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Abstract: This study examines the impact of sensor placement and multimodal sensor fusion on the
performance of a Long Short-Term Memory (LSTM)-based model for human activity classification
taking place in an agricultural harvesting scenario involving human-robot collaboration. Data
were collected from twenty participants performing six distinct activities using five wearable inertial
measurement units placed at various anatomical locations. The signals collected from the sensors were
first processed to eliminate noise and then input into an LSTM neural network for recognizing features
in sequential time-dependent data. Results indicated that the chest-mounted sensor provided the
highest F1-score of 0.939, representing superior performance over other placements and combinations
of them. Moreover, the magnetometer surpassed the accelerometer and gyroscope, highlighting its
superior ability to capture crucial orientation and motion data related to the investigated activities.
However, multimodal fusion of accelerometer, gyroscope, and magnetometer data showed the
benefit of integrating data from different sensor types to improve classification accuracy. The study
emphasizes the effectiveness of strategic sensor placement and fusion in optimizing human activity
recognition, thus minimizing data requirements and computational expenses, and resulting in a
cost-optimal system configuration. Overall, this research contributes to the development of more
intelligent, safe, cost-effective adaptive synergistic systems that can be integrated into a variety
of applications.

Keywords: Long Short-Term Memory (LSTM) networks; wearable sensors; multi-sensor information
fusion; human-robot collaboration; human factors; cost-optimal system configuration

1. Introduction

Agricultural environments, particularly those including open fields, present several
unpredictable and varied conditions that hinder effective management and operational
efficiency [1,2]. To tackle these challenges, human-robot collaboration has been suggested
towards achieving common objectives through effective information sharing and task coor-
dination [3–5]. During human-robot interaction (HRI), robots need to understand human
intentions and respond appropriately. This can be achieved through human activity recog-
nition (HAR), which involves the use of wearable sensors, computer vision, and machine
learning (ML) to classify human activities [6–8]. Consequently, robots can synchronize their
operations with human actions, allowing them to work alongside farmers and assisting
with tasks such as weeding, harvesting, and transporting crops to storage [9,10].

Studies on HAR are still scarce in agriculture, mainly due to the complex nature of the
environments they involve. Furthermore, the lack of standardized datasets and benchmarks
for agricultural HAR research has hindered progress in this field [11]. Motivated by the
necessity of creating natural communication systems for facilitating HRI in agriculture,
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a vision-based static hand gesture recognition framework was developed in [12]. This
framework was successfully tested in an open-field scenario involving an Unmanned
Ground Vehicle (UGV) following the participants as they harvested crops and helping
transfer crates from the field to a specific area. For the purpose of overcoming the challenges
of static gestures, including their limited ability to capture the full range of human intentions
in dynamic situations, Moysiadis et al. [9] developed a dynamic movement recognition HRI
system. This advancement provided more detailed insights by integrating a wider range
of body movements and variations, allowing for more accurate and natural interactions
between humans and robots in a similar field scenario with [12]. In both studies, however,
as they relied on data coming from an RGB-D camera mounted on the UGV, recognizing
human movements accurately in different environments, like with different lighting or
backgrounds, proved to be a considerable challenge.

To address the challenges associated with vision-based HAR, wearable sensors can
provide a trustworthy alternative option [13–15]. These sensors offer additional layers
of information, enabling more robust activity recognition, even in conditions with poor
lighting or occlusions. Nevertheless, challenges still remain regarding mainly the fusion
and synchronization of multi-sensor data, possible sensor drift, and the increased com-
putational complexity [6,16]. Hand gesture recognition, through data originated from
sensors embedded within a specially designed glove, was accomplished and successfully
tested in [17] towards controlling wirelessly a robotic arm for removing weeds. In addition,
Patil et al. [18] presented a wearable shirt with a smartphone attached to it, allowing the
measurement of acceleration signals during several material handling activities and tested
the performance of different ML classifiers. In a similar vein, Sharma et al. [19–21] used
accelerometer data along with data from a microphone and global positioning system (GPS)
from smartphones and evaluated the performance of several ML algorithms. Towards clas-
sifying specific agricultural worker’s activities, Aiello et al. [22] used two accelerometers
fixed to the wrists of operators of vibrating agricultural tools and a k-nearest neighbors
(KNN) classifier. In [23], data collection field experiments were conducted to acquire data
using wearable sensors throughout a human–robot collaborative harvesting task using
two different UGVs for ergonomic purposes. In [24], the obtained signals from wearable
sensors were fed into a long short-term memory (LSTM) network for HAR.

