Effects of Laboratory Ageing on the Chemical Composition and High-Temperature Performance of Warm Mix Asphalt Binders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Asphalt Binders
2.1.2. Additives
- additive A: ZycoTherm (Zydex Ind., Morrisville, North Carolina, United States), a liquid organosilane WMA additive, used for decreasing production and paving temperatures of asphalt mixtures [70];
- additive B: Titan 7205 (Honeywell, Charlotte, North Carolina, United States), a solid polyethylene wax pelletized additive used for grade bumping of paving-grade and polymer-modified asphalt binders [71].
2.2. Methods
- additive A: 0.00%, 0.15%, and 0.30%;
- additive B: 0.0%, 1.0%, and 2.0%.
3. Results
3.1. Carbonyl and Sulfoxide Indices
3.2. Polybutadiene and Polystyrene Indices
3.3. Relationships between Asphalt Binder Performance and Carbonyl and Sulfoxide Indices
4. Discussion
5. Conclusions
- The simultaneous use of both additives significantly decreased the FTIR indices related to carbonyl species in the asphalt binders before and after RTFOT ageing; the decrease amounted up to 90% in relation to the levels seen in non-aged binders without additives; and these effects were far less pronounced after PAV ageing.
- The sulfoxide FTIR indices in non-aged binders were affected to a similar extent (a decrease of up to 37% in relation to the levels seen in non-aged binders without additives), but the driving factor in this change was the ZycoTherm warm mix additive; the values of this IS=O index after PAV ageing were less affected; and the Titan 7205 significantly increased the IS=O index in both non-aged binders when used alone (up to 72% increase).
- The changes in the polybutadiene and polystyrene indices in the polymer-modified bitumen did not exceed 27%; small increases and decreases (up to ±15%) of these indices were seen in non-aged and RTFOT aged binders; and after PAV ageing, both IPB and IPS indices clearly decreased when more of the additives were used.
- Although the additives clearly affected the high-temperature performance of both asphalt binders, the evolution of these rheological properties due to RTFOT ageing was not affected despite their significant effects on the FTIR indices.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rubio, M.C.; Martínez, G.; Baena, L.; Moreno, F. Warm Mix Asphalt: An overview. J. Clean. Prod. 2012, 24, 76–84. [Google Scholar] [CrossRef]
- Sukhija, M.; Saboo, N. A comprehensive review of warm mix asphalt mixtures-laboratory to field. Constr. Build. Mater. 2021, 274, 121781. [Google Scholar] [CrossRef]
- Mohd Hasan, M.R.; You, Z.; Yang, X. A comprehensive review of theory, development, and implementation of warm mix asphalt using foaming techniques. Constr. Build. Mater. 2017, 152, 115–133. [Google Scholar] [CrossRef]
- Pereira, R.; Almeida-Costa, A.; Duarte, C.; Benta, A. Warm mix asphalt: Chemical additives’ effects on bitumen properties and limestone aggregates mixture compactibility. Int. J. Pavement Res. Technol. 2018, 11, 285–299. [Google Scholar] [CrossRef]
- Belc, A.L.; Coleri, E.; Belc, F.; Costescu, C. Influence of different warm mix additives on characteristics of warm mix asphalt. Materials 2021, 14, 3534. [Google Scholar] [CrossRef]
- Iwański, M.; Chomicz-Kowalska, A.; Mazurek, G.; Buczyński, P.; Cholewińska, M.; Iwański, M.M.; Maciejewski, K.; Ramiączek, P. Effects of the Water-Based Foaming Process on the Basic and Rheological Properties of Bitumen 70/100. Materials 2021, 14, 2803. [Google Scholar] [CrossRef]
