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Abstract: A general theory for solving electromagnetic diffraction problems with impenetrable/penetrable
wedges immersed in/made of an arbitrary linear (bianistropic) medium is presented. This novel
and general spectral theory handles complex scattering problems by using transverse equations for
layered planar and angular structures, the characteristic Green function procedure, the Wiener–Hopf
technique, and a new methodology for solving GWHEs. The technique has been proven effective
for analyzing problems involving wedges immersed in isotropic media; in this study, we extend the
theory to more general cases while providing all necessary mathematical tools and corresponding
validations. We obtain generalized Wiener–Hopf equations (GWHEs) from spectral functional
equations in angular regions filled by arbitrary linear media. The equations can be interpreted
with a network formalism for a systematic view. We recall that spectral methods (such as the
Sommerfeld–Malyuzhinets (SM) method, the Kontorovich–Lebedev (KL) transform method, and the
Wiener–Hopf (WH) method) are well-consolidated, fundamental, and effective tools for the correct
and precise analysis of electromagnetic diffraction problems constituted by abrupt discontinuities
immersed in media with one propagation constant, although they are not immediately applicable to
multiple-propagation-constant problems. To the best of our knowledge, the proposed mathematical
technique is the first extension of spectral analysis to electromagnetic problems in the presence of
angular regions filled by complex arbitrary linear media, thereby providing novel mathematical tools.
Validation through fundamental examples is proposed.

Keywords: wave motion; diffraction; electromagnetism; arbitrary linear media; bianisotropic media;
layered media; applied mathematics; Green’s function; Wiener–Hopf method; integral equations;
Fredholm factorization

1. Introduction

The theory of wave diffraction constitutes one of the fundamental problems in mathe-
matical physics. Apart from its direct relevance to engineering and physics, this subject
gives rise to significant methodologies in applied mathematics.

Spectral methods play a crucial role in the study of electromagnetic diffraction. No-
tably, the Sommerfeld–Malyuzhinets (SM) method, the Kontorovich–Lebedev (KL) trans-
form method, and the Wiener–Hopf (WH) method are fundamental and complementary
in studying diffraction problems in the presence of sharp discontinuities. These methods
have been extensively and effectively applied for studying wedge diffraction in isotropic
regions; see [1–6] for SM, Refs. [7–10] for KL, and Refs. [11,12] for WH, along with the
references therein starting from the early 2000s literature produced by the authors of this
study. Moreover, using synergy among the three methods (WH, SM, and KL), the au-
thors obtained a complete network representation of the angular region in the presence of
isotropic media [13], which helped to build a systematic methodology for analysis.

The main advantage of the aforementioned techniques (SM and KL) is also a limitation,
i.e., the utilization of the spectral complex angular plane derived from the Sommerfeld
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integral theory [14], which, since the early 2000s, the authors of this study have also effec-
tively used in the WH framework for Fredholm factorization [11,12] and in the definition
of rotating waves in isotropic angular regions [11,12]. The definition of this complex plane
is intricately connected to the physics of the problem, as it specifically requires spectral
transformations associated with the propagation constant. Consequently, this methodology
is applicable to problems involving a single propagation constant, such as isotropic media
in electromagnetic fields, as well as other specific problem configurations with decoupling
properties in propagation modalities. Different attempts have been developed to extend
the spectral analysis to diffraction problems in more complex media, such as gyrotropic
media and/or uniaxial media. For example, we recall the analysis of scattering by a perfect
electrically conducting (PEC) half-plane immersed in such anisotropic media; see [15–24].
However, to the best of our knowledge no spectral method for scattering problems by
wedges in arbitrary linear media (i.e., bianisotropic media [25–27]) characterized by multi-
ple propagation constants has been developed to date. One of the most important results
obtained in the presence of anisotropic media is the exact solution obtained by Felsen in
the case of scattering by a PEC wedge immersed in a uniaxial medium illuminated by
plane waves at normal incidence [17,18]. However, the method used for this problem
is substantially that of the separation of variables after transformations in the physical
domain, which does not present the powerful characteristics of spectral methods such as
asymptotic evaluation of fields and physical interpretation of field components in terms
of structural and source spectral singularities. Other important works have examined the
behavior of the field near the edge of a wedge immersed in a complex medium [28] and
diffraction by a wedge immersed in the special case of an isotropic chiral medium with the
SM method [29].

Given our experience in spectral analysis of complex electromagnetic scattering prob-
lems in isotropic media [11,12,30–32], and with the help of the theory proposed in [33] for
the analysis of structures embedded in layered media, in this work we develop a new theory
in the spectral domain with proper mathematical tools that allow for the representation of
scattering problems immersed in arbitrary linear media of an angular shape. In particular,
these new formulations are in the spectral domain (Laplace domain) without introducing
angular complex planes, and as such are not limited to one-propagation-constant problems.
In [34], we developed the general theory in abstract form to model angular regions filled
by arbitrary linear media and we reported its implementation only for isotropic media.

In the present work, we propose a complete theoretical package for solving diffraction
problems with impenetrable wedges immersed in an arbitrary linear medium; in addition,
this package is extendable to multiple penetrable angular regions. The proposed method
exploits the combination and the extension of powerful mathematical tools developed in
different contexts. The first tool is the Bresler–Marcuvitz (BM) transverse equation theory
for layered media [33,35], the second is the characteristic Green function procedure [36,37],
the third one is the Wiener–Hopf technique [33,38] in its generalized form [11,12], and the
fourth one (which is a completely novel contribution) is the direct application of Fredholm
factorization to generalized Wiener–Hopf equations (GWHEs).

The method starts with an extension of transverse equation theory for layered arbitrary
linear media applied to the stratification of an angular shaped region with the help of
abstract BM notation. We then apply the characteristic Green function procedure to obtain
the solution of equations in angular geometries. The solutions defined at the faces of the
angular region are spectral functional equations that relate continuous (tangential) field
components of the two faces delimiting a homogeneous angular region. The application
of boundary conditions yields a system of generalized Wiener–Hopf equations (GWHEs),
where generalized means that the field components of each face are defined into different
complex planes but related to one another. The GWHEs preserve the characteristic form
of classical Wiener–Hopf equations (CWHEs), where the system of equations presents a
kernel and plus and minus unknowns; however, the plus and minus unknowns are defined
into different complex planes which are related to one another. The functional equations
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and GWHEs of angular regions can be suitably interpreted with a network formalism, as is
common for classical layered regions using transmission line theory. This circuit/network
modeling representation of angular regions allows for the description of the technique with
systematic steps to avoid redundancy. This capability is particularly useful when dealing
with complex scattering problems, where we break down the complexity of a geometry
into subdomains of canonical shape. These subdomains are modeled via spectral functional
equations or related integral representations that can be interpreted through a network
approach (obtained once and for all) and are capable of modeling the entire complex
problem through the composition of circuital relationships; see, for instance, [30–32].

In the presence of an isotropic medium (and further special cases of more general
media), a suitable mapping reduces the GWHEs to CWHEs, which in certain cases are
amenable of exact solutions; alternatively, we can resort to the semi-analytical/approximate
general-purpose factorization method, that is, Fredholm factorization, which reduces the
factorization problem to Fredholm Integral Equations (FIEs) of the second kind. This
technique was presented in the early 2000s for CWHEs; it was first effectively applied in
impenetrable and penetrable wedge problems immersed in isotropic media [11,12], and
more recently in isotropic complex scattering problems [30–32].

The main constraint in the present work resides in the complexity of media that do not
allow mappings between complex planes of GWHEs for their transformation into CWHEs.
Consequently, when dealing with arbitrary linear media in particular, we propose relying
on a novel version of the versatile approximate method known as Fredholm factorization.
Here, for the first time, we apply the Fredholm factorization method directly to GWHEs as
a regularization tool. This regularized method can also be derived before the imposition
of boundary conditions, i.e., directly on spectral functional equations (that is, before ob-
taining the GWHEs of the problem) by reversing the classical order of imposing boundary
conditions and then applying Fredholm regularization to obtain the same effectiveness. We
call this new methodology direct Fredholm factorization.

We observe that the impossibility of mapping GWHEs to CWHEs in arbitrary linear
media is similar to the impossibility of defining a unique angular complex plane for the
SM, KL, and WH methods; however, the new WH methodology proposed in this study
overcomes this obstacle by resorting to direct Fredholm factorization applied to GWHEs.

From the solution of the GWHEs inherent to the angular region problem, we obtain
the spectral representation of the field components along the faces delimiting homogeneous
angular regions. The complete spectral analysis of the diffraction problems is then obtained
by resorting again to spectral functional equations written for an arbitrary azimuthal
direction. Finally, spectral inversion yields field components in the physical domain for any
point in the angular regions. An alternative method for obtaining the field is also proposed;
because of the linearity, it is based on the use of superposition on spectral representations
prior to spectral inversion by identifying the spectral contributions of the faces of the
angular regions through the equivalence theorem.

All of the theoretical properties of the mathematical statements are fully described
in the text, although completely rigorous mathematical proofs are sometimes limited. On
the other hand, validation of the proposed novel theoretical package through examples
is reported, starting by demonstrating the effectiveness of direct Fredholm factorization
applied to GWHEs in the scattering from a PEC wedge immersed in an isotropic medium
and ending with validation of functional equations of angular regions in arbitrary linear
media with the analysis of a PEC half-plane immersed in particular anisotropic media.

While implementing the method, we observe that the main difficulty resides in cor-
rectly estimating the kernel functions in the GWHEs and the corresponding FIE formu-
lations for the presence of multivalued functions that need particular attention in their
definition and calculation. The following sections highlight all multivalued functions and
their correct estimations and assumptions.

In summary, we highlight in brief the main novelties of this work with respect to the
state of the art reported in the introduction:
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• Development of a novel spectral method capable of handling scattering in arbitrary
linear media with multiple propagation constants.

• Introduction of a novel solution procedure for GWHEs, particularly for those with
multiple propagation constants, which we call direct Fredholm factorization.

• A description of spectral functional equations and related integral representations for
angular regions filled by arbitrary linear media in terms of the network interpretation.

• Computation of the field at each point within the angular region by resorting to the
equivalence theorem and using Kirchhoff representations in the spectral domain;

• Improving the quality of the approximate spectral solutions by reimposing GWHEs,
referred to as iteration.

It is important to highlight that the applicability of the proposed WH technique to
arbitrary linear media resides in its formulation directly in the Laplace domain while
avoiding other complex planes; notably, other techniques such as SM use complex angular
planes based on Sommerfeld representations, which are applicable only to isotropic media
or special cases of anisotropic media. Moreover, although SM also uses Fredholm integral
equations in the complex angular plane for approximate solutions [2,6], it is limited to
isotropic media; again, the proposed WH method is extended to arbitrary linear media
with direct Fredholm factorization because it is directly formulated in the Laplace domain.
Furthermore, another important result is that while Sommerfeld–Malyuzhinets solutions
combined with asymptotic methods require analytical extension of the spectral solutions
in the improper sheet to compute the far field, our application of equivalence theorem in
the context of the proposed method can be directly applied to approximate WH spectral
solutions in the Laplace domain. This result is due to the direct solution of the GWHEs
which provides the complete spectra of the field on the two faces of an angular region,
useful and sufficient for asymptotic estimations.