Existing studies, although limited in number, highlight the efficacy of wearable sensors
in capturing relevant data for HAR in agricultural contexts. However, there is a notable
lack of consensus on the most effective anatomical locations for sensor placement, while
also the fusion of data from multiple sensors (e.g., accelerometers, gyroscopes, and magne-
tometers) has not been fully explored. Our research aims to fill these gaps by systematically
investigating the optimal anatomical locations for sensor placement, through exploring the
effectiveness of three types of sensors (accelerometers, gyroscopes, and magnetometers)
and optimizing an ML-based framework for HAR. To acquire the essential sensor data,
experimental field tests were carried out involving twenty participants wearing five inertial
measurement units (IMUs) positioned on different parts of the body and carrying out six
well-defined activities of a collaborative harvesting scenario similar to [9,12]. An LSTM
neural network was used for classifying the activity signatures of the participants, while
the dataset is shared publicly in [25].

In conclusion, our approach for a strategic selection and placement of sensors ensures
that the most informative signals are captured, which is particularly important in agricul-
tural tasks, where activities can be complex and varied. This approach not only improves
accuracy, but also reduces computational costs, minimizes the amount of data needed, and
lowers overall system costs. Although the primary objective of our work is to improve HAR
in agricultural tasks, with a particular focus on human-robot collaboration, its methodology
and key findings could also be applied to other domains. Finally, by providing access to
these data, we aim to encourage further research and innovation, accelerating progress
and overcoming the barriers of data scarcity that have historically limited the scope of
agricultural studies [26,27].
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The remainder of the paper is organized as follows: Section 2 outlines the methodology
for data collection, pre-processing, and the developed LSTM-based HAR. Section 3 presents
the main results regarding the optimal sensor placement and multimodal sensor fusion,
while in Section 4 the results are discussed from a broader perspective along with future
research directions. Finally, Section 5 concludes with the key findings.

2. Materials and Methods

The overall workflow of the LSTM-based HAR framework used in this analysis is
illustrated in Figure 1, and an explanation of the key steps is provided in the following
subsections. The workflow begins with data acquisition, where sensor data are collected
from various body locations. In the next stage, various data pre-processing techniques
are implemented to ensure that the raw data are cleaned and structured, while more
informative features are also extracted to enhance model learning. The resulting dataset
is then split into training and test sets. Training involves the model learning patterns and
relationships within the data that can be used to make predictions. Cross-validation is
conducted to find the best model parameters. After training and tuning the model, its
performance is evaluated on the test data with metrics like the F1-score and cross-entropy
loss function.
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workflow using wearable sensor data.

2.1. Data Acquisition

The experimental sessions were conducted on a farm located in the region of Volos,
central Greece. They involved twenty participants, evenly split between males and females.
The average age of the participants was 30.13 years (with a standard deviation (SD) of
approximately 4.13 years), their average height was 1.71 m (SD ≈ 0.10 m), and their average
weight was 70.20 kg (SD ≈ 16.10 kg). To participate in this study, all subjects were required
to have no history of surgeries or musculoskeletal injuries within the last year that could
potentially affect their performance. Each participant provided informed consent, which
was approved by the Institutional Ethical Committee, prior to the commencement of any
experimental procedures.

Each participant was required to: (a) Remain still until the start signal was given;
(b) Walk straight 3.5 m without a crate; (c) Bend down to pick up the crate; (d) Lift it
from the ground to an upright stance; (e) Walk back 3.5 m while carrying the crate; and
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(f) Position the crate onto a UGV. For the experimental setup, a UGV, known as Thorvald
(SAGA Robotics SA, Oslo, Norway) was utilized, having a crate deposit height equal to
80 cm. This robot is commonly used in agricultural environments, due to its versatility
and ability to navigate various types of terrain, making it a reliable choice for research and
practical agricultural applications [4,28]. The participants were required to handle either
an empty crate (with a tare weight of 1.5 kg) or a crate loaded with weight plates to achieve
a total mass equivalent to 20% of the participant’s body weight [24,29]. The weight plates,
available in 1 kg and 2.5 kg increments, allowed for easy adjustment to the required weight.
The open plastic crates used in this study had handles positioned 28 cm above the base and
dimensions of 31 cm (height) × 53 cm (width) × 35 cm (depth).