- Cholewińska, M.; Iwański, M.; Mazurek, G. The impact of ageing on the bitumen stiffness modulus using the cam model. Balt. J. Road Bridg. Eng. 2018, 13, 34–39. [Google Scholar] [CrossRef]
- Stienss, M.; Szydlowski, C. Influence of selected warm mix asphalt additives on cracking susceptibility of asphalt mixtures. Materials 2020, 13, 202. [Google Scholar] [CrossRef]
- Woszuk, A.; Panek, R.; Madej, J.; Zofka, A.; Franus, W. Mesoporous silica material MCM-41: Novel additive for warm mix asphalts. Constr. Build. Mater. 2018, 183, 270–274. [Google Scholar] [CrossRef]
- Zhang, Y.; Leng, Z.; Zou, F.; Wang, L.; Chen, S.S.; Tsang, D.C.W. Synthesis of zeolite A using sewage sludge ash for application in warm mix asphalt. J. Clean. Prod. 2018, 172, 686–695. [Google Scholar] [CrossRef]
- Chomicz-Kowalska, A.; Maciejewski, K.; Iwański, M.M.; Janus, K. Effects of zeolites and hydrated lime on volumetrics and moisture resistance of foamed warm mix asphalt concrete. Bull. Pol. Acad. Sci. Tech. Sci. 2021, 64, e136731. [Google Scholar] [CrossRef]
- Ahmadzadegan, F.; Sarkar, A. Mechanical properties of warm mix asphalt-stone matrix asphalt modified with nano zeolite material. J. Test. Eval. 2022, 50, 534–550. [Google Scholar] [CrossRef]
- Li, B.; Li, N.; Yu, X.; Xie, J.; Zhan, H.; Ding, J.; Ma, H. Evaluation of the field-aged performance of foamed warm mix asphalt: Comparisons with hot mix asphalt. Case Stud. Constr. Mater. 2023, 18, e01750. [Google Scholar] [CrossRef]
- Bairgi, B.K.; Hasan, M.A.; Tarefder, R.A. Effects of Asphalt Foaming on Damage Characteristics of Foamed Warm Mix Asphalt. Transp. Res. Rec. J. Transp. Res. Board 2021, 2675, 318–331. [Google Scholar] [CrossRef]
- Bairgi, B.K.; Tarefder, R.A. Characterization of foaming attributes to binder tribology and rheology to better understand the mechanistic behavior of foamed asphalt. Int. J. Pavement Res. Technol. 2021, 14, 13–22. [Google Scholar] [CrossRef]
- Yin, F.; Arambula, E.; Newcomb, D.E. Effect of water content on binder foaming characteristics and foamed mixture properties. Transp. Res. Rec. 2015, 2506, 1–7. [Google Scholar] [CrossRef]
- Chomicz-Kowalska, A. A Study of Adhesion in Foamed WMA Binder-Aggregate Systems Using Boiling Water Stripping Tests. Materials 2021, 14, 6248. [Google Scholar] [CrossRef]
- Iwański, M.; Mazurek, G.; Buczyński, P.; Zapała-Sławeta, J. Multidimensional analysis of foaming process impact on 50/70 bitumen ageing. Constr. Build. Mater. 2021, 266, 121231. [Google Scholar] [CrossRef]
- Chomicz-Kowalska, A.; Maciejewski, K.; Iwański, M.M. Study of the Simultaneous Utilization of Mechanical Water Foaming and Zeolites and Their Effects on the Properties of Warm Mix Asphalt Concrete. Materials 2020, 13, 357. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, K.; Wu, C.; Liu, K.; Jiang, K. Preparation of bio-oil and its application in asphalt modification and rejuvenation: A review of the properties, practical application and life cycle assessment. Constr. Build. Mater. 2020, 262, 120528. [Google Scholar] [CrossRef]
- Oldham, D.; Rajib, A.; Dandamudi, K.P.R.; Liu, Y.; Deng, S.; Fini, E.H. Transesterification of Waste Cooking Oil to Produce A Sustainable Rejuvenator for Aged Asphalt. Resour. Conserv. Recycl. 2021, 168, 105297. [Google Scholar] [CrossRef]
- Hl, A.; Zf, A.; Ata, B.; My, A.; Cc, A.; Gz, A.; Ping, G.C.; Ys, B. Repurposing waste oils into cleaner aged asphalt pavement materials: A critical review. J. Clean. Prod. 2022, 334, 130230. [Google Scholar]