This article is organized into seven sections and one appendix. In Section 1, we
introduce the motivation and the scope of the present work, then report the state of the
art related to the spectral analysis of diffraction in complex media. Section 2 presents the
main mathematical steps for obtaining spectral functional equations in an angular region
filled by an arbitrary linear medium and with arbitrary boundary conditions, starting from
the abstract BM notation for transverse equations in layered planar regions and extending
this theory to layered angular regions filled by arbitrary linear media. Section 3 develops
the theory, starting from the spectral functional equation to obtain regularized integral
representations for angular regions in arbitrary linear media with the direct application of
the Fredholm factorization method. If boundary conditions are applied, the representations
are GWHEs. Section 4 presents the route for obtaining an asymptotic estimation of the
far field inside the angular region after the face spectra on the two limiting faces have
been obtained. To demonstrate the efficacy of the proposed methodology, in particular
direct Fredholm factorization, Section 5 reports a validation using the simple case of a PEC
wedge immersed in an isotropic medium. To further validate the method in arbitrary linear
media, Section 6 presents an example of the application of functional equations in arbitrary
linear media, specifically, a PEC half-plane immersed in a gyrotropic medium. Section 7
presents the conclusion of the paper. Finally, the Appendix A reports the full and explicit
formulas and equations, as abstract notation is used in the main text with the dual purpose
of enhancing readability and ensuring completeness.

2. Spectral Functional Equations in an Angular Region Filled by Arbitrary Linear Media

Spectral functional equations in angular regions filled by arbitrary linear media are
obtained by exploiting the combination and extension of the following powerful mathe-
matical tools developed in different contexts: first, the Bresler–Marcuvitz (BM) transverse
equation theory for layered media [33,35], and second, the characteristic Green function
procedure [36,37]. In this section, following [34], we first briefly revisit the BM theory for
layered planar arbitrary linear media as a fundamental step in analyzing layered angular
regions. We then apply the characteristic Green function procedure to derive solutions of
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the obtained system of differential equations. Finally, we provide the spectral functional
equations by evaluating the solution at the faces of the angular region. In particular, the
functional equations relate continuous (tangential) spectral field components defined at the
two faces of the angular region.

We start from the application of BM theory to Maxwell’s equations in layered arbi-
trary nondispersive homogeneous linear media with tensorial constitutive relations (i.e.,
bianisotropic media [25–27]):

D = ε · E + ξ · H
B = ζ · E + µ · H (1)

where the electric and magnetic fields (E, H) are related to the electric and magnetic fluxes
(D, B) and the tensors (ε, µ, ξ, ζ) are, respectively, the electric permittivity, the magnetic
permeability, and the two magneto-electric coupling parameters.

By assuming

(a) Cartesian coordinates (z, x, y),
(b) e+jωt time–harmonic field dependence,
(c) Invariant geometry along z and stratification along y, and
(d) Sources constituted of plane waves with z-dependence e−jαoz, where αo depends on

the skewness angle with respect to z (with αo = 0 at normal incidence on z),

We obtain the transverse differential equations in matrix form for layered planar media:

− ∂

∂y
ψy(x, y) = My(−jαo,

∂

∂x
) · ψy(x, y) (2)

where ψy is the four-dimensional column vector (Throughout the article, we assume the
notation | | for vectors and not for the modulus of a vector).

ψy = |Et
t, Ht

t |t, with Et = |Ez, Ex|t, Ht = |Hz, Hx|t. (3)

Based on the nature of Maxwell’s equations, My(−jαo, ∂
∂x ) is a second-order four-

dimensional matrix differential operator of the form

My(−jαo,
∂

∂x
) = Myo + My1

∂

∂x
+ My2

∂2

∂x2 , (4)

where the explicit forms of the matrices Myo, My1, My2 for an arbitrarily linear medium (1)
are reported in Appendix A with (A2)–(A9). The application of the Fourier transform along
x reduces (2) to

− d
dy

ψy(η, y) = My(−jαo,−jη) · ψy(η, y), (5)

where ψy(x, y) .
= 1

2π

∞∫
−∞

ψy(η, y)e−jηxdη and

My(−jαo,−jη) = Myo − jηMy1 − η2My2. (6)

We introduce here an analysis of the operator My(−jαo,−jη) of the layered planar arbi-
trarily linear media; this is necessary to obtain the solution of (2) in terms of eigenvalues,
eigenvectors (with the characteristic Green function procedure), and boundary conditions.
The same analysis is needed to obtain a solution for layered angular arbitrarily linear media.
Supposing for the general case (removing exceptions) that My is semi-simple, we compute
its eigenvalues λi and eigenvectors ui as follows:

Myui = λiui (7)
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i.e.,
My = Uy JyU−1

y (8)

where Jy = diag{λ1, λ2, λ3, λ4} and Uy = (u1, u2, u3, u4) (dependence on η and αo is
omitted). The computation of the eigenvalues is obtained from the zeros of the characteristic
equation of order four (9), the coefficients of which can be written using Bocher’s formula,
as shown below [39].

det[My − λi I] = λ4
i + aλ3

i + bλ2
i + cλi + d = 0 (9)

a = −tr(My), b = −
a tr(My) + tr(M2

y)

2
, c = −

b tr(My) + a tr(M2
y) + tr(M3

y)

3
, d = det[My] (10)

This yields the following four eigenvalues:

λ1 = − a
4
+

√
T +

√
Ma + Q

2
, λ2 = − a

4
+

√
T −

√
Ma + Q

2
, (11)

λ3 = − a
4
−

√
T +

√
Ma − Q

2
, λ4 = − a

4
−

√
T −

√
Ma − Q

2
(12)

where

T =
a2

4
+

−3ac + b2 + 12d
3 3
√

u
+

3
√

u − 2b
3

, Q = − a3 − 4ab + 8c
4
√

T
, Ma =

3a2

4
− 2b − T (13)

with

u =

√
s + v
2

, v = 9
(

3a2d − abc − 8bd + 3c2
)
+ 2b3, s = v2 − 4

(
−3ac + b2 + 12d

)3
. (14)

We note that the column vectors ui=1,2,3,4 of Uy provide a basis in the space C4, where we
define the transverse electromagnetic field ψy, while the column vectors vi=1,2,3,4 of

Vy = U−1
y (15)

in the reciprocal space will be fundamental in obtaining functional equations through
the characteristic Green function procedure. Each couple (ui, vi) is related to a single
λi for which the explicit forms are, in general, the cumbersome expressions reported
in (11) and (12), which depend on η. In the most simple case, i.e., the isotropic medium
(ε = εI, µ = µI, ξ = ζ = 0), λi assumes the following forms:

λ1 = λ2 = −λ3 = −λ4 =
√
(α2

o + η2)− k2 = j
√
(k2 − α2

o)− η2 = jξiso, k = ω
√

εµ (16)

where in the presence of losses (k = kr − jki; kr, ki > 0) we have Re[λ1,2] > 0 and
Re[λ3,4] < 0, which are respectively related to progressive (i = 1, 2) and regressive (i = 3, 4)
waves with regard to y of form e−jηxe−λiye−jαoz. In this framework, we associate the di-
rection of propagation with attenuation phenomena; we let the phase variation be free of
constraints to allow modeling of left-handed materials. In a general arbitrary (even small)
lossy linear medium, we always have two eigenvalues (say, i = 1, 2) with a positive real part
λi = +jξi representing progressive waves and two (say, i = 3, 4) with a negative real part
λi = −jξi representing regressive waves, yielding all four y-longitudinal propagation con-
stants with Im[ξi] < 0 (y-progressive/regressive waves e∓jξiy, i.e., assuming time-harmonic
dependence e+jωt, we have x, y, z progressive waves e−jηxe−jξiye−jαoz, respectively, with
Im[η, ξi, αo] < 0).

We affirm here the importance of retaining the generality of the medium; while inves-
tigating the scattering of objects immersed in arbitrary linear media, the scatterer can be
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arbitrarily oriented with respect to the principal axis of the (crystal) medium. However,
when the problem permits the definition of a coordinate system that coincides with the prin-
cipal axes of the crystal medium, we obtain tensorial constitutive relations with diagonal
tensors (1). These media are called biaxial, uniaxial, and isotropic, while the three terms in
the diagonal are, respectively, all different, one different, and all equal. Other special cases
are gyrotropic media, which represent media in which the tensorial constitutive relations
are Hermitian with respect to the coordinate system and of the following type (in (17), we
limit the description to the permittivity, i.e., a gyroelectric medium):

ε =

 ε +jεg 0
−jεg ε 0

0 0 εa

. (17)

Starting from planar layered regions, we extend the theory to angular-shaped regions
of aperture γ filled by arbitrary linear media, as already done in Section 3 of [34] for angular
regions filled by isotropic media. With reference to region 1 in Figure 1a, we derive from (2)
the oblique transverse Equation (19) using an oblique system of Cartesian axes (z, u ≡ x, v):

x = u + v cos γ, y = v sin γ, (18)

− ∂

∂v
ψy(u, v) = Mγ(−jαo,

∂

∂u
) · ψy(u, v). (19)

Figure 1. Angular regions and oblique Cartesian coordinates. (a) The figure reports the Cartesian
coordinates z, x, y and the oblique Cartesian coordinate system z, u ≡ x, v with reference to angular
region 1 of aperture γ (0 < φ < γ) with 0 < γ < π, delimited by faces a and o. In the figure, a
second region is identified (−π + γ < φ < 0) delimited by faces b and o. The figure also reports
the local-to-face Cartesian coordinate systems Z1 ≡ z, X1, Y1 and Z2 ≡ z, X2, Y2 for face a of region
1 and face b of region 2, respectively. The local-to-face Cartesian coordinate systems are obtained
from the z, x, y Cartesian coordinate system through rotation for a positive γ and a negative π − γ,
respectively. (b) The figure shows the new framework of the space divided into two angular regions,
which is useful for the study of wedge structures. The figure reports both the Cartesian coordinates
z, x, y and the oblique Cartesian coordinate system z, u ≡ x, v, where γ is the aperture angle of region
2′. The figure also reports the local-to-face-b Cartesian coordinate system of region 2′ Z2′ ≡ z, X2′ , Y2′ ,
which is obtained from the z, x, y Cartesian coordinate system through a rotation of an angle −γ.
Finally, in both figures we also use cylindrical coordinates (z, ρ, φ).

The application of a Fourier transform along u = x reduces (19) to

− d
dv

ψy(η, v) = Mγ(−jαo,−jη) · ψy(η, v), (20)
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where ψy(u, v) .
= 1

2π

∞∫
−∞

ψy(η, v)e−jηudη and

Mγ(−jαo,−jη) = Mγo − jηMγ1 − η2Mγ2, (21)

Mγo = Myo sin γ, Mγ1 = My1 sin γ − It cos γ, Mγ2 = My2 sin γ. (22)

Based on the link between Mγ and My, we have Mγ with the same eigenvectors ui of My,
and the following relationship between the eigenvalues λγi(γ) and λi can be obtained:

λγi(γ) = jη cos γ + λi sin γ , i = 1 · · · 4 (23)

resulting in the following “oblique” v-longitudinal propagation constants:

mi(γ) = −jλγi(γ) = +η cos γ + ξi sin γ , i = 1, 2 (24)

mi(γ) = +jλγi(γ) = −η cos γ + ξi sin γ , i = 3, 4 (25)

which is in agreement with the relationship between λi and ξi as well as with the correlated
progressive and regressive propagating interpretation along the longitudinal direction y
and along the oblique “longitudinal” direction v (progressive/regressive e∓jmiv). We note
that the quantities Mγ(−jαo,−jη), λγi(γ), and mi(γ) depend on the geometrical parameter
γ and on the spectral variable η.