Each participant performed both sub-cases (empty crate and loaded crate) three times
in a randomized order, moving at their own pace. To minimize the risk of injury, all
participants were instructed to perform a five-minute warm-up before beginning the task.
The inclusion of a diverse group of participants, varying in gender, age, weight, and height,
was intentional to ensure that the collected data captured a wide range of variability. This
variability is essential for training ML models that can accurately identify activities under
different conditions.

As far as the sensors used to acquire the essential data are concerned, five IMUs (Blue
Trident, Vicon, Nexus, Oxford, UK) were implemented, which have been extensively used
in relative literature [16,23,30]. Considering the number of available IMUs, we prioritized
placing sensors on the upper body and core for effectively recognizing the specific activities
performed in this study. These sensors were attached to specific body locations: the chest
(over the breastbone), cervix (near the T1 vertebra), lumbar region (near the L4 vertebra),
and both wrists. The sensors on the wrists were secured using special Velcro straps, while
the other sensors were attached using double-sided tape. Each IMU was equipped with
a tri-axial accelerometer, a tri-axial gyroscope, and a tri-axial magnetometer, providing
detailed motion data across multiple axes. During the experiments, a sampling frequency
of 50 Hz was utilized, which is considered sufficient for capturing the dynamics of the tasks
being performed [23,24].

In brief, the chest provides a central view of overall body dynamics and posture, while
the cervix and the lumbar region offer insights into upper and lower body motion and
alignment, fundamental for activities like bending and lifting, where the spinal region
plays a significant role in maintaining posture and balance [31,32]. The wrist sensors were
selected for detecting hand and arm movements, such as when participants were grasping,
lifting, and carrying the crate [33]. When standing, sensors on the chest, cervix, and lumbar
region can record minimal acceleration and angular velocity, indicating stability with low
variability [34]. During walking, the sensors can capture rhythmic patterns of acceleration
and changes in angular velocity at the chest, reflecting the gait cycle [35]. The cervix and
lumbar region sensors recorded dynamic posture shifts and alignment changes, while the
wrist sensors recorded the movement of the arms.

The end-to-end workflow for capturing human activity signatures using IMUs is
illustrated in Figure 2. The left section of the graph shows a view of the IMU’s internal
components, while the central section demonstrates the placement of the sensors on the
human body. The data capture process is then depicted, showing also how the IMUs
are synchronized through the Capture.U 1.4.1 software [36], installed on an Apple iPad
mini (64 GB). The required data (CSV files) are saved directly to the five IMUs, each of
which contains information about the specific location of the body, and connected to a
computer for supporting further analysis. Capture.U software, when paired with the iPad,
enabled simultaneous video recording of the ongoing experiments. This capability was
especially valuable for manually differentiating between activities and identifying critical
moments of transition between them. Following the methodology of [23,24], each activity
begins with the subject standing still (designated as activity “0”), which serves a dual
purpose: to establish a clear “idle” activity baseline and to enable accurate synchronization
of the sensors before commencing the sequence. Subsequently, activity “1” begins as one
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foot leaves the ground, marking the start of the stance phase of gait. Activity “2” starts
when the participant begins bending their trunk, kneeling, or doing both (known as stoop,
squat, and semi-squat techniques [37]) to approach the crate. Activity “3” begins when the
participant starts lifting the crate from the ground. Activity “4” starts when the participant
enters the stance phase of gait while carrying the crate. Finally, activity “5” begins with
bending, kneeling, or both actions and ends when the crate is fully placed onto the UGV.
The continuous nature of these tasks means that the start of one activity marks the end of
the previous one. Adhering to these criteria was vital for reliable results.
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2.2. Data Pre-Processing and Feature Extraction

Data pre-processing and feature extraction are closely related sequential steps in
the data preparation pipeline for time series analysis. Data pre-processing focuses on
cleaning, preparing, and transforming the raw data into a usable format, while feature
extraction comes next to create additional features that are fed into the ML model to capture
underlying patterns more effectively.

2.2.1. Handling of Outliers and Unsynchronized Sensor Data

During experiments, sensors may intermittently fail to record data, causing interrup-
tions in the dataset. Hardware malfunctions may also lead to irregular values in the dataset.
To address the former issue, any unsynchronized sensor data during processing (pointed
out by Capture.U) led to the exclusion of measurements from the remaining sensors to
ensure reliable and consistent results throughout the analysis. Additionally, any outliers
in the dataset were identified and removed in the early stages through a statistical z-score
technique (involving how many standard deviations (SDs) the data are from the mean, with
values beyond 3 SDs considered outliers [39]). In the present analysis, the most common
challenge was the non-synchronization of the sensors, while outliers were very limited in
number and most of the time could be removed manually.

