addressed by solving a simple linear equation with three variables. Since
Figure 8e is the only one to be considered, each combination of three planes can be validated
using the following criterion:

i)

;]| ||

wjj = arccos( > <o, 1,j€{1,2,3},i#], (16)

where n; is the normal vector of plane i. Formula (16) looks identical to (7), but the latter
is used to validate sampled points in the RANSAC algorithm.

As noted, “almost” all situations can be simplified to Figure 8e, with one exception:
the base plane, where the weldment is mounted on the fixture, is typically obstructed from
the camera’s view. Consequently, no points in the point cloud serve as inliers for the base
plane. This issue can be readily resolved by manually adding the base plane to the list of
segmented planes.

3.2. Vertex Validation

Based on the topology combination analysis described above, every weld seam com-
prises a line set connecting a starting point and an ending point, both of which are inter-
sected points (vertices) formed by three planes. By iterating through all C(n, 3) combina-
tions of the segmented planes, all possible starting and ending points can be calculated.
However, not every vertex is a valid start point or end point of a weld seam. As an illustra-
tion, Figure 9 shows a point p; intersected by planes S1, S and S3, which obviously cannot
serve as a vertex of a weld seam.

Figure 9. Example of an invalid intersection point (p1).
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By comparing p; with a valid vertex p; in Figure 9, a quick discovery is that invalid
vertices are not located in the inliers of any of the planes intersecting. To rule out invalid
intersections for weld seam extraction, each vertex is validated by the following criterion:

min (distance(p, Ps,)) < o4, i € {1,2,3} (17)

where Ps, is the cluster of inliers of plane S;. This criterion would likely fail without
adopting Rule 5 proposed in Section 2.2.4 because isolated noisy points will be included
in the inliers of a segmented plane, making the criterion satisfied even in case of an
invalid intersection.

3.3. Edge Convexity Validation

With all the valid vertices obtained, a weld seam can be seen as an edge connecting
two vertices that share two intersection planes. However, not all the edges are valid weld
seams. A simple example is shown in Figure 10, and except p; p2 (in red color), all the other
edges are invalid weld seams.

Figure 10. Edges connected by vertices.

By intuition, we recognize that weld seams must represent “concave edges,” while the
remaining edges are “convex edges.” A concave edge is formed by two surfaces with an
angle between 0° to 180°, and the angle has to be outside of the entity. Through the use of
the half-edge data structure, also known as the doubly connected edge list [23], we observe
the following pattern. As illustrated in Figure 11, for two adjacent planes, e; and e; are
the twin half-edges of their common edge p;p2. n1 and n, are the corresponding normal
vectors. We introduce variable ¢ as an indicator of the convexity of an edge:

c = (1’11 X 112)-81. (18)

(€)) (b)

b2

D1

Figure 11. Concave edge (a) and convex edge (b).
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The conclusion is as follows: when ¢ < 0, edge p;p2 is concave; when ¢ > 0, edge
p1p2 is convex; when ¢ = 0, the two planes forming edge p;p, are coplanar. With this
principle, all the convex edges can be ruled out.

By expressing the intersection points in each plane with the half-edge data structures,
all the intersection points and edges constitute a half-edge mesh, where the edge convexity
indicator is used to validate concave edges as valid weld seams.

3.4. Algorithm Implementation for WSE

The implementation of WSE is depicted in Algorithm 3. The loop from lines 7 to 18
iterates all the three-plane combinations and calculates the valid vertices, where line 11
implements the criterion (18). The edges are calculated from line 19 to line 24. Line 25
creates a half-edge mesh from the edges, from which lines 26 to 33 select the valid weld
seams from the edges of the half-edge mesh using edge convexity validation in Section 3.3.

Algorithm 3 WSE Algorithm

1

Input: the point cloud points; the segmented planes planes and their inliers inliers_planes (each element in

inliers_planes is a list of point indices representing the inliers of the corresponding plane).

edges =[]

O 00 I O U b WO N

—_
o

as weld seams.
vertices = |]

Output: list of vertices vertices; list of binary tuples seams representing the indices of the points to be connected

vertices_per_plane = [[] for _in range(len(planes))]
planes_per_vertex = []
for comb_3_planes in combinations(range(len(planes)), 3):
if not valid_planes_for_intersection(comb_3_planes):
continue
vertex = get_intersect_point(planes[comb_3_planes[0]], planes[comb_3_planes[1]],

planes[comb_3_planes[2]])

11

if not valid_intersection_point(vertex, points, inliers_planes[comb_3_planes[0]],

inliers_planes[comb_3_planes[1]], inliers_planes[comb_3_planes[2]], sigma_d):