With reference to region 1 in Figure 1a, we obtain the functional equations with a
circuital interpretation as a mathematical manipulation of the solution of the differential

Equation (19) using the Laplace domain ψ̃y(η, v) .
=

∞∫
0

ejη uψy(u, v)du.

− d
dv

ψ̃y(η, v) = Mγ(−jαo,−jη) · ψ̃y(η, v) + ψsa(v), v > 0 (26)

ψsa(v) = −Mγ1 · ψy(0+, v) + jη Mγ2 · ψy(0+, v)− Mγ2 ·
∂

∂u
ψy(u, v)

∣∣∣∣
u=0+

(27)

The benefit of using the Laplace transform is correlated with the incorporation of boundary
conditions through initial conditions with the term ψsa(v). In (26)–(27), the condition
u = 0+, v > 0 imposes boundary conditions on the fields along face a in Figure 1a. The
solution is obtained by using the characteristic Green function procedure [34] in terms of
homogeneous and particular solutions, yielding the representation shown below.

ψ̃y(η, v) =
4

∑
i=1

Cie−λγi(γ) vui −
2

∑
i=1

uivi ·
v∫

0

e−λγi(γ)(v− v′)ψsa(v′)dv′ +
4

∑
i=3

uivi ·
∞∫

v

e−λγi(γ)(v− v′)ψsa(v′)dv′ (28)

Now, considering the asymptotic behavior in (28) of exponential functions in v for v → +∞,
we need to have C3 = C4 = 0; at the same time, the first couple of integrals are null, as
Re[λ1,2] > 0 and Re[λ3,4] < 0 are related to progressive and regressive waves, respectively.
For this reason, setting v = 0, we obtain the following spectral field representation along
face o:

ψ̃o+(η)
.
= ψ̃y(η, 0) = C1u1 + C2u2 +

4

∑
i=3

uivi ·
∞∫

0

e−λγi(γ)(v− v′)ψsa(v′)dv′. (29)

By weighting (29) with the reciprocal vectors v3, v4 of Mγ, we obtain the following func-
tional equations:

vi · ψ̃o+(η) = vi · ψ̃sa+(−mi(γ)), i = 3, 4 (30)
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where we use the following definition of the Laplace transform:

ψ̃sa+(−mi(γ))
.
=

∞∫
0

e−jmi(γ)vψsa(v)dv =

∞∫
0

e−jmi(γ)ρψsa(ρ)dρ. (31)

With reference to Figure 1a and its caption, analyzing and expanding ψ̃sa+(−mi(γ)) in (30)
using Maxwell’s equations, we rephrase the functional equations for region 1 as

vi · ψ̃o+(η) = vi · T(γ) · ψ̃a+(−mi(γ), γ), i = 3, 4, (32)

where ψ̃o+(η) is the η Laplace transform of the tangent-to-face-o field components (i.e., at
φ = 0) in Cartesian (z, x, y) and cylindrical coordinates (z, ρ, φ) (omitting the z coordinate
for invariance)

ψ̃o+(η) =
∞∫
0
|Ez(x, 0), Ex(x, 0), Hz(x, 0), Hx(x, 0)|tejηxdx

=
∞∫
0
|Ez(ρ, 0), Eρ(ρ, 0), Hz(ρ, 0), Hρ(ρ, 0)|tejηρdρ,

(33)

where ψ̃a+(−mi(γ), γ) is the −mi(γ) Laplace transform of the tangent-to-face-a field
components (i.e., at φ = γ) in local-to-face-a Cartesian (z, X1, Y1) coordinates and global
cylindrical coordinates (z, ρ, φ) (located at φ = +γ)

ψ̃a+(−mi(γ), γ) =
∞∫
0
|Ez(X1, 0), EX1(X1, 0), Hz(X1, 0), HX1(X1, 0)|te−jmi(γ)X1 dx

=
∞∫
0
|Ez(ρ, γ), Eρ(ρ, γ), Hz(ρ, γ), Hρ(ρ, γ)|te−jmi(γ)ρdρ,

(34)

and

T(γ) =



sin(γ)(αoξyy+ζxyξyyω−µxyωϵyy)

ω(µyyϵyy−ζyyξyy)
+ cos(γ) 0 sin(γ)(αoµyy+ζxyµyyω−ζyyµxyω)

ω(µyyϵyy−ζyyξyy)
0

sin(γ)(−ζzyξyyω+ηξyy+µzyωϵyy)

ω(µyyϵyy−ζyyξyy)
1 sin(γ)(ζyyµzyω−ζzyµyyω+ηµyy)

ω(µyyϵyy−ζyyξyy)
0

sin(γ)(−αoϵyy−ξyyωϵxy+ξxyωϵyy)

ω(µyyϵyy−ζyyξyy)
0 cos(γ)− sin(γ)(αoζyy−ζyyξxyω+µyyωϵxy)

ω(µyyϵyy−ζyyξyy)
0

sin(γ)(ξyyωϵzy−ϵyy(η+ξzyω))

ω(µyyϵyy−ζyyξyy)
0 sin(γ)(µyyωϵzy−ζyy(η+ξzyω))

ω(µyyϵyy−ζyyξyy)
1


(35)

Note that (32) are functional equations that relate the Laplace transforms of combinations of
field components on the boundaries of angular region 1 in Figure 1a, i.e., face o u > 0, v = 0
(φ = 0) and face a u = 0, v > 0 (φ = γ). Furthermore, we observe that the angle γ is
essential in determining the impact of anisotropies through T(γ).

Repeating the same procedure for region 2 in Figure 1a, we obtain the functional
equations as the solution of the differential Equation (19) in the Laplace domain using the

left Laplace transform ψ̃y(η, v) .
=

0∫
−∞

ejη uψy(u, v)du:

− d
dv

ψ̃y(η, v) = Mγ(−jαo,−jη) · ψ̃y(η, v) + ψsb(v), v < 0 (36)

where ψsb(v) has the same expression of ψsa(v) (27) but with a different support v < 0,
and allows the incorporation of boundary conditions along face b (u = 0+, v < 0). The
application of the characteristic Green function procedure yields expression (28) for region
2 in Figure 1a, which is identical to that for region 1 except for Ci and the source term
ψsb(v), which depend on the local constitutive parameters and boundary conditions of
region 2. Now, considering the asymptotic behavior of the exponential function in v for
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v → −∞, we need to have C1 = C2 = 0; at the same time, the second couple of integrals
are null. For this reason, setting v = 0, we obtain

ψ̃o+(η)
.
= ψ̃y(η, 0) = C3u3 + C4u4 −

2

∑
i=1

uivi ·
∞∫

0

e−λi(γ)(v− v′)ψsb(v′)dv′. (37)

By weighting (37) with the reciprocal vectors v1, v2 of Mγ, we obtain the functional equations

vi · ψ̃o+(η) = −vi · ψ̃sb+(−mi(γ)), i = 1, 2, (38)

where we have used the definition of the v left Laplace transform

ψ̃sb+(−mi(γ))
.
=

0∫
−∞

e−jmi(γ)vψsb(v)dv =

∞∫
0

e−jmi(γ)ρψsb(−ρ)dρ. (39)

Note the differences and similarities between Laplace transformations (31) and (39), which
yield the same definition of the −mi(γ) Laplace transform in ρ but are applied to different
quantities. Furthermore, the regularity properties of the −mi(γ) Laplace transform are
inherited from ξi (Im[ξi] < 0) according to (24)–(25).

With reference to Figure 1a and its caption, analyzing and expanding ψ̃sb+(−mi(γ))
in (38), we rephrase the functional equations into

vi · ψ̃o+(η) = −vi · T(γ) · P · ψ̃b+(−mi(γ),−π + γ), i = 1, 2. (40)

In (40), T(γ) is again (35); as for region 1, P = diag{1,−1, 1,−1} is needed for v = −X2
in region 2 with respect to v = X1 in region 1, ψ̃o+(η) is the η Laplace transform of
the tangent-to-face-o field components reported in (33), and ψ̃b+(−mi(γ),−π + γ) is the
−mi(γ) Laplace transform of the tangent-to-face-b field components (i.e., at φ = −π + γ)
in the local-to-face-b Cartesian (z, X2, Y2) coordinates and global cylindrical coordinates
(z, ρ, φ) of Figure 1a.

ψ̃b+(−mi(γ),−π + γ) =
∞∫
0
|Ez(X2, 0), EX2(X2, 0), Hz(X2, 0), HX2(X2, 0)|te−jmi(γ)X2 dx

=
∞∫
0
|Ez(ρ,−π + γ), Eρ(ρ,−π + γ), Hz(ρ,−π + γ), Hρ(ρ,−π + γ)|te−jmi(γ)ρdρ

(41)

While considering the wedge scattering problem with symmetry with respect to the x
axis, in combination with region 1 in Figure 1a, we need to consider region 2′ in Figure 1b,
where γ → π − γ with respect to region 2 in Figure 1a, i.e., for the same face a, we change
the orientation of face b at φ = γ from φ = −π + γ to φ = −γ. The functional equations of
region 2’ become

vi · ψ̃o+(η) = −vi · T(π − γ) · P · ψ̃b+(−mi(π − γ),−γ), i = 1, 2, (42)

where

ψ̃b+(−mi(π − γ),−γ) =
∞∫
0
|Ez(X2, 0), EX2(X2, 0), Hz(X2, 0), HX2(X2, 0)|te−jmi(π−γ)X2 dx

=
∞∫
0
|Ez(ρ,−γ), Eρ(ρ,−γ), Hz(ρ,−γ), Hρ(ρ,−γ)|te−jmi(π−γ)ρdρ,

(43)

which is the −mi(π − γ) Laplace transform of the tangent-to-face-b field components (i.e.,
now at φ = −γ) in local-to-face-b Cartesian (z, X2, Y2) coordinates and global cylindrical
coordinates (z, ρ, φ) in Figure 1b. Note that in (42) we assumed that region 2′ is homoge-
neous to region 1, yielding the same ui, vi; otherwise, specific vectors would be needed.
Equations (42) are functional equations that relate the Laplace transforms of combinations
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of field components on the boundaries of the angular region 2′ in Figure 1b, i.e., face o
u > 0, v = 0 (φ = 0) and face b u = 0, v < 0 (φ = −γ). In (42), note the new dependence
of T(·) (35) on π − γ due to the effect of anisotropies while changing the orientation of
face b from −π + γ to −γ. Furthermore, in the case of symmetric media (λ1,2 = −λ3,4), we
have m3,4(γ) = m1,2(π − γ); see (24)–(25).

In general, the system of functional equations in (32) and (42) allows for the analysis
of angular regions that are symmetric with respect to the x axis; these are at the base of
the analysis of scattering problems constituted by impenetrable and penetrable wedges
surrounded/made by arbitrary linear media. In the following, to investigate a practical
scattering problem, we impose boundary conditions at the faces of each angular region on
the functional Equations (32) and (42), yielding a system of GWHEs.

3. From Functional Equations to GWHEs and Their Regularized Integral
Representations with a Network Interpretation

Network representations of angular regions in isotropic media for electromagnetic
scattering were extensively studied in multiple spectral domains in [13] using algebraic
and integral formalisms. The proposed equations were effectively applied in several works
to practical wedge scattering problems; see [11,12] and the references therein. Further-
more, network formalisms have been effectively applied for complex canonical problems
containing angular and layered regions in isotropic media; see for instance the double
wedge [31], flanged dielectric loaded waveguide [32], and wedge over dielectric layer [30],
among others.