2.2.2. Noise Reduction

Signals data usually contain unwanted components resulting from sensor drift over
time caused by the wearer’s movements. To ensure accurate analysis, calibration adjust-
ments and filtering techniques are commonly used. As a means of removing the noise of the
captured data, a median filter with eleven taps was used [24]. The median filter effectively
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smooths data by replacing each data point with the median value of its surrounding points.
This technique helps to reduce noise while preserving significant details and features within
the dataset [40].

2.2.3. Activity Count and Class Imbalance in Sensor Data

The duration of the investigated activities varied significantly. Specifically, “walking
with the crate” and “walking without the crate” took considerably more time compared
to other activities, including “standing still”, “bending” to approach the crate, “lifting
crate”, and “placing crate” onto the UGV. The duration of each activity directly impacts
the classification imbalance (Figure 3a), due to the nature of the data collection process.
Consequently, longer activities generate more sensor data points than shorter activities.
Furthermore, our approach of excluding all sensor data when any dataset issue was
detected led to a balanced dataset for all body parts, as illustrated in Figure 3b. To handle
this imbalance, an under-sampling technique was used, similarly to [24].
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2.2.4. Temporal Window Selection and Overlapping Approach

In accordance with the methodology detailed in [24], a temporal window length of 2 s
was set after thoroughly evaluating several potential durations. Each temporal window
was labeled with the activity being performed during that interval. To ensure sufficient
coverage, the temporal windows were overlapped; specifically, each window began in the
middle of the previous one, resulting in a 50% overlap between consecutive windows.
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2.2.5. Encoding Categorical Data

One-hot vectors were used to represent categorical variables in a way that avoids
introducing unintended relationships or order among categories. When categorical data
are encoded as integers, it can falsely imply an ordinal relationship. One-hot encoding
addresses this issue by assigning each category a unique binary vector where all categories
are treated equally. This approach is compatible with many ML algorithms that require
numerical input, converting categorical data into a format that algorithms can process
without bias [41]. Specifically:

• Standing activity with a “0” assigned value got a [1,0,0,0,0,0] one-hot vector;
• Walking (without crate) with a “1” assigned value got a [0,1,0,0,0,0] one-hot vector;
• Bending with a “2” assigned value got a [0,0,1,0,0,0] one-hot vector;
• Lifting crate with a “3” assigned value got a [0,0,0,1,0,0] one-hot vector;
• Walking (with crate) with a “4” assigned value got a [0,0,0,0,1,0] one-hot vector;
• Placing crate (with crate) with a “4” assigned value got a [0,0,0,0,0,1] one-hot vector.

2.2.6. Train/Test Split

The resulting dataset was divided into two segments: (a) a training portion, which
includes the examples used to train the model, and (b) a testing portion, which contains
the examples used to assess the model’s performance. Given the extensive data collected
during the experimentation phase, an 80/20 split was chosen for the training and testing
datasets, similarly to [24]. This split was carried out at the subject level to ensure that
the model’s performance could be evaluated on the unique movement characteristics of
unseen subjects. For testing, data from four randomly selected subjects were used to have
the trained model predict their recorded activities. The remaining data from the sixteen
subjects were reserved for training the ML algorithm.

2.2.7. Feature Scaling

Feature scaling is a crucial step in data pre-processing aimed at normalizing data to a
specific range. This process is essential for speeding up calculations within ML algorithms.
When working with frameworks like Scikit-learn, feature scaling is necessary, especially
when the dataset contains variables with differing scales. In this analysis, feature scaling
was applied to adjust the dataset, making it more compatible with ML methods. Among
various scaling techniques available, the StandardScaler() was utilized [42] exclusively
to the training dataset to avoid any information leakage into the test dataset. This scaler
standardizes the dataset by transforming it so that the resulting distribution has a mean of
zero and an SD of one. The transformation is achieved by subtracting the mean from the
original value and then dividing by the SD:

z =
x − µ

SD
. (1)

In the above equation, z represents the transformed feature value, x denotes the origi-
nal value, µ is the mean, and SD stands for the standard deviation of the training samples.

2.3. LSTM Model Training and Evaluation

LSTM is a type of recurrent neural network (RNN) commonly used for feature recog-
nition in time-dependent data, as it can capture long-term dependencies [43,44]. Its gating
mechanisms allow it to selectively remember or forget information, leading to the en-
hancement of memory process [45] and making it effective in tasks like HAR, where
understanding patterns over time is of central importance [46].