12 continue

13 wvertex_idx =len(vertices)

14  wvertices.append(vertex)

15  vertices_per_plane[comb_3_planes[0]].append(vertex_idx)
16  vertices_per_plane[comb_3_planes[1]].append(vertex_idx)
17  vertices_per_plane[comb_3_planes[2]].append(vertex_idx)
18  planes_per_vertex.append(comb_3_planes)

19 for comb_2_vertices in combinations(range(len(vertices)), 2):

4. Experimental Verification
4.1. Experiment Setup

To evaluate the proposed method with weldments, an experimental platform consist-
ing of a turntable and a 3D structured light camera is built, depicted in Figure 12. The
3D camera (DM Series production of Hanchine) has a FOV of 110 x 70 mm (close end) to
300 x 210 mm (far end), with a resolution of 2.3 million and an average error of 0.15%. The
turntable diameter is 250 mm, and the repeatability is +0.05°.
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!

! 3D
7 Camera

Turntable

Figure 12. Experiment setup for 3D reconstruction.

According to Formula (5), the accurate turntable axis vector n and center point ¢ with
respect to the camera coordination are required for 3D reconstruction. We employ the method
proposed by Yang et al. [24] to calibrate and verify the parameters in the following steps.

(1) A standard metal cube (of size 80 x 100 x 120 mm?) is used as the reference object for
calibration. The setup is displayed in Figure 13, where 36 frames of point clouds of
the cube are captured with the turntable rotating 10° for each frame (Figure 14a).

Figure 13. Experiment setup for turntable calibration.
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(a) (b)

() (d)

0.5

- 00

Figure 14. Verification experiments with the calibrated turntable: (a) the multiple point clouds grabbed
from the standard cube; (b) the registered point cloud; (c) plane segmentation result of the registered
point cloud; (d) temperature map representing segmentation error of the plane segmented planes.

(2) All frames of point clouds are merged into one with point cloud registration, where
n and c are the main parameters. The calculation of n and ¢ is turned into the
optimization of the point cloud registration that leads to the minimum registration
error, which is further decomposed into axis calibration and center point calibration.
The result is recorded in Table 1.

Table 1. Calibration result of the turntable.

Variable Result
n [0.0202, —0.681, —0.732)]
¢ (mm) [73.72, —45.10, 466.60]

(3) Point cloud registration is performed on all the point clouds obtained in step (1) with
the parameters calculated in step (2), as depicted in Figure 14b.

(4) Perform plane segmentation on the registered point cloud in step (3) (Figure 14c). The
registration error in step (3) is measured as the plane segmentation error, as visualized
in Figure 14d. Since the segmentation error is small, we reasonably infer that the
calibration is accurate enough.

4.2. Experiment for 3D Reconstruction

To test the proposed 3D reconstruction and WSE algorithms, we choose some typi-
cal spatial planar workpieces from a signal tower base manufacturer as weldments. As
displayed in Figure 15, the samples meet the characteristics of “multi-variety and small
batches” described in Section 1.
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Figure 15. Spatial planar weldments from a signal tower base manufacture.

With the turntable calibrated, point cloud registration with multiple frames of point
clouds is possible. To reconstruct the geometric characteristics of the weldment, point cloud
registration is applied with Formula (5). Figure 16 displays the point clouds before and
after registration.

a

'.....W,.;,Wm7

Figure 16. Point clouds before (first row) and after (second row) registration, with each point cloud
frame rendered in a different color.

4.3. Experiment for Plane Segmentation

Several experiments are conducted to evaluate the performance of the plane segmen-
tation algorithm proposed in Section 3.

The standard cube serves as the experimental object for the initial comparison. Ta-
ble 2 presents a detailed comparison of segmentation results between vanilla RANSAC,
RANSAC without normal vector clustering (non-clustering RANSAC hereafter), and the
improved RANSAC. To ensure a fair comparison, all implementations utilize identical
configurations for variables such as downsampling, distance threshold, max iteration,
etc. No parallel computation, such as AVX, is employed (the same goes for the following
comparisons). The reported results are averaged over 20 runs. For vanilla RANSAC, the
PCL implementation [25] is utilized.
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Table 2. Segmentation result comparison with a standard cube.

Vanilla RANSAC Non-Clustering RANSAC Improved RANSAC (Proposed)
Variabl
aniable Value Value Comparison * Value Comparison *
average error (mm) 0.28 0.40 +42.9% 0.072 —74.3%
standard deviation 0.0023 0.0030 +30.4% 0.00081 —64.8%
execution time (s) 4.85 30.46 +528% 16.79 +246%
correct planes 5/5 5/5 0% 5/5 0%
segmented
incorrect planes 0 0 0% 0 0%
segmented
total points 140,022 140,022 0% 140,022 0%
(downsampled)
inliers 139,003 134,471 —3.2% 134,591 —3.17%

* The comparisons are made against Vanilla RANSAC.