In arbitrary linear media, the system of functional Equations (32) and (42),

vi · ψ̃o+(η) = vi · T(γ) · ψ̃a+(−mi(γ), γ), i = 3, 4
vi · ψ̃o+(η) = −vi · T(π − γ) · P · ψ̃b+(−mi(π − γ),−γ), i = 1, 2

(44)

constitutes two systems of network relations that link the spectral field components in
region 1 and region 2′ (Figure 1), respectively, via a sort of two-port transmission relations
in algebraic form. Looking at the first system in (44), we have two combinations of
ψ̃o+(η) components (33) related to two combinations of ψ̃a+(−mi(γ), γ) components (34),
i.e., with reference to Figure 1a, the tangential field components of face o are related to
tangential field components of face a. A similar interpretation can be repeated for the second
system in (44) for region 2 with field components defined at faces o and b, respectively, in
ψ̃o+(η) (33) and ψ̃b+(−mi(π − γ),−γ) (43).

We further note that in (44) the components of face o and face a, b are functions of the
spectral variables η and −mi(·), respectively, which are related to one another via (24)–(25).
We can reverse the role of the variables η and −mi(·) in the arguments of the components of
these faces. In this way, we double the equations of region 1, i.e., the first line of (44), which
is again reported in (45), yielding the second line of (45), which relates the components
of face a (now functions of the variable η) to the components of face o (now functions of
−mi(·)). The second line of (45) is obtained by defining region 1 as region 2′ (Figure 1) after
a clockwise rotation of an angle +γ, yielding the following complete set of equations for
region 1:

vi · ψ̃o+(η) = vi · T(γ) · ψ̃a+(−mi(γ), γ), i = 3, 4,
viY1 · ψ̃a+(η) = −viY1 · TY1(π − γ) · P · ψ̃o+(−miY1(π − γ),−γ), i = 1, 2.

(45)

In the second pair of Equation (45), we have used the subscript Y1 to refer to a rotated
coordinated system (z, X1, Y1) with respect to (z, x, y); see region 1 in Figure 2a and the
related region 2’ in Figure 2b.
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Figure 2. (a) Angular region 1 of aperture γ, which is delimited by faces a and o with the original
reference Cartesian coordinate system z, x, y. The figure also reports the local-to-face-a Cartesian
coordinate systems Z1 ≡ z, X1, Y1. (b) Angular region 1 after a clockwise rotation of an angle γ,
becoming region 2′. The figure shows the reference systems of region 1 after the rotation. (c) Angular
region 2 of aperture γ, which is delimited by faces b and o with the original reference Cartesian
coordinate system z, x, y. The figure also reports the local-to-face-b Cartesian coordinate systems
Z2 ≡ z, X2, Y2. (d) Angular region 2 after a clockwise rotation of an angle γ, becoming region 1′. The
figure shows the reference systems of region 2 after the rotation.

We note that the second pair of equations in (45) can be easily derived by studying the
classical region 2′ (see the second pair of equations in (44)) except with modified definitions
of the quantities viY1 ,TY1(γ), miY1(γ) (from λiY1(γ)) because of their dependence on the
constitutive tensorial parameters (ε, µ, ξ, ζ) of region 1, which are redefined in the reference

coordinate system (z, X1, Y1), i.e., (εY1
, µ

Y1
, ξ

Y1
, ζ

Y1
), for example,

εY1
= R−1

Y1
· ε · RY1

, RY1
=

 cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1

, (46)

due to the rotation of +γ.



Appl. Sci. 2024, 14, 8685 13 of 37

The same rationale is applied to region 2 to double the equations of that region (second
line of (44), as also reported in (47)) by obtaining

viY2 · ψ̃b+(η) = viY2 · TY2(γ) · ψ̃o+(−miY2(γ), γ), i = 3, 4,
vi · ψ̃o+(η) = −vi · T(π − γ) · P · ψ̃b+(−mi(π − γ),−γ), i = 1, 2.

(47)

In the first pair of equations in (47), we have used the subscript Y2 to make reference to
a rotated coordinated system (z, X2, Y2) with respect to (z, x, y); see region 2 in Figure 2c
and the related region 1′ in Figure 2d. We note that the first pair of equations in (47) can
be easily derived by studying the classical region 1 (see the first pair of equations in (44))
except with modified definitions of viY2 , TY2(γ), and miY2(γ) because of their dependence
on the constitutive parameters (ε, µ, ξ, ζ), which are redefined in the reference coordinate

system (z, X2, Y2), i.e., (εY2
, µ

Y2
, ξ

Y2
, ζ

Y2
), for example,

εY2
= R−1

Y2
· ε · RY2

, RY2
=

 cos(γ) sin(γ) 0
− sin(γ) cos(γ) 0

0 0 1

, (48)

due to the rotation of −γ.
The sets of Equations (45) and (47) constitute a complete set of functional equations

that respectively describe regions 1 and 2 in Figure 3. In the case of symmetric media (i.e.,
λ1,2 = −λ3,4) we have m3,4(γ) = m1,2(π − γ); see (24)–(25).

Figure 3. Two angular regions that are symmetric with respect to the x axis of the aperture angle
γ and represent wedge problems immersed in arbitrary linear media; they are modeled using the
complete sets of Equations in (45) and (47).

In isotropic media, it is always possible to introduce the angular complex plane w and
the KL transform method [13], where functional equations become two-port admittance
relations of the Norton type in integral and algebraic forms in a unique complex plane. In
arbitrary linear media, the definition of such complex planes is not possible; however, a
novel method that resorts to the following Cauchy decomposition formula in the −m(η)
plane is introduced. This is a fundamental tool that allows for the description of angular
region problems in arbitrary linear media without introducing further complex planes
other than the initial Laplace transforms. In particular, to obtain regularized integral
equations from GWHEs, it is not necessary to map the GWHEs into CWHEs with suitable
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transformations before the application of Fredholm factorization (originally ideated and
valid only for the CWHEs). This revisited novel version of the regularization procedure
can be called the direct Fredholm factorization method .

At the origin of this method, we introduce the following generalized form of the
standard Cauchy decomposition formula in the −m(η) plane (i.e., one of the mi(·) that
all depends on η) applied to an arbitrary F+(−m(η)) (i.e., the standard form is obtained
simply by replacing −m(η) with η):

F+(−m(η)) =
1

2π j

∞∫
−∞

F+(η′)

η′ + m(η)
dη′ + Fn.s.

+ (−m(η)), η ∈ R (49)

where Fn.s.
+ (−m(η)) is the non-standard contribution of F+(−m(η)) in the −m(η) plane.

Assuming a lossy medium, we observe that, in general, −m(η) is located with the positive
imaginary part for η ∈ R, i.e., it is in the upper half-plane of complex plane η; thus, the
application of (49) to plus functions is justified. For example, see Figure 4, where we have
assumed that k = 1 − 0.1j and γ = 0.7π, yielding a path of −m(t) for t ∈ R from right to
left because of γ > π/2. On the contrary, for γ < π/2 we obtain a similar path located
in the upper half-plane, but in the opposite direction. We anticipate that the application
of (49) to GWHEs with multiple propagation constants, i.e., with more than one mi(η), is
fundamental for developing a solution in the η plane, as (49) transforms the GWHEs into
integral equations in the unique complex plane η.

-6 -4 -2 0 2 4 6

-2

0

2

4

6

8

10

Figure 4. Cauchy smile contour integration line γ1t and an example of line −m(t) for t ∈ R,
k = 1 − 0.1j, γ = 0.7π (if γ < π/2, then the behavior of −m(t) has a similar path but oppo-
site direction; to intuitively understand this property in an isotropic medium, consider the definition
of m in the w plane for supplementary angles γ).

The complete sets of Equation (45) for region 1 can be represented in the following form:

AE
11(η)Eoz(η) + AE

12(η)Eoρ(η) + A11(η)Hoz(η) + A12(η)Hoρ(η) = BE
11(η)Eaz(−m3) + BE

12(η)Eaρ(−m3) + B11(η)Haz(−m3) + B12(η)Haρ(−m3)

AE
21(η)Eoz(η) + AE

22(η)Eoρ(η) + A21(η)Hoz(η) + A22(η)Hoρ(η) = BE
21(η)Eaz(−m4) + BE

22(η)Eaρ(−m4) + B21(η)Haz(−m4) + B22(η)Haρ(−m4)

AE
31(η)Eaz(η) + AE

32(η)Eaρ(η) + A31(η)Haz(η) + A32(η)Haρ(η) = BE
31(η)Eoz(−m1) + BE

32(η)Eoρ(−m1) + B31(η)Hoz(−m1) + B32(η)Hoρ(−m1)

AE
41(η)Eaz(η) + AE

42(η)Eaρ(η) + A41(η)Haz(η) + A42(η)Haρ(η) = BE
41(η)Eoz(−m2) + BE

42(η)Eoρ(−m2) + B41(η)Hoz(−m2) + B42(η)Hoρ(−m2)

(50)
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where the spectral field components of face o and face a are related to one another (Through-
out this study, in spectral equations we assume a notation with two subscripts for the
spectral field; the first subscript is related to the considered face (o, a, b) and the second to
the field component (z, x, y)). Moreover, the complete set of equations for region 2 (47) has
a similar representation. The imposition of boundary conditions makes these equations
a well-posed mathematical problem, resulting in a system of GWHEs. In particular, if
the region is surrounded by something modeled with impenetrable impedance boundary
conditions, then we establish relations among field components on the boundary faces. On
the contrary, if the region is surrounded by penetrable regions, then we establish continu-
ity through tangent components to neighboring regions that provide further functional
equations (coupled together). In any case, the types of completed functional equations and
constraints with boundary conditions are always of the same form and are a well-posed
mathematical problem of GWHEs.