- Xinxin, C.; Xuejuan, C.; Boming, T.; Yuanyuan, W.; Xiaolong, L. Investigation on possibility of waste vegetable oil rejuvenating aged asphalt. Appl. Sci. 2018, 8, 765. [Google Scholar] [CrossRef]
- Zaumanis, M.; Mallick, R.B.; Poulikakos, L.; Frank, R. Influence of six rejuvenators on the performance properties of Reclaimed Asphalt Pavement (RAP) binder and 100% recycled asphalt mixtures. Comput. Chem. Eng. 2014, 71, 538–550. [Google Scholar] [CrossRef]
- Pucułek, M.; Liphardt, A.; Radziszewski, P. Evaluation of the possibility of reduction of highly modified binders technological temperatures. Arch. Civ. Eng. 2020, 67, 557–570. [Google Scholar] [CrossRef]
- Lu, G.; Zhang, S.; Xu, S.; Dong, N.; Yu, H. Rheological behavior of warm mix asphalt modified with foaming process and surfactant additive. Crystals 2021, 11, 410. [Google Scholar] [CrossRef]
- Iwański, M.; Chomicz-Kowalska, A.; Maciejewski, K.; Iwański, M.M.; Radziszewski, P.; Liphardt, A.; Król, J.B.; Sarnowski, M.; Kowalski, K.J.; Pokorski, P. Warm Mix Asphalt Binder Utilizing Water Foaming and Fluxing Using Bio-Derived Agent. Materials 2022, 15, 8873. [Google Scholar] [CrossRef]
- Iwański, M.; Chomicz-Kowalska, A.; Maciejewski, K.; Janus, K.; Radziszewski, P.; Liphardt, A.; Michalec, M.; Góral, K. Stiffness Evaluation of Laboratory and Plant Produced Foamed Bitumen Warm Asphalt Mixtures with Fiber Reinforcement and Bio-Flux Additive. Materials 2023, 16, 1950. [Google Scholar] [CrossRef]
- Maciejewski, K.; Chomicz-Kowalska, A.; Remisova, E. Effects of water-foaming and liquid warm mix additive on the properties and chemical composition of asphalt binders in terms of short term ageing process. Constr. Build. Mater. 2022, 341, 127756. [Google Scholar] [CrossRef]
- Chomicz-Kowalska, A.; Mrugała, J.; Maciejewski, K. Evaluation of Foaming Performance of Bitumen Modified with the Addition of Surface Active Agent. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; Volume 245, p. 032086. [Google Scholar]
- Radziszewski, P.; Liphardt, A.; Sarnowski, M.; Kowalski, K.J.; Pokorski, P.; Konieczna, K.; Król, J.B.; Iwański, M.; Chomicz-Kowalska, A.; Maciejewski, K.; et al. Ageing Evaluation of Foamed Polymer Modified Bitumen with Bio-Flux Additive. Materials 2023, 16, 2167. [Google Scholar] [CrossRef]
- Autelitano, F.; Garilli, E.; Giuliani, F. Half-warm mix asphalt with emulsion. An experimental study on workability and mechanical performances. Transp. Res. Procedia 2021, 55, 1081–1089. [Google Scholar] [CrossRef]
- Pasandín, A.R.; Pérez, I.; Gómez-Meijide, B. Performance of high RAP half-warm mix asphalt. Sustainability 2020, 12, 10240. [Google Scholar] [CrossRef]
- Iwański, M.M. Effect of Hydrated Lime on Indirect Tensile Stiffness Modulus of Asphalt Concrete Produced in Half-Warm Mix Technology. Materials 2020, 13, 4731. [Google Scholar] [CrossRef]
- Jan, K.; Radziszewski, P.; Piłat, J.; Kowalski, K.J.; Matraszek, K.; Świerzewski, P.; Gorol, J. WMA technologies in the aspect of modifying the properties of asphalt binders. MMAC project. Part 2. Mag. Autostrady 2011, 7, 16–20. (In Polish) [Google Scholar]
- Frigio, F.; Raschia, S.; Steiner, D.; Hofko, B.; Canestrari, F. Aging effects on recycled WMA porous asphalt mixtures. Constr. Build. Mater. 2016, 123, 712–718. [Google Scholar] [CrossRef]
- Ragni, D.; Ferrotti, G.; Lu, X.; Canestrari, F. Effect of temperature and chemical additives on the short-term ageing of polymer modified bitumen for WMA. Mater. Des. 2018, 160, 514–526. [Google Scholar] [CrossRef]
