Heat Treatment of Metals
1. Introduction and Scope
2. An Overview of Published Articles
Acknowledgments
Conflicts of Interest
References
- Di Schino, A.; Valentini, L.; Kenny, J.M.; Gerbig, Y.; Ahmed, I.; Haefke, H. Wear resistance of a high-nitrogen austenitic stainless steel coated with nitrogenated amorphous carbon films. Surf. Coat. Technol. 2002, 161, 224–231. [Google Scholar] [CrossRef]
- Di Schino, A.; Barteri, M.; Kenny, J.M. Fatigue behavior of a high nitrogen austenitic stainless steel as a function of its grain size. J. Mater. Sci. Lett. 2003, 22, 1511–1513. [Google Scholar] [CrossRef]
- Püttgen, W.; Pant, M.; Bleck, W.; Seidl, I.; Rabitsch, R.; Testani, C. Selection of suitable tool materials and development of tool concepts for the Thixoforging of steels. Steel Res. Int. 2006, 77, 342–348. [Google Scholar] [CrossRef]
- Kim, D.W.; Yang, J.; Kim, Y.G.; Kim, W.K.; Lee, S.; Sohn, S.S. Effects of Granular Bainite and Polygonal Ferrite on Yield Strength Anisotropy in API X65 Linepipe Steel. Mater. Sci. Eng. A 2022, 843, 143151. [Google Scholar] [CrossRef]
- Roy, S.; Romualdi, N.; Yamada, K.; Poole, W.; Militzer, M.; Collins, L. The Relationship Between Microstructure and Hardness in the Heat-Affected Zone of Line Pipe Steels. Jom 2022, 74, 2395–2401. [Google Scholar] [CrossRef]
- Fazeli, F.; Amirkhiz, B.S.; Scott, C.; Arafin, M.; Collins, L. Kinetics and Microstructural Change of Low-Carbon Bainite Due to Vanadium Microalloying. Mater. Sci. Eng. A 2018, 720, 248–256. [Google Scholar] [CrossRef]
- Baker, T.N. Microalloyed Steels. Ironmak. Steelmak. 2016, 43, 264–307. [Google Scholar] [CrossRef]
- Bay, Y.; Bhattacharyya, R.; Mc Cormick, M.E. Use of High Strength Steels. Elsevier Ocean. Eng. Ser. 2001, 3, 353. [Google Scholar]
- Narimani, M.; Hajjari, E.; Eskandari, M.; Szpunar, J.A. Electron Backscattered Diffraction Characterization of S900 HSLA Steel Welded Joints and Evolution of Mechanical Properties. J. Mater. Eng. Perform. 2022, 31, 3985–3997. [Google Scholar] [CrossRef]
- Geng, R.; Li, J.; Shi, C.; Zhi, J.; Lu, B. Effect of Ce on Microstructures, Carbides and Mechanical Properties in Simulated Coarse-Grained Heat-Affected Zone of 800-MPa High-Strength Low-Alloy Steel. Mater. Sci. Eng. A 2022, 840, 142919. [Google Scholar] [CrossRef]
- Kaščák, Ľ.; Varga, J.; Bidulská, J.; Bidulský, R.; Grande, M.A. Simulation tool for material behaviour prediction in additive manufacturing. Acta Metall. Slovaca 2023, 19, 113–118. [Google Scholar] [CrossRef]
- Bidulský, R.; Petrousek, P.; Bidulská, J.; Hiudak, R.; Zivcak, J.; Grande, M.A. Porosity quantification of additive manufactured Ti6Al4V and CrCoW alloys produced by L-PBF. Arch. Metall. Mater. 2022, 67, 83–89. [Google Scholar]
- Bidulská, J.; Bidulský, R.; Petrousek, P.; Kvackaj, T.; Grande, M.A.; Radovan, H. Evaluation of materials properties of Ti and CoCr alloys prepared by laser powder bed fusion. Mater. Sci. Forum 2020, 985, 223–228. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Aghda, N.H.; Pillai, A.R.; Thakkar, R.; Nokhodchi, A.; Maniruzzaman, M. Emerging 3D Printing Technologies for Drug Delivery Devices: Current Status and Future Perspective. Adv. Drug Deliv. Rev. 2021, 174, 294–316. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Qu, M.; Zhang, H.; Lim, Y. 3D Printing and Buildings: A Technology Review and Future Outlook. Technol. Archit. Des. 2018, 2, 94–111. [Google Scholar] [CrossRef]