As a simple example to illustrate the procedure, let us consider a problem constituted
by only region 1 with PEC boundary conditions when filled by arbitrary linear media. In
this case, we obtain

A11(η)Hoz(η) + A12(η)Hoρ(η) = B11(η)Haz(−m3) + B12(η)Haρ(−m3)

A21(η)Hoz(η) + A22(η)Hoρ(η) = B21(η)Haz(−m4) + B22(η)Haρ(−m4)

A31(η)Haz(η) + A32(η)Haρ(η) = B31(η)Hoz(−m1) + B32(η)Hoρ(−m1)

A41(η)Haz(η) + A42(η)Haρ(η) = B41(η)Hoz(−m2) + B42(η)Hoρ(−m2)

(51)

where on the LHS we have plus field unknowns in η and on the RHS we have minus field
unknowns in mi(). The apparent redundancy in (51) after the imposition of boundary con-
ditions is exploited to obtain integral representations only in terms of the field components
Hoz(η), Hoρ(η), Haz(η), Haρ(η) in the unique complex plane η using (49). Furthermore, the
application of the novel version of the Fredholm factorization method allows us to obtain
regularized integral equations. We assert that this procedure is applicable to GWHEs in
general, not only for the specific problem presented in this simple example. The application
of (49) to the RHS of (51) yields the following:

A11(η)Hoz(η) + A12(η)Hoρ(η) =
B11(η)

2π j

∞∫
−∞

Haz(η′)
η′+m3

dη′ + B12(η)
2π j

∞∫
−∞

Haρ(η′)
η′+m3

dη′ + Hn.s
az (−m3) + Hn.s

aρ (−m3)

A21(η)Hoz(η) + A22(η)Hoρ(η) =
B21(η)

2π j

∞∫
−∞

Haz(η′)
η′+m4

dη′ + B22(η)
2π j

∞∫
−∞

Haρ(η′)
η′+m4

dη′ + Hn.s
az (−m4) + Hn.s

aρ (−m4)

A31(η)Haz(η) + A32(η)Haρ(η) =
B31(η)

2π j

∞∫
−∞

Hoz(η′)
η′+m1

dη′ + B32(η)
2π j

∞∫
−∞

Hoρ(η′)
η′+m1

dη′ + Hn.s
oz (−m1) + Hn.s

oρ (−m1)

A41(η)Haz(η) + A42(η)Haρ(η) =
B41(η)

2π j

∞∫
−∞

Haz(η′)
η′+m2

dη′ + B42(η)
2π j

∞∫
−∞

Haρ(η′)
η′+m2

dη′ + Hn.s
oz (−m2) + Hn.s

oρ (−m2)

(52)

recalling that all occurrences of mi are functions of η, i.e., mi(η). The integral equations
in (52) are of the singular type; for this reason, we resort to the Fredholm factorization
method to obtain regularized expressions. The procedure consists of γ1t Cauchy smile
contour integration [11] on both sides of each equation and consequent mathematical
elaboration. Focusing our attention on the LHS for each term of each equation in (52), using
dummy subscripts, we have the following regularized expression:

1
2π j

∫
γ1t

A(t)H+(t)
t−η dt = 1

2π j
∫

γ1t

(A(t)−A(η))H+(t)
t−η dt + A(η)

2π j
∫

γ1t

H+(t)
t−η dt

= 1
2π j

∞∫
−∞

(A(t)−A(η))H+(t)
t−η dt + A(η)H+(η)− A(η)Hn.s

+ (η).
(53)
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Focusing our attention on the RHS for each term of each equation in (52), using
dummy subscripts and going back to the representation in (51), we have the following
regularized expression:

1
2π j

∫
γ1t

B(t)H+(−m(t))
t−η dt = 1

2π j
∫

γ1t

(B(t)−B(η))H+(−m(t))
t−η dt + B(η)

2π j
∫

γ1t

H+(−m(t))
t−η dt

= 1
(2π j)2

∞∫
−∞

∞∫
−∞

(B(t)−B(η))H+(η′)
(t−η)(η′+m(t)) dt dη′ + B(η)

(2π j)2

∞∫
−∞

∫
γ1t

1
(t−η)(η′+m(t))dtH+(η′)dη′ + n.s. terms.

(54)

Given the expressions of mi(η) in (24)–(25) with Im[mi(t)] < 0 in lossy media (Figure 4),
Equation (54) requires the computation of

Me(η, η′) =
∫

γ1t

1
(t − η)(η′ + m(t))

dt, (55)

which can be performed either numerically or analytically while paying attention to the
branch cuts of m(t). Furthermore, in (54) we also need to consider n.s. singularities related
to the field.

The validity of the estimation of Me(η, η′) extends to complex values of η′ as long as
η′ does not cross the singularity line determined by the behavior of −m(t) for t ∈ R, as
shown in Figure 4.

The expressions in (53) and (54) are regularized integral terms, as their kernels are
compact. Moreover, they include the n.s. terms of the field components in η and −mi, re-
spectively. The detailed proof of this assertion needs to be performed for specific problems.
While numerically implementing the method we observe that one of the main difficul-
ties resides in the correct estimation of kernel functions A(η), B(η) for the presence of
multivalued functions that need particular attention in their definition and calculation.

For simplicity and compactness of discussion, we examine the properties of inte-
gral equations in the simple case of a PEC wedge immersed in an isotropic medium
in Section 5.2. Equation (51) yields a 4 × 4 system of Fredholm integral equations of
the second kind by utilizing (52), (53), and (54). This system is expressed in terms of
Hoz(η), Hoρ(η), Haz(η), Haρ(η). It is important to highlight that the system only depends
on the spectral variable η, ensuring that functions do not rely on mi outside of the inte-
gration sign. This property is fundamental to avoid the analysis of unknowns defined
in different complex planes (η and various mi) that are correlated through cumbersome
improper sheet properties.

4. Asymptotic Estimation of the Field in the Angular Region

Having obtained the spectra at the faces of the angular region, we can estimate the
asymptotic behavior of the far field inside of the angular region.

Going back to the solution of (26) in Section 2 for region 1, according to (28) we have

ψ̃y(η, v) =
2

∑
i=1

Cie−λγi(γ) vui +
4

∑
i=3

uivi ·
∞∫

v

e−λγi(γ)(v− v′)ψsa(v′)dv′, v > 0. (56)

From the homogeneous portion of the solution in (56), we obtain the definitions of arbitrary
coefficients in terms of the field components at v = 0 (face o):

vi · ψ̃y(η, 0) = Ci, i = 1, 2. (57)

The particular integrals in (56) are terms related to face a via ψsa(v). Due to the linearity of
the problem, we apply the superposition principle; we can interpret (56) as the result of an
equivalent theorem, where ψ̃y(η, v) is represented through equivalent sources at faces o
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and a. Similarly, the spectral field in region 1 can be considered as a result of the analysis of
the rotated region 2′ from Figure 2b in Section 3, yielding

− d
dv

ψ̃Y1(η, v) = Mπ−γ(−jαo,−jη) · ψ̃Y1(η, v) + ψso(v), v < 0, (58)

where we note that γ → π − γ impacts all terms of the solution, as already reported in
Section 3, i.e., uiY1 , viY1 , λiY1 , miY1 , and the field components. The solution takes the form

ψ̃Y1(η, v) =
4

∑
i=3

Cie
−λγiY1

(π−γ) vuiY1 −
2

∑
i=1

uiY1 viY1 ·
∞∫

v

e−λγiY1
(π−γ)(v− v′)ψso(v′)dv′, v < 0, (59)

where v = −x in Figure 2b is now different from v = X1 in Figure 2a. From the homoge-
neous portion of the solution in (59), we obtain the definitions of arbitrary coefficients in
terms of the field components at v = 0 (face a):

viY1 · ψ̃Y1(η, 0) = Ci, i = 3, 4. (60)

The particular integrals in (59) are terms related to face o via ψso(v). Due to the linearity
of the problem, we again apply the superposition principle and can interpret (59) as the
result of an equivalent theorem, where ψ̃Y1(η, v) is represented through equivalent sources
at faces a and o.

Using the superposition principle and considering only homogeneous portions of (56)
and (59), we can represent the complete field without the particular integrals. Each con-
tribution originating from (56) and (59) is a spectral component that can be inversely
Fourier/Laplace transformed into the physical domain (u, v); these contributions represent
the fields from equivalent currents distributed in half-planes (face o and face a, respectively).
The application of the asymptotic representation of fields for each component in a unique
global system of cylindrical coordinates provides the estimation of the field in terms of the
classical GTD for angular region 1, but as a superposition of the GTD for two half-planes
(face o and face a), as in Kirchhoff representations. This procedure will be examined in
detail in the practical examples reported in the following sections and is a fundamental tool
for estimating the GTD directly in the Fourier/Laplace domain for an angular region filled
by arbitrarily linear media, where the GTD in the w plane is not available (as is common in
isotropic angular region problems). Indeed, the computation of the GTD for an angular
region filled by arbitrarily linear media is proposed here by effectively resorting to the
computation of the GTD in two half-plane problems.

An alternative way to obtain the far field is based on the computation of the spectral
field for any azimuthal direction φ by splitting the angular region into two subregions at
any observation angle φ (subregion A 0 < φ′ < φ and subregion B φ < φ′ < γ). After the
face spectra at φ = 0, γ have been obtained for the entire angular region, as proposed in
the previous sections, we can then relate the spectra at φ to those of the two faces using the
functional equations of the two subregions. These φ-parametric spectral representations of
field spectra allow for asymptotic evaluation of the far field at any φ. We observe that the
functional equations are written in terms of continuous field components at the boundary
faces of the angular region; see Section 4. The properties analyzed in this section can
be interpreted as a novel and original form of the electromagnetic equivalence theorem in the
spectral domain in the specific context of problems involving angular regions filled by an arbitrary
linear medium.
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5. Validation of the Novel Regularization Procedure with a Simple Example: Direct
Fredholm Factorization Applied to a PEC Wedge in an Isotropic Region

In order to validate the procedure from a mathematical point of view, let us first
demonstrate its efficacy in the simple case of angular region 1 (Figure 2a,b), representing a
PEC wedge filled by an isotropic medium, where a closed-form WH solution is available.
From the following:

m = mi(π − γ) = mi+2(γ) = −η cos γ + ξ sin γ , i = 1, 2; ξ =
√

k2 − α2
o − η2 (61)

u1 =

∣∣∣∣∣∣∣∣∣
τ2

o
ω ε ξ

− αoη
ω ε ξ

0
1

∣∣∣∣∣∣∣∣∣, u2 =

∣∣∣∣∣∣∣∣∣
αoη
ω ε ξ

− (ξ 2+α2
o)

ω ε ξ

1
0

∣∣∣∣∣∣∣∣∣, u3 =

∣∣∣∣∣∣∣∣∣
− τ2

o
ω ε ξ

αoη
ω ε ξ

0
1

∣∣∣∣∣∣∣∣∣, u4 =

∣∣∣∣∣∣∣∣∣
− αoη

ω ε ξ
(ξ 2+α2

o)
ω ε ξ

1
0

∣∣∣∣∣∣∣∣∣ (62)

v1 =
∣∣∣ ξ2+α2

o
2ω µ ξ

α0η
2ω µ ξ 0 1

2

∣∣∣, v2 =
∣∣∣ − α0η

2ω µ ξ − k2−α2
o

2ω µ ξ
1
2 0

∣∣∣
v3 =

∣∣∣− ξ2+α2
o

2ω µ ξ − α0η
2ω µ ξ 0 1

2

∣∣∣, v4 =
∣∣∣ α0η

2ω µ ξ
k2

o−α2
o

2ω µ ξ
1
2 0

∣∣∣ (63)

we have the functional equations [34] for region 1 (the first two equations in (45)):

−αoηEoρ(η) + (η2 − k2)Eoz(η) + kξZo Hoρ(η)

= −αoηEaρ(−m)− [ηξ sin(γ) + cos(γ)(k2 − η2)]Eaz(−m)

+kξZo Haρ(−m)− sin(γ)αokZo Haz(−m)

(64)

(k2 − α2
o)Eoρ(η) + αoηEoz(η) + kξZo Hoz(η)

= (k2 − α2
o)Eaρ(−m) + αo[cos(γ)η − sin(γ)ξ]Eaz(−m)

+kZo[sin(γ)η + cos(γ)ξ]Haz(−m).

(65)

At normal incidence (αo = 0), we obtain

−ξEoz(η) + kZo Hoρ(η) = −[η sin(γ) + ξ cos(γ)]Eaz(−m) + kZo Haρ(−m), (66)

kEoρ(η) + ξZo Hoz(η) = kEaρ(−m) + Zo[η sin(γ) + ξ cos(γ)]Haz(−m), (67)

where we note the decoupling of Equations (66) and (67) for Ez and Hz polarization, respec-
tively. The imposition of the PEC boundary conditions on functional Equations (66) and (67)
yields the GWHEs

Hoρ(η) = Haρ(−m), (68)

ξHoz(η) = [η sin(γ) + ξ cos(γ)]Haz(−m), (69)

with plus/minus field unknowns, respectively, in η, m. We note that the regularity prop-
erties of the problem depend on the multivalued function ξ =

√
k2 − η2 (due to physical

reasons) [11], which defines proper and improper sheets of the η plane.