- Hofko, B.; Cannone Falchetto, A.; Grenfell, J.; Huber, L.; Lu, X.; Porot, L.; Poulikakos, L.D.; You, Z. Effect of short-term ageing temperature on bitumen properties. Road Mater. Pavement Des. 2017, 18, 108–117. [Google Scholar] [CrossRef]
- Maciejewski, K.; Ramiaczek, P.; Remisova, E. Effects of short-term ageing temperature on conventional and high-temperature properties of paving-grade bitumen with anti-stripping and wma additives. Materials 2021, 14, 6229. [Google Scholar] [CrossRef]
- Chomicz-Kowalska, A. Laboratory testing of low temperature asphalt concrete produced in foamed bitumen technology with fiber reinforcement. Bull. Pol. Acad. Sci. Tech. Sci. 2017, 65, 779–790. [Google Scholar] [CrossRef]
- West, R.; Rodezno, C.; Julian, G.; Prowell, B.; Frank, B.; Osborn, L.V.; Kriech, T. Field Performance of Warm Mix Asphalt Technologies; The National Academies Press: Washington, DC, USA, 2014. [Google Scholar]
- Ayberk, Ö.; Zeliha, T.; Muhammet, K.; Seyit, A.Y. Investigation of field performance of warm mix asphalt produced with foamed bitumen. In Proceedings of the 7th Eurasphalt & Eurobitume Congress v1.0, Madrid, Spain, 15 June 2021; Foundation Eurasphalt: Madrid, Spain, 2021. [Google Scholar]
- Wu, S.; Shen, S.; Zhang, W.; Muhunthan, B. Characterization of Long-term Performance of Warm Mix Asphalt in the United States. In Proceedings of the 7th Eurasphalt & Eurobitume Congress v1.0, Madrid, Spain, 15 June 2021; Foundation Eurasphalt: Madrid, Spain, 2021. [Google Scholar]
- Petersen, J.C. A Review of the Fundamentals of Asphalt Oxidation: Chemical, Physicochemical, Physical Property, and Durability Relationships. Transp. Res. Circ. 2009. [Google Scholar] [CrossRef]
- Remišová, E.; Holý, M. Changes of Properties of Bitumen Binders by Additives Application. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 032003. [Google Scholar] [CrossRef]
- Edwards, Y.; Isacsson, U. Wax in Bitumen. Road Mater. Pavement Des. 2005, 6, 281–309. [Google Scholar] [CrossRef]
- Hurley, G.C.; Prowell, B.D. Evaluation of Sasobit for Use in Warm Mix Asphalt. NCAT Rep. 2005, 5, 1–27. [Google Scholar]
- Mieczkowski, P.; Budziński, B. Wpływ wosku polietylenowego na wybrane właściwości asfaltów i betonów asfaltowych. ACTA Sci. Pol.—Archit. Bud. 2018, 17, 29–37. [Google Scholar] [CrossRef]
- Wasiuddin, N.M.; Zaman, M.M.; O’Rear, E.A. Effect of sasobit and Aspha-Min on wettability and adhesion between asphalt binders and aggregates. Transp. Res. Rec. 2008, 2051, 80–89. [Google Scholar] [CrossRef]
- Cavallari, J.M.; Osborn, L.V.; Snawder, J.E.; Kriech, A.J.; Olsen, L.D.; Herrick, R.F.; McClean, M.D. Predictors of dermal exposures to polycyclic aromatic compounds among hot-mix asphalt paving workers. Ann. Occup. Hyg. 2012, 56, 125–137. [Google Scholar] [CrossRef]
- Chomicz-Kowalska, A.; Bartos, J.; Maciejewski, K.; Iwański, M.M. The Combined Effects of Additives on the Conventional and High-Temperature Performance Properties of Warm Mix Asphalt Binders. Materials 2023, 16, 7648. [Google Scholar] [CrossRef]
- Edwards, Y.; Tasdemir, Y.; Isacsson, U. Influence of commercial waxes on bitumen aging properties. Energy Fuels 2005, 19, 2519–2525. [Google Scholar] [CrossRef]
- Mazurek, G.; Iwanski, M. Analysis of selected properties of asphalt concrete with synthetic wax. Bull. Pol. Acad. Sci. Tech. Sci. 2018, 66, 217–228. [Google Scholar] [CrossRef]
- Epps, J.; Petersen, J.C.; Kennedy, T.W.; Anderson, D.; Haas, R. Chemistry, Rheology, and Engineering Properties of Manganese-Treated Asphalts and Asphalt Mixtures. Transp. Res. Rec. 1986, 1096, 106–119. [Google Scholar]