Analysis of Table 2 reveals that the improved RANSAC significantly outperforms
vanilla RANSAC regarding segmentation accuracy, although this difference may not be
readily apparent in Figure 17. Vanilla RANSAC exhibits faster execution compared to the
proposed algorithm, as the surface normal estimation and Euclidean clustering utilized
in the proposed algorithm are relatively time-consuming. However, compared to non-
clustering RANSAC, the improved RANSAC demonstrates superior efficiency.

(a (b) (c)

Figure 17. Segmentation comparison over a standard cube. (a) Vanilla RANSAC; (b) non-clustering
RANSACG; (c) improved RANSAC.

In the subsequent experiment, an icosahedral column, serving as a relatively complex
standard workpiece, is employed as the experimental object. The comparison results are
depicted in Figure 18 and summarized in Table 3. In this set of experiments, both vanilla
RANSAC and non-clustering RANSAC exhibit poor performance in accurately segmented
planes, with numerous incorrect planes generated. With further tuning in the configuration,
the latter may perform better in this experiment. However, we retain this result as, with
the same configuration, the improved RANSAC efficiently identifies all the planes.

(a) (b) ()

Figure 18. Segmentation comparison over an icosahedral column. (a) Vanilla RANSAC; (b) non-
clustering RANSAC; (c) improved RANSAC.
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Table 3. Segmentation result comparison with an icosahedral column.

Vanilla RANSAC Non-Clustering RANSAC Improved RANSAC (Proposed)
Variabl
anabte Value Value Comparison Value Comparison
average error (mm) 1.02 1.26 +23.5% 0.0030 —99.7%
standard deviation 0.022 0.026 +18.2% 0.00065 —97.0%
execution time (s) 13.42 104.93 +682% 20.80 +55.0%
correct planes B o o
segmented 15/21 13/21 13.3% 21/21 +40%
incorrect planes 1o 1000
segmented 10 9 10% 0 100%
total points 85,501 85,501 0% 85,501 0%
(downsampled)
inliers 84,677 84,395 —0.33% 81,002 —4.3%

It is to be noted that in Tables 1-3, the total planes to be segmented (displayed as de-
nominators in a row “correct planes segmented”) is not equal to “correct planes segmented”
plus “incorrect planes segmented”. As an example, for a given point cloud with three
planes to be segmented, if the segmentation mistakenly has two of the planes recognized
as one plane and the left one plane recognized as three planes, the number of incorrect
planes reaches four, which is bigger than the total planes to be segmented (three). Unrea-
sonable segmentation may output more planes than needed, as actually happens to Vanilla
RANSAC and non-clustering RANSAC in Tables 3 and 4. This phenomenon can be more
intuitively observed in Figure 18a,b.

Table 4. Segmentation result comparison with a spatial planar weldment.
Vanilla RANSAC Non-Clustering RANSAC Improved RANSAC (Proposed)
Variable
! Value Value Comparison Value Comparison
average error (mm) 1.35 0.31 —77.0% 0.0030 —99.8%
standard deviation 0.013 0.0023 —82.3% 0.00065 —95%
execution time (s) 74.77 597.63 +699% 578.42 +674%
correct planes o o
segmented 15/21 16/21 +6.67% 21/21 +40%
incorrect planes 1000 1000
segmented 7 0 100% 0 100%
total points 394,437 394,437 0% 394,437 0%
(downsampled)
inliers 384,093 345,932 —9.94% 354,087 —7.81%

In the final comparison group, one of the spatial planar weldments is utilized for
weld seam extraction as the object. Table 4 presents the data comparison of the results.
The improved RANSAC successfully captures all the planes required. Conversely, vanilla
RANSAC fails to segment nearly one-third of the necessary planes and produces several
incorrect planes, as demonstrated in Figure 19.

Figure 19. Segmentation comparison over a spatial planar weldment. (a) Vanilla RANSAC;
(b) non-clustering RANSAC; (c) improved RANSAC.
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By applying the improved RANSAC algorithm, consecutive plane segmentation is
performed on the weldments, Figure 20 illustrates the process.

(@) (b) (©)

(9) (h) @

Figure 20. Part of the process of consecutive plane segmentation. One plane is segmented in each
stage of (a—i).

The segmentation results of the weldments are displayed in Figure 21, where pho-
tographs of the weldments, segmentation results, and the corresponding normal vector
clustering results are arranged for comparison.