5.1. Classical Solution of the GWHEs of the Problem in Different Complex Planes

In order to illustrate and validate the new direct Fredholm factorization procedure of
Section 3 in the following subsections, this subsection presents the classical WH solution
of (68) and (69) obtained in closed form [11] with the help of a specialized mapping, factor-
ization, and decomposition and with the extraction of source terms such as geometrical
optics (GO) fields for plane wave illumination. This subsection also clarifies important
properties related to different complex planes (including the angular complex plane w)
where the problem and the solutions are represented.
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The specialized mapping for the closed-form WH solution is

η = −k cos
(

γ

π
arccos

(
− η̄

k

))
, (70)

which was introduced for the first time in 2001 and has been extensively used in isotropic
wedge scattering problems, as reported in [11,12]. The mapping transforms plus unknowns
in the η plane and minus unknowns in the m plane (61) into plus and minus unknowns
in the η̄ plane, respectively, yielding the following classical Wiener–Hopf equations in the
new complex plane η̄:

Hoρ+(η̄) = Haρ+(−η̄) (71)

ξHoz+(η̄) = [η sin(γ) + ξ cos(γ)]Haz+(−η̄) (72)

where ξ and η become functions of η̄ and

m = k cos
(

γ

π
arccos

(
− η̄

k

)
+ γ

)
. (73)

From this point, the solution proceeds as it does for CWHEs, with factorization, decomposi-
tion, and the application of Liouville’s theorem while considering plane wave illumination
with Ez and Hz polarization and incident waves.

Ei
z(ρ, φ) = Eoejk ρ cos(φ−φo), Hi

ρ(ρ, φ) = − 1
jωµρ

∂Ei
z(ρ, φ)

∂φ
=

k
ω µ

sin(φ − φo)ejkρ cos(φ−φo)Eo (74)

Hi
z(ρ, φ) = Hoejk ρ cos(φ−φo), Ei

ρ(ρ, φ) =
1

jωερ

∂Hi
z(ρ, φ)

∂φ
= − k

ωε
sin(φ − φo)ejkρ cos(φ−φo)Ho (75)

Due to the PEC boundary conditions, we obtain the following GO source terms, which are
tangential to faces a and o, respectively, of angular region 1.

HGO
x (ρ, 0) = −2

Eo

Zo
sin φoejkρ cos φo , HGO

ρ (ρ, γ) = 2
Eo

Zo
sin(γ − φo)ejkρ cos(γ−φo) (76)

HGO
z (ρ, 0) = 2Hoejk ρ cos(φo), HGO

z (ρ, γ) = 2Hoejk ρ cos(γ−φo) (77)

In the spectral domain, according to the Laplace transforms (33)–(34), (76)–(77) become

HGO
oρ (η) =

−2jEo sin φo

Zo(η − ηo)
, HGO

aρ (−m) =
−2jEo sin(γ − φo)

Zo(m − mo)
(78)

HGO
oz (η) =

2jHo

η − ηo
, HGO

az (−m) =
−2jHo

m − mo
(79)

with ηo = −k cos φo and mo = k cos(γ − φo). In the η̄ plane (70), pole ηo is mapped into
η̄o = −k cos(−π

γ φo). In the following, we assume φo < γ/2 to locate η̄o in the upper
half-plane of the complex plane η̄, yielding non-standard plus unknowns; generalization is
straightforward, yielding η̄o in the η̄-lower half-plane, while γ/2 < φo < γ.

Focusing our attention on Ez polarization, due to the simplicity of Equation (71),
we observe the absence of a need for factorization; thus, we perform decomposition to
highlight the non-standard contribution in the plus unknown Hoρ+(η̄), which is consti-
tuted by HGO

oρ (η) = R/(η − ηo) (78) and can be mapped into the η̄ plane (70), yielding
HGO

oρ (η̄) = T/(η − ηo). We obtain

Hoρ+(η̄)−
T

η̄ − η̄o
= Haρ+(−η̄)− T

η̄ − η̄o
(80)
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with

T = R
dη̄

dη

∣∣∣∣
ηo

= −2j
π

γ

Eo

Zo
sin

π

γ
φo, R =

−2jEo sin φo

Zo
,

dη̄

dη

∣∣∣∣
ηo

=
π

γ

sin π
γ φo

sin φo
. (81)

Due to the regularity and asymptotic behavior of the LHS and RHS of (80), applying
Liouville’s theorem, (80) is equal to zero; thus, we obtain the following simple closed-
form solutions:

Hoρ+(η̄) =
T

η̄ − η̄o
, Haρ+(η̄) = − T

η̄ + η̄o
. (82)

The solutions in (82) can be mapped into the η plane using the inverse mapping of (70):

η̄ = −k cos
(

π

γ
arccos

(
−η

k

))
. (83)

We recall that the regularity properties of the problem in (68)–(69) in the η plane depend
on the multivalued function ξ =

√
k2 − η2 (due to physical reasons), and now, after the

application of the mapping in (70), on the multivalued function κ =
√

k2 − η̄2 in the η̄
plane through the log representation of arccos(−η̄/k); see Section 3.4 of [11]. Contrary
to (70), the transformation in (83) requires particular attention, as it maps η̄ into η for
0 < γ < π without covering the entire proper sheet of the η plane defined by the ξ function.
For this reason, a portion of the proper sheet of the η plane falls into the improper sheet
of the η̄ plane (defined by κ), and because the closed-form solution is obtained in the η̄
plane, this solution must be considered correct (not offending) only in the proper sheet of
η̄ even after applying the transformation in (83). To easily control the proper/improper
sheets of the η and η̄ planes, we can resort to their visualization in the complex plane w
(η = −k cos w; thus, η̄ = −k cos

(
π
γ w

)
and m = k cos(w + γ)). The w plane shows the

proper sheets of both planes (η, η̄) in a unique plane. In particular, for real w, the proper
segments originating from η and η̄ (related to ξ and κ, respectively) are −π < w < 0 and
−γ < w < 0, respectively; see Section 3.4 of [11]. This means that the closed-form solution
obtained in the proper sheet of η̄ is not valid in the entire proper sheet of the η plane but
only in a portion, which is due to the properties of (83).

Let us now consider the CWHE of Hz polarization (72)

G(η̄)Hoz+(η̄) = Haz+(−η̄), G(η̄) = ξ/n, (84)

with n = −η sin(γ)− ξ cos(γ) =
√

k2 − m2. According to [33], we have the factorization

G−(η̄) =
G(η̄)

G+(η̄)
, G+(η̄) =

ξ

ξ−n+
, ξ− =

√
k − η̄, n+ =

√
k + η̄. (85)

Confirming the same assumption that φo < γ/2 for simplicity, η̄o is located in the η̄ upper
half-plane, yielding a nonstandard plus unknown Hoz+(η̄) that is constituted by the source
nonstandard component HGO

oz (η) = RH/(η − ηo) (79), which in the η̄ plane becomes

HGO
oz (η̄) =

TH
η̄ − η̄o

, TH = RH
dη̄

dη

∣∣∣∣
ηo

= 2jHo
π

γ

sin π
γ φo

sin φo
, RH = 2jHo. (86)

Applying factorization and decomposition to (84), we obtain

G+(η̄)Hoz+(η̄)− G+(η̄o)HGO
oz (η̄) = G−1

− (η̄)Haz+(−η̄)− G+(η̄o)HGO
oz (η̄). (87)
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Due to the regularity and asymptotic behavior of the LHS and RHS of (87), applying
Liouville’s theorem, (87) is equal to zero; thus, we obtain the following simple closed-
form solutions:

Hoz+(η̄) = G−1
+ (η̄)G+(η̄o)HGO

oz (η̄), Haz+(−η̄) = G−(η̄)G+(η̄o)HGO
oz (η̄). (88)

Again, the closed-form solutions in (88) with the Hz polarization obtained in the proper
sheet of the η̄ plane can be mapped into the η plane using the inverse mapping in (83);
however, we need to consider these solutions valid only for η values belonging to the proper
sheet of the η̄ plane. Moreover, this property can be ascertained by checking that (68)–(69)
(from which we obtained the solutions in η̄) are enforced only for η values belonging to the
proper sheet of the η̄ plane.

In order to obtain solutions that are valid in the entire proper sheet of the η plane or
beyond (i.e., also in the improper sheet), we need to resort to an analytical continuation
technique that, in case of a unique propagation constant problems, can be implemented
via representation of GWHEs in the complex w plane yielding difference equations (for
instance, see the examples in [11,12]). Another option is to describe the problem with a
unique propagation constant directly in the w plane, where the concept of proper and
improper sheets of the η and η̄ planes is expanded periodically into the w plane with an al-
ternative vision of Riemann sheets. In this case, the closed-form solutions corresponding to
(88) and (89) are valid in the entire w plane, as opposed to approximate solutions obtained
with numerical line integration located in a particular sheet in either the η̄ or w plane. In this
last case, which originates from the classical implementation of Fredholm factorization [12],
we again need to resort to difference equations for analytical continuation.

Hoz+(w) =
2jHoπ csc w sin πw

γ

−kγ cos πw
γ + kγ cos πφo

γ

, Haz+(w) = −
2jHoπ csc w sin πw

γ

kγ cos πw
γ + kγ cos πφo

γ

(89)

5.2. Regularized Integral Equation Method for the Direct Solution of the GWHEs in Angular
Regions (Direct Fredholm Factorization)

Following the procedure in Section 3, which is simplified in the current problem
because of the isotropic medium, we duplicate the equations. For Ez polarization, we have

Hoρ(η) = Haρ(−m),
Haρ(η) = Hoρ(−m),

(90)

while for Hz polarization, we have

ξHoz(η) = [η sin(γ) + ξ cos(γ)]Haz(−m)
ξHaz(η) = [η sin(γ) + ξ cos(γ)]Hoz(−m)

(91)

where m = m(η) is defined in (61). Notice that when applying (70) to each of (90)–(91), the
duplicated equations assume the same form of the original ones (both CWHEs), with only
the replacement of η̄ with −η̄.

Both systems of equations can be considered a particular case of

G(η)F+(η) = H(η)X+(−m)
Ga(η)X+(η) = Ha(η)F+(−m)

(92)

which is suitable for describing more general cases. To describe the procedure, for simplicity,
let us assume that F+(η) is a non-standard plus η unknown while X+(−m) is a standard
minus m unknown; generalization is possible with a little effort.



Appl. Sci. 2024, 14, 8685 22 of 37

Applying the Cauchy decomposition Formula (49) to the unknowns defined in −m(η),

F+(−m) = 1
2π j

∞∫
−∞

F+(η′)
η′+m dη′ + Fn.s.

+ (−m), η ∈ R

X+(−m) = 1
2π j

∞∫
−∞

X+(η′)
η′+m dη′, η ∈ R.

(93)

From (92), we obtain the following system of integral equations:

G(η)F+(η) = 1
2π j H(η)

∞∫
−∞

X+(η′)
η′+m(η)

dη′

Ga(η)X+(η) =
1

2π j Ha(η)
∞∫

−∞

F+(η′)
η′+m(η)

dη′ + Ha(η)Fn.s.
+ (−m(η)).