- Martin, K.; Davison, R.; Glover, C.; Bullin, J. Asphalt Aging in Texas Roads and Test Sections. Transp. Res. Rec. 1990, 1269, 11. [Google Scholar]
- Lau, C.; Lunsford, K.; Glover, C.; Davison, R.; Bullin, J. Reaction Rates and Hardening Susceptibilities as determined from Pressure Oxygen Vessel aging of asphlats. Transp. Res. Rec. 1992, 1342, 50–57. [Google Scholar]
- Yut, I.; Zofka, A. Correlation between rheology and chemical composition of aged polymer-modified asphalts. Constr. Build. Mater. 2014, 62, 109–117. [Google Scholar] [CrossRef]
- Ge, D.; Chen, S.; You, Z.; Yang, X.; Yao, H.; Ye, M.; Yap, Y.K. Correlation of DSR Results and FTIR’s Carbonyl and Sulfoxide Indexes: Effect of Aging Temperature on Asphalt Rheology. J. Mater. Civ. Eng. 2019, 31, 04019115. [Google Scholar] [CrossRef]
- Mirwald, J.; Werkovits, S.; Camargo, I.; Maschauer, D.; Hofko, B.; Grothe, H. Investigating bitumen long-term-ageing in the laboratory by spectroscopic analysis of the SARA fractions. Constr. Build. Mater. 2020, 258, 119577. [Google Scholar] [CrossRef]
- Nivitha, M.R.; Prasad, E.; Krishnan, J.M. Ageing in modified bitumen using FTIR spectroscopy. Int. J. Pavement Eng. 2016, 17, 565–577. [Google Scholar] [CrossRef]
- Hofko, B.; Porot, L.; Falchetto Cannone, A.; Poulikakos, L.; Huber, L.; Lu, X.; Mollenhauer, K.; Grothe, H. FTIR spectral analysis of bituminous binders: Reproducibility and impact of ageing temperature. Mater. Struct. 2018, 51, 45. [Google Scholar] [CrossRef]
- Lamontagne, J. Comparison by Fourier transform infrared (FTIR) spectroscopy of different ageing techniques: Application to road bitumens. Fuel 2001, 80, 483–488. [Google Scholar] [CrossRef]
- Hofko, B.; Alavi, M.Z.; Grothe, H.; Jones, D.; Harvey, J. Repeatability and sensitivity of FTIR ATR spectral analysis methods for bituminous binders. Mater. Struct. Constr. 2017, 50, 187. [Google Scholar] [CrossRef]
- Maciejewski, K.; Chomicz-Kowalska, A. Foaming Performance and FTIR Spectrometric Analysis of Foamed Bituminous Binders Intended for Surface Courses. Materials 2021, 14, 2055. [Google Scholar] [CrossRef]
- Xing, C.; Tang, S.; Chang, Z.; Han, Z.; Li, H.; Zhu, B. A comprehensive review on the plant-mixed cold recycling technology of emulsified asphalt: Raw materials and factors affecting performances. Constr. Build. Mater. 2024, 439, 137344. [Google Scholar] [CrossRef]
- Xiaohu, L.; Isacsson, U. Chemical and rheological evaluation of ageing properties of sbs polymer modified bitumens. Fuel 1998, 77, 961–972. [Google Scholar] [CrossRef]
- Curtis, C.W.; Hanson, D.I.; Chen, S.T.; Shieh, G.J.; Ling, M. Quantitative determination of polymers in asphalt cements and hot-mix asphalt mixes. Transp. Res. Rec. 1995, 52–61. Available online: https://trid.trb.org/View/452531 (accessed on 23 August 2023). (Issue Number: 1488).
- Nasrazadani, S.; Mielke, D.; Springfield, T.; Ramasamy, N. Practical Applications of FTIR to Characterize Paving Materials. Technical Report 0-5608-1; Texas Department of Transportation: Austin, TX, USA, 2009. [Google Scholar]
- Masson, J.F.; Pelletier, L.; Collins, P. Rapid FTIR method for quantification of styrene-butadiene type copolymers in bitumen. J. Appl. Polym. Sci. 2001, 79, 1034–1041. [Google Scholar] [CrossRef]
- Zydex Inc. ZycoTherm. Available online: https://zydexgroup.com/bitumen-additive (accessed on 5 May 2023).
- Honeywell International Inc. Titan 7205. Available online: https://industrial.honeywell.com/us/en/products/performance-additives/asphalt/paving/honeywell-titan-7205 (accessed on 5 May 2023).