The LSTM model was constructed using TensorFlow’s Keras API, featuring two LSTM
layers with 50 units each, a dense output layer with six units and a softmax activation
function. The model was trained to capture temporal patterns in the data using the Adam
optimizer, after first testing the impact on model performance of the several optimizers
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(Adam, RMSprop, SGD, Adagrad, and Adadelta). In addition, the cross-entropy loss
function was utilized to quantify the error between the predicted values and the actual
values, while a low learning rate of 0.001 was employed to improve the model’s fitting
capability. A range of batch sizes was also tested to ensure both high F1-scores and low
generalization gaps. This approach aimed to balance the model’s ability to accurately
classify the data (as indicated by high F1-scores) while minimizing overfitting, as reflected
in low generalization gaps between the training and testing datasets.

For the purpose of avoiding the dependence of the results on a specific random choice,
the trained model was validated using a 10-fold cross-validation. Thus, the training set was
split into 10 smaller sets. The LSTM model was trained using nine of the folds as training
data, while the resulting model was validated upon the rest of the data (i.e., they were
utilized as test data to calculate performance measures like F1-score). The performance
metrics provided by the 10-fold cross-validation were the average of the calculated values
during the loop [47]. A flowchart outlining the cross-validation workflow in model training
is provided in Figure 1. It begins with the dataset in the form made after data pre-processing
and feature extraction, which is split into training and test data. The parameters for the
model are initialized, and cross-validation is performed only on the training data to tune
these parameters. Based on the cross-validation results, the best parameters are identified,
and the model is retrained using the optimal parameters. Finally, the test data are evaluated
on the retrained model to produce a final evaluation of its performance using appropriate
metrics. Early stopping was applied to prevent overfitting by halting training when the
validation loss did not improve for 10 consecutive epochs.

Finally, in order to identify the most effective combinations of anatomical locations
for the IMUs, a systematic analysis was performed. This involved generating all possible
combinations of the five anatomical locations—cervix, chest, lumbar region, right wrist,
and left wrist. Additionally, all possible combinations of sensor types were evaluated. This
included single sensor types (e.g., accelerometers only), as well as combinations of multiple
sensors (e.g., accelerometers and gyroscopes, or accelerometers, gyroscopes, and magne-
tometers). F1-score, preferred in datasets with imbalanced classes [48], was calculated for
each set to determine which combinations provided the best classification accuracy.

3. Results
3.1. Effect of Hyper-Parameters on Model Performance

Hyper-parameters play a crucial role in shaping the model’s learning process of LSTM
models. Their tuning can significantly impact the model’s accuracy, generalization ability,
and computational efficiency. The set of key hyper-parameters incudes the number of
LSTM units, learning rate, dropout rate, activation function, optimizer, and batch size. In
brief, increasing the number of units initially enhanced model performance, but beyond a
certain point overfitting risks increased, with 50 units balancing the model’s capacity and
generalization. Moreover, a learning rate of 0.001, a dropout rate of 0.4, the Tanh activation
function, the Adam optimizer, and a batch size of 200 provided stable and efficient training.

Indicatively, Figure 4 illustrates the relationship between the batch size and two key
metrics; F1-score and generalization gap when all types of sensors (i.e., accelerometers,
gyroscopes, and magnetometers) were placed in all available body positions. F1-score is
a measure of model performance with higher values indicating better overall accuracy,
whereas the generalization gap is the difference between a model’s performance on training
data and its performance on unseen test data. A smaller generalization gap implies better
model generalization, meaning that the model is less likely to overfit to the training data.
Based on Figure 4, choosing a batch size of 200 is justified as it achieves a strong balance
between high F1-score and effective generalization. F1-score seems to reach a plateau or
slightly decrease after a batch size of around 200. This suggests that increasing the batch
size beyond 200 might not yield significant improvements in model performance. In turn,
the generalization gap is significantly lower than smaller batch sizes like 32, 64, and 128.
Additionally, while larger batch sizes can improve training speed, they also require more
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memory and computational efficiency [48]. Hence, a batch size of 200 offers an optimal
trade-off between performance, generalization, and computational efficiency making it a
well-rounded choice.
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3.2. Sensor Placement Combinations

Given the present set of five anatomical locations (cervix, chest, lumbar region, right
wrist, and left wrist), the total number of combinations is:

C(5, 1) + C(5, 2) + C(5, 3) + C(5, 4) + C(5, 5) = 31, (2)

where C(n, k) = n!
k!(n−k)! , with n being the total number of anatomical locations (5 in the

present analysis), k is the number of anatomical locations to choose, and ! denotes factorial,
namely the product of all positive integers up to that number. Table 1 presents the F1-
scores corresponding to different combinations of sensor placements on various anatomical
locations, by considering the data fusion of all sensors that IMUs include; accelerometer,
gyroscope, and magnetometer.