(94)

This is not a system of Fredholm integral equations of the second kind (non-compact
kernel). To regularize (94), we follow the procedure presented in Section 3. Performing a
smile integration of (94), after mathematical manipulation, on the LHS, we have

1
2π j

∫
γ1t

G(t)F+(t)
t−η dt = G(η)F+(η) + 1

2π j

∞∫
−∞

(G(t)−G(η))F+(t)
t−η dt − G(η)Fns

+ (η)

1
2π j

∫
γ1t

Ga(t)X+(t)
t−η dt = Ga(η)X+(η) +

1
2π j

∞∫
−∞

(Ga(t)−Ga(η))X+(t)
t−η dt

(95)

and on the RHS we have

1
2π j

∫
γ1t

1
2π j

H(t)
t − η

∞∫
−∞

X+(η′)

η′ + m(t)
dη′dt =

1

(2π j)2

∞∫
−∞

M(η, η′)X+(η
′)dη′ (96)

and

1
2π j

∫
γ1t

1
2π j

Ha(t)
t−η

∞∫
−∞

F+(η′)
η′+m(t)dη′dt = 1

(2π j)2

∞∫
−∞

Ma(η, η′)F+(η′)dη′

1
2π j

∫
γ1t

Ha(t)
t−η Fns

+ (−m(t))dt = 1
2π j

∞∫
−∞

[Ha(t)−Ha(η)]Fns
+ (−m(t))

t−η dt + Ha(η)
2π j

∫
γ1t

Fns
+ (−m(t))

t−η dt
(97)

where

M(η, η′) =
∫

γ1t

H(t)
(t−η)(η′+m(t))dt =

∞∫
−∞

H(t)−H(η)
(t−η)(η′+m(t))dt + H(η)

∫
γ1t

1
(t−η)(η′+m(t))dt

Ma(η, η′) =
∫

γ1t

Ha(t)
(t−η)(η′+m(t))dt =

∞∫
−∞

Ha(t)−Ha(η)
(t−η)(η′+m(t))dt + Ha(η)

∫
γ1η

1
(t−η)(η′+m(t))dt.

(98)

Merging (95) and (96)–(98), we obtain the following FIEs of the second kind:

G(η)F+(η) +
1

2π j

∞∫
−∞

(G(t)− G(η))F+(t)
t − η

dt =
1

(2π j)2

∞∫
−∞

M(η, η′)X+(η
′)dη′ + G(η))Fns

+ (η) (99)

Ga(η)X+(η) +
1

2π j

∞∫
−∞

(Ga(t)−Ga(η))X+(t)
t−η dt

= 1
(2π j)2

∞∫
−∞

Ma(η, η′)F+(η′)dη′ + 1
2π j

∞∫
−∞

(Ha(t)−Ha(η))Fns
+ (−m(t))

t−η dt + Ha(η)
2π j

∫
γ1t

Fns
+ (−m(t))

t−η dt.
(100)
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It can be observed that the regularized FIEs (99) and (100) are particularly efficient
from a computational point of view due to the presence of compact kernels integrated
along the real axis, with the exception of the smile integration included in (98):

Me(η, η′) =
∫

γ1t

1
(t − η)(η′ + m(t))

dt. (101)

The evaluation of the integral in (101) can be effectively performed by warping the smile
contour γ1t in the lower half of the complex t plane into the integration path λ1 wrapped
around the vertical branch cut Γ1 of m(t) (61), which originated in branch point +k (see
Figure 5).
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1

2
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1+1-

Figure 5. Vertical branch cuts Γ1,2 of m(t) originating in branch point ±k assuming a lossy medium
(for visibility, k = 1 − j), smile contour integration line γ1t, and frown contour integration line γ2t with
corresponding warped contours λ1 and λ2 wrapped around vertical branch cuts Γ1 and Γ2. Note that
γ1t and γ2t assume different observation points for indentation in the figure.

By collapsing λ1 onto Γ1, we obtain

Me(η, η′) =
∫

Γ1

∆(
1

(t − η)(η′ + m(t)
)dt, (102)

where

∆(
1

(t − η)(η′ + m(t)
) = − 4

√
(k − t)(k + t) sin(γ)

(t − η)[−k2 + 2(t2 + η′2)− 4tη′ cos(γ) + k2 cos(2γ)]
. (103)

Assuming that t = k − jv (v > 0), the representation in (102) is quickly numerically
convergent. A closed-form expression of (102) is obtainable by considering the following:

1. Selection of the branch cut Γ1 as the line t = ku (with real u > 1) replacing λ1 and use
of the mapping t = ku under the integration sign.

2. Expansion of (103) with a minimal denominator.
3. Careful mathematical manipulation of multivalued functions.
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We obtain

Me(η, η′) = −2 sin(γ)
(

F∞(u1(η))
(u1(η)−u2(η′))(u1(η)−u3(η′))

− F∞(u2(η
′))

(u1(η)−u2(η′))(u2(η′)−u3(η′))
+ F∞(u3(η

′))
(u1(η)−u3(η′))(u2(η′)−u3(η′))

)
(104)

with
F∞(u) = ju log(2)−

√
1 − u2 log(−u + j

√
1 − u2) (105)

and the poles

u1(η) = η/k, u2(η
′) =

η′ cos γ −
√

k2 − η′2 sin γ

k
, u3(η

′) =
η′ cos γ +

√
k2 − η′2 sin γ

k
. (106)

Let us now go back to particular cases and consider equations for Hz polarization (91)
in angular region 1 representing a PEC wedge, written in the form (92) with the follow-
ing definitions:

F+(η) = Hoz(η), X+(η) = Haz(η), G(η) = Ga(η) =
ξ

η sin(γ) + ξ cos(γ)
, H(η) = Ha(η) = 1. (107)

The set of FIEs (99)–(100) is simplified; in particular, M(η, η′) = Ma(η, η′) = Me(η, η′),
as reported in (102). Equations (99)–(100) respectively become the following system of FIEs:

G(η)Hoz(η) +
1

2π j

∞∫
−∞

(G(t)− G(η))Hoz(t)
t − η

dt =
1

(2π j)2

∞∫
−∞

Me(η, η′)Haz(η
′)dη′ + s1(η) (108)

and

G(η)Haz(η) +
1

2π j

∞∫
−∞

(G(t)− G(η))Haz(t)
t − η

dt =
1

(2π j)2

∞∫
−∞

Me(η, η′)Hoz(η
′)dη′ + s2(η) (109)

with

s1(η) = G(η)Hns
oz (η), s2(η) =

1
2π j

∫
γ1t

Hns
oz (−m(t))

t − η
dt. (110)

Let us focus our attention on the source term (110); for simplicity, we assume that only
F+(η) = Hoz(η) is nonstandard:

Fns
+ (η) = Hns

oz (η) =
2jHo

η − ηo
(111)

where ηo = −k cos(φo), 0 < φo < π/2 and k has small losses (k = kr − jki, ki << kr).
From (111), according to the properties of −m(η) (see also Figure 4), Hns

oz (−m(η)) in
the proper lower half of the complex η plane shows poles originating from the zeros of
m(η) + ηo (in the m plane, we have the pole mo = −ηo). The poles can be related to
GO waves, i.e., connected to the last couple of reflections from faces a and o that create
shadow boundaries (for instance, see [40]). As an example, if φo < π − γ, then we have
one reflection from face a and one reflection from face o reflected again by face a. In
fact, from a mathematical point of view, in this case we have pole mo related to poles
ηra = −k cos(γ − φo) (reflection from face a) and ηraro = −k cos(γ + φo) (reflection from a
after o), which are associated with incoming azimuthal directions γ ∓ φo with respect to
the reference face a, i.e., the incoming directions 2γ ∓ φo with respect to face o. However,
we also need to note that the residues of the poles in the selected test problems are always
related only to the incident field. This means that the primary spectra of Hns

oz (−m(η))
in (110) are more similar to a replica of the incident spectrum for ηra, ηraro, similar to what
was described in the w plane in [13].
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Indeed, the integrand of the source term in (110) also exhibits a branch cut of −m(η).
Thus, we estimate (110) by warping γ1t into λ1, as follows:

s2(η) =
1

2π j

∫
λ1

Hns
oz (−m(t))

t − η
dt +

Ra

η − ηra
+

Rao

η − ηraro
(112)

where Ra and Ro are the residues of Hoz(−m(η)) in ηra and ηraro, respectively.

Hns
oz (−m(η)) = − 2jHo

m(−η) + ηo
=

Tmo

m(−η) + ηo
, Tmo = −2jHo (113)

Ra,ao = Tmo

dη

dm

∣∣∣∣
ηra ,ηraro

=
2jHo

cos γ + η sin γ√
k2−η2

∣∣∣∣∣∣∣
ηra ,ηraro

(114)

Using the same mathematical procedure that yields (102)–(104) from (101), from (112)
we obtain

1
2π j

∫
λ1

Hns
oz (−m(t))

t − η
dt =

Ho

π

∫
λ1

1
(t − η)(−m(t)− ηo)

dt = −Ho

π
Me(η, ηo). (115)

Thus,

s2(η) = −Ho

π
Me(η, ηo) +

Ra

η − ηra
+

Rao

η − ηraro
. (116)

The final set of FIEs for Hz polarization when the structure is illuminated by a plane
wave with 0 < φo < π/2 is then (108)–(109) (a specialization of (99)–(100)), with sources
s1,2(η) being defined and calculated in (110), (111), and (116). Note that s1(η) and s2(η) are
spectral components defined in the η plane of Hoz(η) and Haz(η), respectively, i.e., with
the reference coordinate system of face o and face a.

We now examine the convergence properties of the FIEs in (108)–(109) to obtain accu-
rate numerical results [41]. According to the classical Fredholm factorization method [11],
the regularization procedure provides compact kernels of the type reported on the LHS of
(108)–(109), i.e., it is square-integrable. The further integral operator reported on the RHS
of (108)–(109) in terms of Me(η, η′) is related to the coupling term between the spectra of
delimiting faces. This kernel is again compact, as (101) shows that Me(η, η′) is never singu-
lar for η ̸= t and η′ ̸= m(t) and (104) shows that Me(η, η′) is square-integrable according
to its asymptotic behavior in terms of (106). Similar considerations can be repeated in more
complex and general cases of angular regions immersed in/made of arbitrary linear media.