- Camargo, I.G.D.N.; Hofko, B.; Mirwald, J.; Grothe, H. Effect of thermal and oxidative aging on asphalt binders rheology and chemical composition. Materials 2020, 13, 4438. [Google Scholar] [CrossRef]
- Yao, H.; Dai, Q.; You, Z. Fourier Transform Infrared Spectroscopy characterization of aging-related properties of original and nano-modified asphalt binders. Constr. Build. Mater. 2015, 101, 1078–1087. [Google Scholar] [CrossRef]
- Fernández-Berridi, M.J.; González, N.; Mugica, A.; Bernicot, C. Pyrolysis-FTIR and TGA techniques as tools in the characterization of blends of natural rubber and SBR. Thermochim. Acta 2006, 444, 65–70. [Google Scholar] [CrossRef]
- Yang, R.; Liu, Y.; Yu, J.; Wang, K. Thermal oxidation products and kinetics of polyethylene composites. Polym. Degrad. Stab. 2006, 91, 1651–1657. [Google Scholar] [CrossRef]
Property | Unit of Measurement | Base Bitumen | Testing Method | |
---|---|---|---|---|
50/70 | 45/80-55 | |||
Penetration at 25 °C | 0.1 mm | 64.6 | 61.5 | EN 1426 |
Softening point | °C | 49.9 | 59.44 | EN 1427 |
Fraass breaking point | °C | −12.9 | −16.5 | EN 12593 |
Penetration index | - | −0.61 | 1.56 | EN 12591 |
Performance grade | °C | 64–22 | 70–28 | AASHTO M 332 |
Dynamic viscosity at 135 °C | Pa·s | 0.42 | 1.06 | EN 13302 |
Property | Unit of Measurement | Additive A | Additive B |
---|---|---|---|
Form | - | viscous liquid | solid pellets, 2–3 mm in dia. |
Colour | - | yellow | white |
Density | g/cm3 | 1.01 | 0,93 |
Viscosity at 20 °C | Pa∙s | 0.12 | - |
Typical dosing range (by wt. of asphalt binder) | % | 0.1–0.15 | 0.5–1 |
Structural Group | Peak Wave Number (cm−1) | Mean (-) | Max–Min (-) | Standard Deviation (-) | Coefficient of Variance (%) |
---|---|---|---|---|---|
Aliphatic | 1460 [72] | 6.691 | 0.797 | 0.196 | 2.93 |
Sum of peaks | 2000-600 [73] | 10.587 | 1.370 | 0.363 | 12.93 |
Sum of peaks | 2953-699 * [57] | 50.520 | 1.868 | 0.512 | 1.01 |
Structural Index | Bond | Characteristic Peak Wave Number (cm−1) | Structural Index Expression: |
---|---|---|---|
Sulfoxide | S=O, stretching | 1030 | |
Carbonyl | C=O, stretching | 1700 | |
Polybutadiene | C-H, oop bending of trans-alkene | 966 | |
Polystyrene | C-H, oop bending in monoakrylated aromatic | 699 | |
ΣAall = A(2953, 2923, 2862) + A1700 + A1600 + A1460 + A1376 + A1310 + A1030 + A990 + A966 + A910 + A864 + A814 + A743 + A724 + A699; oop—out of plane. |
IC=O | Ageing: None | Ageing: RTFOT | Ageing: RTFOT+PAV | |||
---|---|---|---|---|---|---|
Effect: | 50/70 | 45/80-55 | 50/70 | 45/80-55 | 50/70 | 45/80-55 |
Intercept | 0.003 *** | 0.001 *** | 0.003 *** | 0.002 *** | 0.004 *** | 0.003 *** |
Additive A | −0.020 *** | −0.008 *** | −0.021 *** | −0.001 *** | −0.018 *** | 0.021 *** |
Additive B | −0.002 *** | −0.0003 *** | 0.001 *** | −0.001 *** | 0.004 *** | 0.0002 * |
(Additive A)2 | 0.030 *** | 0.035 *** | 0.059 *** | −0.013 *** | 0.053 *** | −0.053 *** |
(Additive B)2 | 0.00004 ** | 0.0002 *** | −0.001 *** | 0.0003 *** | −0.002 *** | 0.00002 |