Interestingly, the highest F1-score of 0.939 is achieved with a single IMU placed on the
chest, indicating this location’s superior effectiveness in capturing the necessary data for
the present activities. However, the cervix and lumbar region are nearly as effective as the
chest for sensor placement, potentially offering practical alternatives. In contrast, the wrist-
mounted sensors, especially the left wrist, underperform compared to the chest-mounted
sensor, suggesting that they are not as effective in capturing the relevant activities. The
wrists’ greater variability in movement patterns contributes to the difficulty of accurate
activity recognition. Unlike the torso, which is directly involved in most activities, the
wrists have a more indirect role, leading to inconsistent data and noise. This makes it
challenging to identify clear patterns, as wrist movements can sometimes resemble those
of other activities or involve irrelevant motions, such as arm swinging during standing or
walking without a crate. Besides, activities like carrying a crate introduce further complexity
through varying wrist orientations and different carrying techniques, adding task-specific
variability that complicates classification.

For the two anatomical location combinations, the F1-scores tend to be slightly lower
than the highest score achieved with the single chest IMU. The combination of the chest
with lumbar region and cervix yields the highest F1-scores of 0.932 and 0.931, respectively,
among the dual placements, indicating that these sites are effective in capturing reliable
data. Conversely, combinations involving the left wrist generally lead to lower F1-scores,
such as right wrist and left wrist at 0.898.

Concerning the three anatomical location combinations, the F1-scores demonstrate
varied effectiveness, with some combinations achieving results close to those seen with
two sensors. The combination of cervix, chest, and lumbar region yields the highest F1-
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score of 0.931. However, not all three-IMU setups enhance data accuracy, and some may
even introduce redundancy or noise, reducing overall performance.

Table 1. Sensor placement combinations and corresponding F1-scores by considering data fusion of
accelerometer, gyroscope, and magnetometer signals.

Combinations F1-Score

1 anatomical location

Cervix 0.933
Chest 0.939

Lumbar region 0.932
Right wrist 0.919
Left wrist 0.888

2 anatomical locations

Cervix, Chest 0.931
Cervix, Lumbar region 0.927

Cervix, Right wrist 0.915
Cervix, Left wrist 0.906

Chest, Lumbar region 0.932
Chest, Right wrist 0.919
Chest, Left wrist 0.908

Lumbar region, Right wrist 0.922
Lumbar region, Left wrist 0.904

Right wrist, Left wrist 0.898

3 anatomical locations

Cervix, Chest, Lumbar region 0.931
Cervix, Chest, Right wrist 0.918
Cervix, Chest, Left wrist 0.913

Cervix, Lumbar region, Right wrist 0.920
Cervix, Lumbar region, Left wrist 0.909

Cervix, Right wrist, Left wrist 0.901
Chest, Lumbar region, Right wrist 0.924
Chest, Lumbar region, Left wrist 0.909

Chest, Right wrist, Left wrist 0.894
Lumbar region, Right wrist, Left wrist 0.904

4 anatomical locations

Cervix, Chest, Lumbar region, Right wrist 0.922
Cervix, Chest, Lumbar region, Left wrist 0.914

Cervix, Chest, Right wrist, Left wrist 0.906
Cervix, Lumbar region, Right wrist, Left wrist 0.905
Chest, Lumbar region, Right wrist, Left wrist 0.909

5 anatomical locations

Cervix, Chest, Lumbar region, Right wrist, Left wrist 0.908

For the four anatomical location combinations, the F1-scores reflect a slight decline
compared to some of the three-location setups. The combination of chest, cervix, lumbar
region, and right wrist achieves the highest F1-score of 0.922 among the four-location con-
figurations, suggesting that this setup captures the examined activities sufficiently. These
results also indicate diminishing returns with the inclusion of the left wrist, as expected.