- Lee, J.-Y.; An, J.; Chua, C.K. Fundamentals and Applications of 3D Printing for Novel Materials. Appl. Mater. Today 2017, 7, 120–133. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, Y.; Ramanujan, D.; Ramani, K.; Chen, Y.; Williams, C.B.; Wang, C.C.L.; Shin, Y.C.; Zhang, S.; Zavattieri, P.D. The Status, Challenges, and Future of Additive Manufacturing in Engineering. Comput. Aided Des. 2015, 69, 65–89. [Google Scholar] [CrossRef]
- Buchanan, C.; Gardner, L. Metal 3D Printing in Construction: A Review of Methods, Research, Applications, Opportunities and Challenges. Eng. Struct. 2019, 180, 332–348. [Google Scholar] [CrossRef]
- Najmon, J.C.; Raeisi, S.; Tovar, A. 2—Review of Additive Manufacturing Technologies and Applications in the Aerospace Industry. In Additive Manufacturing for the Aerospace Industry; Froes, F., Boyer, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 7–31. ISBN 978-0-12-814062-8. [Google Scholar]
- Kustas, A.B.; Susan, D.F.; Monson, T. Emerging Opportunities in Manufacturing Bulk Soft-Magnetic Alloys for Energy Applications: A Review. Jom 2022, 74, 1306–1328. [Google Scholar] [CrossRef]
- Croccolo, D.; Di Schino, A.; Montanari, R.; Olmi, G.; Stornelli, G.; Testani, C.; Varone, A. High cycle fatigue response of grain refined EUROFER97. Int. J. Fatigue 2024, 187, 108442. [Google Scholar] [CrossRef]
- Zhao, C.C.; Inoue, A.; Kong, F.L.; Zhang, J.Y.; Chen, C.J.; Shen, B.L.; Al-Marzouki, F.; Greer, A.L. Novel Phase Decomposition, Good Soft-Magnetic and Mechanical Properties for High-Entropy (Fe0.25Co0.25Ni0.25Cr0.125Mn0.125)100–B (x = 9–13) Amorphous Alloys. J. Alloys Compd. 2020, 843, 155917. [Google Scholar] [CrossRef]
- Rodriguez-Vargas, B.R.; Stornelli, G.; Folgarait, P.; Ridolfi, M.R.; Miranda Perez, A.F.; Di Schino, A. Recent Advances in additive manufacturing of soft magnetic materials: A review. Materials 2023, 16, 5610. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xu, H.; Tan, X.H.; Hou, X.L.; Wu, S.W.; Tan, G.S.; Yu, L.Y. TheEffectsofPhaseConstitutiononMagneticandMechanical Properties of FeCoNi(CuAl) (x = 0–1.2) High-Entropy Alloys. J. Alloy. Compd. 2017, 693, 1061–1067. [Google Scholar] [CrossRef]
- Radhakrishnan, M.; McKinstry, M.; Chaudhary, V.; Nartu, M.S.K.K.Y.; Krishna, K.V.M.; Ramanujan, R.V.; Banerjee, R.; Dahotre, N.B. Effect of Chromium Variation on Evolution of Magnetic Properties in Laser Direct Energy Additively Processed CoCrxFeNi Alloys. Scr. Mater. 2023, 226, 115269. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stornelli, G.; Di Schino, A. Heat Treatment of Metals. Appl. Sci. 2024, 14, 8683. https://doi.org/10.3390/app14198683
Stornelli G, Di Schino A. Heat Treatment of Metals. Applied Sciences. 2024; 14(19):8683. https://doi.org/10.3390/app14198683
Chicago/Turabian StyleStornelli, Giulia, and Andrea Di Schino. 2024. "Heat Treatment of Metals" Applied Sciences 14, no. 19: 8683. https://doi.org/10.3390/app14198683
APA StyleStornelli, G., & Di Schino, A. (2024). Heat Treatment of Metals. Applied Sciences, 14(19), 8683. https://doi.org/10.3390/app14198683