A:B interaction | 0.008 *** | −0.002 *** | 0.002 *** | 0.004 *** | −0.0001 | −0.0003 |
Observations | 27 | 27 | 27 | 27 | 27 | 27 |
R2 | 0.999 | 0.999 | 0.998 | 0.997 | 0.997 | 0.989 |
Adjusted R2 | 0.999 | 0.998 | 0.998 | 0.996 | 0.996 | 0.986 |
IS=O | Ageing: none | Ageing: RTFOT | Ageing: RTFOT+PAV | |||
---|---|---|---|---|---|---|
Effect: | 50/70 | 45/80-55 | 50/70 | 45/80-55 | 50/70 | 45/80-55 |
Intercept | 0.008 *** | 0.008 *** | 0.005 *** | 0.005 *** | 0.007 *** | 0.007 *** |
Additive A | −0.046 *** | −0.049 *** | −0.008 *** | −0.006 *** | 0.011 *** | −0.006 *** |
Additive B | 0.001 *** | 0.001 *** | −0.0003 ** | −0.0001 | −0.002 *** | −0.0003 ** |
(Additive A)2 | 0.105 *** | 0.120 *** | 0.016 *** | 0.005 ** | −0.041 *** | 0.004 ` |
(Additive B)2 | −0.001 *** | −0.0003 *** | 0.0001 ` | −0.0001 * | 0.001 *** | −0.0001 ` |
A:B interaction | 0.0004 * | −0.001 *** | 0.0004* | 0.002 *** | −0.00004 | 0.002 *** |
Observations | 27 | 27 | 27 | 27 | 27 | 27 |
R2 | 0.998 | 0.998 | 0.962 | 0.966 | 0.962 | 0.938 |
Adjusted R2 | 0.998 | 0.997 | 0.953 | 0.958 | 0.954 | 0.923 |
Asphalt Binder | Additive (%) | IC=O | IS=O | |||||
---|---|---|---|---|---|---|---|---|
A | B | Non-Aged | RTFOT | RTFOT+PAV | Non-Aged | RTFOT | RTFOT+PAV | |
50/70 | 0.0 | 0.0 | 0.0018 | 0.0027 (50%) | 0.0037 (106%) | 0.0043 | 0.005 (16%) | 0.0069 (60%) |
0.0 | 2.0 | 0.0004 (−78%) | 0.0013 (−28%) | 0.0041 (128%) | 0.0067 (56%) | 0.0048 (12%) | 0.0062 (44%) | |
0.3 | 0.0 | 0.0002 (−89%) | 0.0018 (0%) | 0.0032 (78%) | 0.0035 (−19%) | 0.0039 (−9%) | 0.0067 (56%) | |
0.3 | 2.0 | 0.0017 (−6%) | 0.0015 (−17%) | 0.0036 (100%) | 0.0027 (−37%) | 0.004 (−7%) | 0.0059 (37%) | |
0.15 | 1.0 | 0.0007 (−61%) | 0.0016 (−11%) | 0.0045 (150%) | 0.0035 (−19%) | 0.0039 (−9%) | 0.0064 (49%) | |
45/80−55 | 0.0 | 0.0 | 0.0020 | 0.0022 (10%) | 0.0031 (55%) | 0.0047 | 0.0051 (9%) | 0.0071 (51%) |
0.0 | 2.0 | 0.0014 (−30%) | 0.0013 (−35%) | 0.0036 (80%) | 0.0081 (72%) | 0.0045 (−4%) | 0.006 (28%) | |
0.3 | 0.0 | 0.0019 (−5%) | 0.0002 (−90%) | 0.0045 (125%) | 0.0039 (−17%) | 0.0037 (−21%) | 0.0056 (19%) | |
0.3 | 2.0 | 0.0006 (−70%) | 0.0018 (−10%) | 0.0049 (145%) | 0.0035 (−26%) | 0.0042 (−11%) | 0.0059 (26%) | |
0.15 | 1.0 | 0.0003 (−85%) | 0.0012 (−40%) | 0.0052 (160%) | 0.0033 (−30%) | 0.0043 (−9%) | 0.0061 (30%) |
PMB Indices | IPB (45/80-55) | IPS (45/80-55) | ||||
---|---|---|---|---|---|---|
Effect: | Ageing: None | Ageing: RTFOT | Ageing: RTFOT+PAV | Ageing: None | Ageing: RTFOT | Ageing: RTFOT+PAV |
Intercept | 0.004 *** | 0.004 *** | 0.003 *** | 0.002 *** | 0.002 *** | 0.002 *** |
Additive A | 0.004 *** | 0.00002 | −0.003 *** | 0.0004 | −0.001 *** | −0.002 *** |
Additive B | −0.001 *** | 0.0002 *** | −0.0001 * | −0.0003 *** | 0.0002 *** | −0.00002 |
(Additive A)2 | −0.009 *** | −0.004 ** | 0.008 *** | −0.002 * | 0.001 | 0.005 *** |
(Additive B)2 | 0.0001 *** | −0.0001 *** | 0.00001 | 0.0001 *** | −0.0001 *** | −0.00002 |