Finally, the combination of all five anatomical locations provides an F1-score equal to
0.908, which is 3.4% lower than the corresponding metric of the single sensor positioned on
the chest. Consequently, the inclusion of all five sensors seems to introduce unnecessary
complexity, which can lead to a decrease in the effectiveness of the LSTM model. This
reinforces the idea that strategic selection of fewer, more impactful sensor locations can be
more beneficial than using many locations.
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In summary, the single chest IMU consistently outperforms other placements, demon-
strating its superiority in capturing the necessary data for the investigated activities. In-
dicatively, Tables 2 and 3 provide the confusion matrices of the proposed LSTM model
by considering all the anatomical locations and only the IMU at the chest, respectively.
This comparison highlights the practicality of achieving high accuracy with fewer sensors,
thereby reducing system complexity and cost. These confusion matrices offer a thorough
breakdown of the model’s predictions towards identifying activities where the model is
performing well or poorly. The LSTM network with both all anatomical locations and
using only the chest IMU demonstrate considerable overall performance, as shown by the
diagonal dominance in the confusion matrices. Nevertheless, some classes, such as “Bend-
ing” and “Lifting crate”, appear to exhibit slightly higher rates of misclassification. This
could be attributed to the inherent similarity between these activities [24]. The more zeros
appearing in Table 3 indicate that the LSTM model based on the data provided by the IMU
on the chest is performing better in accurately classifying the data and minimizing errors.

Table 2. Confusion matrix of the proposed LSTM network by considering all the anatomical locations.

Confusion Matrix
Predicted Label

Standing Walking (without Crate) Bending Lifting Crate Walking (with Crate) Placing Crate

Tr
ue

la
be

l

Standing 4456 497 3 3 0 0

Walking (without crate) 548 14,685 303 59 42 2

Bending 5 524 4385 350 31 0

Lifting crate 3 111 366 5950 425 0

Walking (with crate) 0 37 20 260 15,280 394

Placing crate 2 18 1 2 767 2979

Table 3. Confusion matrix of the proposed LSTM network by considering only the IMU at the chest.

Confusion Matrix
Predicted Label

Standing Walking (without Crate) Bending Lifting Crate Walking (with Crate) Placing Crate

Tr
ue

la
be

l

Standing 934 60 0 0 0 0

Walking (without crate) 127 2947 39 4 0 0

Bending 0 33 1043 43 0 0

Lifting crate 0 4 46 1238 48 0

Walking (with crate) 0 0 0 23 3064 83

Placing crate 0 0 0 0 126 640

3.3. Multimodal Sensor Fusion

As proved in the previous section, the IMU placed on the chest was the most effective
sensor location for the LSTM model. Its superior performance is attributed to its strategic
location on the torso, which provides stable, consistent data relevant to many upper-body
activities. Hence, its central placement helps in accurately capturing core movements and
reducing interference from other body parts, resulting in better performance in activity
classification. Focusing on this case consideration, a characteristic plot of the training
and validation loss decreasing over the epochs is depicted in Figure 5. The very low
generalization gap, evidenced by the close alignment of training and validation loss curves,
indicates that the model is performing well both on the training data and on unseen
validation data. Furthermore, the smooth and decreasing curves demonstrate that the
model is learning effectively and making consistent progress in minimizing loss over time.

As detailed in Section 2.1, this study considers signals acquired from accelerometer,
gyroscope, and magnetometer sensors. These sensors are all integral components of the
IMUs utilized in this research. Sensor fusion was applied towards combining results for
multimodal data similarly to studies like [49]. For the evaluation, F1-score was used in
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order to guarantee the fairness and consistency of the subsequent comparisons, as it is
a useful performance indicator for imbalanced classes like the present one [24,48]. In
addition, only the IMU at the chest was considered in this section, as it proved to yield the
best model performance compared with the other body positions.
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First, the overall performance of single sensor modality was assessed for predicting the
investigated activities. As depicted in Table 4, the magnetometer consistently outperforms
the accelerometer and gyroscope in terms of F1-score, by showing an F1-score equal to
0.783. The lowest performance was achieved by taking into account only the accelerometers.
Combining data from multiple sensors proved to lead to improved performance compared
to using a single sensor, stressing the value of multimodal sensor fusion in enhancing
classification accuracy. Indicatively, the records of the magnetometer when fused with
those of either accelerometers or gyroscopes provided F1-scores equal to 0.887 or 0.915,
respectively, whereas the combination of accelerometers and gyroscopes resulted in the
lowest model performance (F1-score equal to 0.774). The highest F1-score of 0.939 was
achieved by combining all three sensors, indicating that the complementary information
from the accelerometer, gyroscope, and magnetometer is very important for accurate
activity classification.