Figure 21. Plane segmentation for several weldments. (Row one): photos of the physical weldments.
(Row two): segmentation results rendering each plane with a different color. (Row three): normal
vector clustering results of the corresponding segmentations.
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4.4. Experiment for Weld Seam Extraction

After obtaining the segmented planes, the calculation of weld seams can be executed
using the WSE algorithm proposed in Section 3. The outcomes, comprising valid weld
seams and invalid edges excluded based on the edge convexity criterion, are visualized in
Figure 22.

Figure 22. The WSE results: valid weld seams are marked with thick red lines and invalid weld
seams are marked with thin blue lines.

4.5. Discussion

The 3D reconstruction for the weldments demonstrates that a point cloud that rep-
resents the complete geometric features of a complex spatial planar weldment can be
generated by point cloud registration, with the incorporation of a well-calibrated turntable.
Notably, this methodology remains effective regardless of the initial position and orienta-
tion of the weldments, thus addressing the issue outlined in the introductory section.

Although welding is a relatively low-precision processing process, extracting weld seams
from point clouds is still challenging. The reason not only lies in the difficulty of ensuring
numerical accuracy when extracting geometric features but also in the fact that conventional
feature extraction algorithms such as vanilla RANSAC tend to fail for complex workpieces.
Experiments on plane segmentation reveal that conventional RANSAC algorithms exhibit
commendable performance and acceptable accuracy solely for objects with rudimentary
shapes. When confronted with intricate spatial structures, these algorithms either fail to detect
certain planes or return inaccurate results. In contrast, the proposed improved RANSAC
algorithm showcases the ability to accurately recognize planes from spatial workpieces, even
those characterized by multiple angles and complex intersecting planes.

The improvement of the proposed method over the conventional method varies from
case to case. In the experiments conducted in this study, the average errors are reduced by
90.3% to 99.8%, and the standard deviations are reduced by 64.8% to 97.0%. Moreover, thanks
to the optimizations introduced in Section 2.2, the improved RANSAC greatly eliminates the
problems encountered by conventional RANSAC when dealing with complex workpieces. As
shown in the experimental results, the proposed segmentation method ensures the extraction
of necessary planes while avoiding the generation of erroneous planes. Since the conven-
tional methods basically fail to generate the weld seams properly, we are unable to provide
comparisons on WSE over the proposed method and conventional ones.

5. Conclusions

This paper introduces a global weld seam extraction method tailored for arbitrarily
placed spatial planar weldments. The key contributions and outcomes of this research
endeavor are summarized as follows:

(1) By introducing point cloud registration with multiple frames of point clouds captured
from a weldment, a three-dimensional reconstruction of the weldment is carried out
without knowing the position and posture of the weldment. Due to the universality
of this method, it may be applied to most scenarios that require a complete 3D digital
twin model.
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(2) We propose an improved RANSAC algorithm designed to execute consecutive plane
segmentation with remarkable accuracy. This algorithm is adept at handling the plane
segmentation of complex spatial planar weldments, a task challenging for conventional
similar algorithms. As demonstrated by the experiments, the average errors are reduced
by 90.3% to 99.8% over the traditional RANSAC algorithm, and the standard deviations
are reduced by 64.8% to 97.0%. This method can also be used in other processing
techniques that require obtaining planar features through point clouds.

(3) Additionally, we present a weld seam extraction (WSE) algorithm for multiple weld
seam extraction, which calculates all the edges from the segmented planes and selects
valid weld seams with vertex validation and edge convexity validation utilizing the
half-edge data structure.

The proposed methodologies offer an elegant solution for automatically and accurately
extracting weld seams from complex weldments without precise fixing. Nevertheless, our
approach still has limitations and areas that deserve extension.

(1) This research uses a single-axis turntable to expand the 3D camera’s FOV. When
the workpiece shape is particularly complex, there could still be geometric features
that are difficult to capture. To further achieve the 3D reconstruction capability,
we consider introducing multi-axis turntables as a replacement. The calibration of
multi-axis turntables will become a research focus.

(2) The WSE method proposed in this paper approximates the weld seams as the intersec-
tion lines of adjacent planes in the workpiece. For the case where welding grooves are
to be concerned, further microscopic analysis and modeling of the grooves is required
before it is used for robot welding path planning. Also, due to the poor performance
of RANSAC (even the improved version proposed in the paper) in identifying narrow
and long planes, this method only applies to plate structures with a thickness of more
than 2 mm.

(3) Toimprove the method’s scope of application, our future investigations will center on
weldments featuring free surfaces.
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