A:B interaction | 0.001 *** | 0.001 *** | −0.0002 ` | 0.0003 *** | 0.0004 *** | −0.0002 * |
Observations | 27 | 27 | 27 | 27 | 27 | 27 |
R2 | 0.954 | 0.856 | 0.922 | 0.821 | 0.894 | 0.960 |
Adjusted R2 | 0.943 | 0.822 | 0.903 | 0.778 | 0.869 | 0.950 |
Asphalt Binder | Additive (%) | IPB | IPS | |||||
---|---|---|---|---|---|---|---|---|
A | B | Non-Aged | RTFOT | RTFOT+PAV | Non-Aged | RTFOT | RTFOT+PAV | |
45/80-55 | 0.0 | 0.0 | 0.0034 | 0.0038 (12%) | 0.0033 (−3%) | 0.0022 | 0.0023 (5%) | 0.0020 (−9%) |
0.0 | 2.0 | 0.0028 (−18%) | 0.0037 (9%) | 0.0032 (−6%) | 0.0019 (−14%) | 0.0021 (−5%) | 0.0019 (−14%) | |
0.3 | 0.0 | 0.0038 (12%) | 0.0035 (3%) | 0.0031 (−9%) | 0.0022 (0%) | 0.002 (−9%) | 0.0018 (−18%) | |
0.3 | 2.0 | 0.0037 (9%) | 0.0037 (9%) | 0.0027 (−21%) | 0.0021 (−5%) | 0.0021 (−5%) | 0.0016 (−27%) | |
0.15 | 1.0 | 0.0034 (0%) | 0.0039 (15%) | 0.0029 (−15%) | 0.0020 (−9%) | 0.0022 (0%) | 0.0017 (−23%) |
Pearson Correlation Coefficient R: 50/70 | |||||
---|---|---|---|---|---|
G*/sin(δ) | Jnr 3.2 kPa | R3.2 kPa | IS=O | IC=O | |
G*/sin(δ) | 1 | −0.62 ** | 0.85 *** | 0.22 | 0.29 |
Jnr 3.2 kPa | −0.62 ** | 1 | −0.59 ** | −0.28 | −0.4 ` |
R3.2 kPa | 0.85 *** | −0.59 ** | 1 | 0.16 | 0.44 ` |
IS=O | 0.22 | −0.28 | 0.16 | 1 | 0.24 |
IC=O | 0.29 | −0.4 ` | 0.44 ` | 0.24 | 1 |
Pearson Correlation Coefficient R: 45/80-55 | |||||||
---|---|---|---|---|---|---|---|
G*/sin(δ) | Jnr 3.2 kPa | R3.2 kPa | IS=O | IC=O | IPB | IPS | |
G*/sin(δ) | 1 | −0.65 ** | 0.56 * | 0.03 | 0.24 | 0.27 | 0.12 |
Jnr 3.2 kPa | −0.65 ** | 1 | −0.82 *** | −0.16 | −0.06 | 0.02 | −0.03 |
R3.2 kPa | 0.56 * | −0.82 *** | 1 | 0.35 | 0.41 ` | −0.08 | 0.11 |
IS=O | 0.03 | −0.16 | 0.35 | 1 | 0.36 | −0.77 *** | −0.19 |
IC=O | 0.24 | −0.06 | 0.41` | 0.36 | 1 | 0.06 | 0.38 |
IPB | 0.27 | 0.02 | −0.08 | −0.77 *** | 0.06 | 1 | 0.63 ** |
IPS | 0.12 | −0.03 | 0.11 | −0.19 | 0.38 | 0.63** | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciejewski, K.; Chomicz-Kowalska, A.; Bartos, J. Effects of Laboratory Ageing on the Chemical Composition and High-Temperature Performance of Warm Mix Asphalt Binders. Appl. Sci. 2024, 14, 8524. https://doi.org/10.3390/app14188524
Maciejewski K, Chomicz-Kowalska A, Bartos J. Effects of Laboratory Ageing on the Chemical Composition and High-Temperature Performance of Warm Mix Asphalt Binders. Applied Sciences. 2024; 14(18):8524. https://doi.org/10.3390/app14188524
Chicago/Turabian StyleMaciejewski, Krzysztof, Anna Chomicz-Kowalska, and Joanna Bartos. 2024. "Effects of Laboratory Ageing on the Chemical Composition and High-Temperature Performance of Warm Mix Asphalt Binders" Applied Sciences 14, no. 18: 8524. https://doi.org/10.3390/app14188524
APA StyleMaciejewski, K., Chomicz-Kowalska, A., & Bartos, J. (2024). Effects of Laboratory Ageing on the Chemical Composition and High-Temperature Performance of Warm Mix Asphalt Binders. Applied Sciences, 14(18), 8524. https://doi.org/10.3390/app14188524