Table 4. Multimodal sensor fusion, considering only the IMU at the chest, and corresponding F1-scores.

Accelerometer Gyroscope Magnetometer F1-Score
√

0.554√
0.637√
0.783√ √
0.774√ √
0.887√ √
0.915√ √ √
0.939

4. Discussion

This study deals with the impact of sensor placement and multimodal sensor fusion
on the performance of an LSTM-based model for activity classification. The investigated
activities are related to a collaborative human-robot scenario in which a UGV follows
workers during the harvesting process to transport full crates out of the field, as presented
in [9,12]. Overall, by optimizing key hyper-parameters, the model achieved high accuracy
in classifying activities.

In terms of sensor placement, the results suggest the chest as the most effective
anatomical location for capturing the necessary data for activity classification, achieving
the highest F1-score of 0.939. Its stable position on the torso ensures consistent and accurate
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data gathering, principally for movements involving the upper body. Moreover, the chest
is less prone to interference compared to the wrists, for example, making it ideal for reliable
HAR associated with the present experimental setup. Combinations of the chest with the
lumbar region or cervix also performed well, although they did not surpass the single chest
sensor’s F1-score. Conversely, the inclusion of wrist-mounted sensors, particularly on the
left wrist, generally resulted in lower F1-scores, suggesting that these placements are less
effective for the tasks considered in this study. This can be attributed to dominance and
usage patterns, since 90% of the participants had the right hand as dominant, leading to
more intense and frequent movements on the right side [50,51]. In contrast, the left wrist,
being less dominant, may experience less consistent movement patterns, resulting in less
reliable data.

Multimodal sensor fusion demonstrated the value of combining data from different
sensor types to enhance classification accuracy. Specifically, the magnetometer outper-
formed the accelerometer and gyroscope, emphasizing its ability to capture critical orien-
tation and motion information that the other sensors might miss. However, the highest
performance was achieved by fusing data from all three sensors. This all-inclusive approach
exploited the unique strengths of each sensor; the accelerometer’s measurement of linear
acceleration, the gyroscope’s detection of rotational movements, and the magnetometer’s
ability to sense changes in orientation or location. Hence, by integrating these diverse data
sources, the LSTM model benefited from a more complete representation of the activities,
leading to improved HAR.

Given the promising results achieved in this study, future research could incorporate
a more diverse dataset with a wider range of agricultural material handling activities
and participant demographics that have the potential to improve generalizability and
robustness of the present LSTM model. Also, investigating other sensor types, including
electromyography (EMG) and electrocardiogram (ECG) for measuring muscle response
and heart rate variability, respectively, could provide complementary information and
potentially improve classification accuracy for specific tasks. Experimenting with differ-
ent combinations of sensor placements, like legs, shoulders and elbows, might identify
other most effective combinations for various use cases, leveraging both the upper and
lower body data points. It is also essential to conduct real-world agricultural collaborative
robotics experiments and collect feedback from workers to ensure that these systems meet
practical needs and address any usability issues. Finally, long-term studies to evaluate
the adaptability of these collaborative systems over extended periods, in conjunction with
workers’ perspectives, are also important for guaranteeing their viability in real-world
agricultural settings.

From a broader perspective, this study advances the field of HRI by integrating
insights from sensor technology and data fusion to enhance HAR in agricultural settings.
As agricultural practices increasingly embrace robotization [52], these contributions are
instrumental for improving the efficiency and safety of agricultural operations [53,54].
They align with the broader goal of developing adaptive and intelligent robotic systems
that can seamlessly interact with human workers. Additionally, the insights gained from
this study offer a framework for future human-centric, cost-effective innovations across
various domains, making technological progress more accessible and beneficial in everyday
work environments.

5. Conclusions

In conclusion, this research demonstrated that strategic sensor placement and effective
integration of diverse sensor data can significantly enhance the model’s accuracy. The key
findings are summarized as follows:

• Model performance: overall, the present LSTM-based model demonstrated high
accuracy in classifying the investigated activities;

• Optimal sensor placement: by prioritizing sensor placement on the upper body to
effectively capture the examined activities, we found that the chest was the most
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effective anatomical location for activity classification, achieving the highest F1-score
of 0.939.

• Multimodal sensor fusion: fusing data from all sensors, namely accelerometers, gyro-
scopes, and magnetometers, substantially enhanced classification accuracy.
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