5.3. Implementation of a Numerical Example and Validation of Direct Fredholm Factorization

Let us consider region 1 in Figure 1 with an aperture angle π/2 < γ < π, which
is filled by a homogeneous isotropic medium with a propagation constant k (k = kr −
jki, ki << kr) and terminated by PEC boundary conditions. The angular region is illumi-
nated by an Hz polarized plane wave with an incoming direction φo (0 < φo < π − γ)
and intensity Ho. The spectral solution (Hoz(η), Haz(η)) can be provided by the system of
FIEs in (108)–(109). Due to the convergence properties of the kernel [41], simple sample-
and-hold approximation is enforced with the truncation of integration intervals at ±A
and integration step h such that A/h ∈ N. We tested our novel direct FIE solution against
the classical exact closed-form solution provided in Section 5.1 in the η and w planes,
respectively ((88) and (89)). Furthermore, we compared the asymptotic results in terms
of GTD coefficients. We examine the case where γ = 0.7π, k = 1 − j0.1, Ho = 1A/m, and
φo = 0.1π in detail. Because we have 0 < φo < π − γ, the GO field is constituted by the
incident waves, waves reflected by face a, and doubly-reflected waves (from face o and
then from face a); only the plus spectral unknown along face o, i.e., Hoz(η), is nonstandard
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in the WH formulation (91), as reported in the example in the previous subsection. To
enhance the convergence of the approximate FIE solution provided by (108)–(109), we
warp the integration line constituted by the real axis into a straight line located in the first
and third quadrants of the complex plane at an angle θ with respect to the real axis (the
singularities of the kernel and the sources are located in the second and fourth quadrants;
see Sections 5.3 and 5.4 of [12]):

αt(t) = t expjθ , t ∈ R, 0 < θ < π/2. (117)

According to the physical parameters of the test problem, we have ηra = 0.309017 −
0.0309017j, ηraro = 0.809017 − 0.0809017j, with both located in the lower half-plane, as
considered in (116). The discretization of (108)–(109) by the sample-and-hold technique
with A, h yields a linear system of equations with dimensions of 2(2(A/h) + 1):∣∣∣∣∣ dG + KG −Me

−Me dG + KG

∣∣∣∣∣
∣∣∣∣ Hoz

Haz

∣∣∣∣ = ∣∣∣∣ s1
s2

∣∣∣∣ (118)

where the diagonal matrix dG, the matrix KG, and the matrix Me contain samples of G(η),
G(t)−G(η)

t−η , and Me(η, η′), respectively, while the vectors Hoz, Haz and s1, s2 contain samples
of Hoz(η), Haz(η) and s1(η), s2(η), respectively. Note that Me is a coupling matrix that is
much weaker than the remaining terms. The sampled solutions allow for a representation
of Hoz(η), Haz(η) to be built by substituting them into the integral part of (108)–(109):

Hoz,az(η) = − h
2π j

A/h

∑
−A/h

[G−1(η)G(αt(hi))− 1]Hoz,az(αt(hi))
αt(hi)− η

+
hG−1(η)

(2π j)2

A/h

∑
−A/h

Me(η, αt(hi))Haz,oz(αt(hi)) + G−1(η)s1,2(η). (119)

These approximate expressions of Hoz(η), Haz(η) are valid for analytic continuation in
the proper sheet of the η plane, which is useful for correctly estimating fields in the physical
domain through the asymptotics of half-planes, as discussed in Section 4. This property
limits the requirement to know the spectra only in the proper sheet, as acquired in the
procedure, which is a novelty and represents progress with respect to classical Fredholm
factorization combined with spectral mapping in GWHE wedge problems.

To highlight the performance of this method, we compare the spectra along the real
axis of the η plane and a segment of the η plane that is useful for asymptotics according
to the steepest descent path (SDP) method, which in an isotropic medium corresponds to
η = −k cos w with −π < w < 0, i.e., the segment that connects −k with k.

To study the convergence of the method, we select physical parameters of region
1 with an aperture angle of γ = 0.7π and plane wave illumination at Hz polarization
with Ho = 1A/m, φo = 0.1π, and k = 1 − j0.1. We select the quadrature parameters
5 ≤ A ≤ 40, 0.2 ≤ h ≤ 0.25, θ = 0.1 such that A/h ∈ N. The numerical results are provided
in Figure 6 along the segment for asymptotic estimation. In the figure, we note that along the
segment we have a degradation of the spectral solution near w = −π, 0, which corresponds
to the branch points η = k,−k of ξ (where ξ defines the proper and improper sheet of
the η plane [11]). We recall that the solution of the FIEs was obtained through the simple
sample-and-hold quadrature and estimation of Me(η, η′), which saturates the precision,
particularly near η = k,−k (the branch point η = −k is a local offending singularity for the
plus spectra that should not appear, while η = k is related to physical structural properties
of the problem). An improvement would be obtained with a specialized quadrature (and
method of moments) capable of taking into account non-algebraic behavior such as branch
points (see [42]); however, the scope of the present method involves obtaining a very
simple, fast, and convergent solution that cannot incorporate sophisticated quadratures.
Furthermore, we observe that the lack of precision near η = k,−k is mitigated while
computing asymptotics because plus spectral unknowns are multiplied by sin w, providing
locally-smoothing errors. However, while the offending η = −k is a very local perturbation,
the physical η = k is more present, as it is physical.
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Figure 6. On top, plots of the absolute values of the spectral solutions |Hoz(−k cos w)| and
|Haz(−k cos w)| obtained as exact solutions and with the FIE approximations for different values
of A, h. On the bottom, the corresponding relative errors between the exact solutions and the FIE
solutions for different values of A, h on a log10 scale. Degradation of the spectral solution can be
observed near w = −π, 0, which corresponds to η = k,−k. The branch point η = −k is an offend-
ing singularity for the plus spectra, while η = k is related to the physical structural properties of
the problem.

To recover the quality of the solution near w = −π, 0 (η = k,−k), we resort to
spectral considerations based on the properties of the original GWHE formulation in (91).
Equation (91) can be applied to the approximate solutions obtained from the FIEs to obtain
a new improved representation of the plus spectra. This application allows us to obtain an
approximate spectrum near w = −π, 0 (η = k,−k) that originates from another portion of
the η plane according to m(η). This procedure is particularly effective and valid because
m(η) for η in the proper sheet lies in just a portion of the proper sheet of the η plane. This
property is particularly evident (in this simplified isotropic problem) by rewriting (91) in
the w plane:

Hoz(−k cos w) = −n(−k cos w)
ξ(−k cos w)

Haz(−k cos(w + γ))

Haz(−k cos w) = −n(−k cos w)
ξ(−k cos w)

Hoz(−k cos(w + γ))
(120)

with ξ(−k cos w) = −k sin w and −n = −k sin(w + γ). We note that −π < w < 0 on the
LHS corresponds to −π + γ < w < γ on the RHS due to (m = k cos(w + γ)), where the
unknowns are correctly computed. This methodology (named iteration) reimposes GWHEs
on the initial FIE-approximated spectra and shifts the lack of precision to a region where
the spectral solution is good, yielding a homogenization of the error level (see Figure 7).
In the figure, we report (1) the exact solution, (2) the approximate solution obtained from
the quadrature of FIEs with A = 40, h = 0.025, (3) the approximate solution obtained from
the quadrature of FIEs with A = 40, h = 0.025 plus the application of (91), and (4) the
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approximate solution obtained from the application of (91) to the sources of FIEs while
ignoring integral terms, i.e., using Hoz,az(η) = +G−1(η)s1,2(η).

Note that when considering (91), the map in (120) is only limited; thus, we cannot
interpret this procedure as a first iteration of the application of the contraction theorem.
In fact, according to our studies, successive iterations do not yield any benefit in the
convergence of the solution. This is also justified by the fact that in the w plane, the multiple
applications of (120) correspond to recursive equations/difference equations that further
shift the spectra in the w plane, thereby navigating replicas of the proper and improper
sheets of the η plane defined by ξ; see [11,13]. Moreover, the map is also excluded from
compensating for all physical behaviors of the problem starting from roughly approximate
solutions. Figure 7 shows the importance of the quality of starting spectra that originate
from the solution of the FIEs before the application of (120).
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Figure 7. On top, plots of the absolute values of the spectral solutions | sin w Hoz(−k cos w)| and
| sin w Haz(−k cos w)| obtained as exact solutions and with (1) the FIEs with A = 40, h = 0.025, (2) the
FIEs plus application of one iteration of (91) (FIE+iter), and (3) application of (91) to the source
terms of the FIEs (GO+iter). On the bottom, the corresponding relative errors between the exact
solutions and the approximate solutions. It is possible to observe an improvement of the solutions
near w = −π, 0 after applying an iteration of (91) to the approximate solution from the FIEs, yielding
a homogenization of the error.

Finally, we observe that while the FIEs provide good spectra except near the branch
cuts, the iteration in (91) enforces correct modeling of structural spectral properties such as
branch cuts.

To further compare the solutions and validate the proposed procedure, we have
computed the GTD diffraction coefficient as outlined in Section 4 using asymptoptics.
Using superposition, we can compute the diffraction by applying asymptotics individually
to the spectral solutions at faces o and a while considering only homogeneous terms
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in (56) and (59). This takes care of the different reference coordinates (see the discussion
in Sections 3 and 4 considering region 1 characterized by γ as region 2′ characterized by
π − γ; see Figures 1 and 2, (45), and (59)):

ψ̃ho
y (η, v) =

2

∑
i=1

vi · ψ̃y(η, 0)e−λγi(γ) vui, v > 0, (121)

ψ̃ho
Y1(η, v) =

4

∑
i=3

viY1 · ψ̃Y1(η, 0)e−λγiY1
(π−γ) vuiY1 , v < 0. (122)

Starting from the inversion of the contribution of face o (121), we have

ψho
y (u, v) =

1
2π

∫
Br

ψ̃ho
y (η, v)e−jηudη. (123)

According to the coordinate mapping in (18), from (16) and (23) we have

−λγi(γ) v− jηu = −jη cos γ v− jξi sin γv− jη(x− v cos γ) = −j(ηx+ ξiy), i = 1, 2 (124)

with ξi = ξ, i = 1, 2; thus,

ψho
y (x, y) =

1
2π

∫
Br

2

∑
i=1

vi · ψ̃y(η, 0)uie−j(ηx+ξy)dη, (125)

where Br is the Bromwich contour (over all singularities). The asymptotic estimation of (125)
at the far field is composed of GO terms (captured poles) and GTD diffracted components
(due to the saddle point with the application of the SDP method); in global cylindrical
coordinates, this is

ψ
ho,gtd
y (ρ, φ) =

√
k

2πρ
e−j(kρ−π/4)

2

∑
i=1

vi · ψ̃y(k cos φ, 0)ui sin |φ|. (126)

In our test problem (region 1 with PEC faces with Hz polarization), this reduces to the
third component

ψ
ho,gtd
y (ρ, φ)[3] = Hgtd

oz (ρ, φ) =

√
k

2πρ
e−j(kρ−π/4) Hoz(k cos φ)

2
sin |φ| (127)

according to the definition of ψ̃y(η, v) in (3) and ui, vi in (62)–(63). We obtain the following
GTD diffraction coefficient component due to face o:

Dgtd
Hoz(φ) =

kHoz(k cos φ) sin |φ|
j2Ho

. (128)

Now, we repeat the procedure starting from the inversion of the contribution of face
a (122) using the notation in Figures 1 and 2b:

ψho
Y1(u, v) =

1
2π

∫
Br

ψ̃ho
Y1(η, v)e−jηudη. (129)

According to the coordinate mapping

X1 = u + v cos(π − γ), Y1 = v sin(π − γ), (130)

from (16) and (23) we have

−λγiY1(π − γ) v − jηu = +jη cos γ v + jξi sin γv − jη(X1 + v cos γ) = −jηX1 + jξiY1, i = 3, 4 (131)
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where ξi = ξ, i = 3, 4; thus,

ψho
Y1(X1, Y1) =

1
2π

∫
Br

4

∑
i=3

viY1 · ψ̃Y1(η, 0)uiY1 e−jηX1+jξY1 dη, (132)

where Br is a Bromwich contour. The asymptotic estimation of (132) at the far field is composed
of GO terms and GTD diffracted components in the following global cylindrical coordinates:

ψ
ho,gtd
Y1 (ρ, φ) =

√
k

2πρ
e−j(kρ−π/4)

4

∑
i=3

viY1 · ψ̃Y1(k cos(φ − γ), 0)uiY1 sin |φ − γ|. (133)

For our test problem (region 1 with PEC faces with Hz polarization), this reduces to
the third component

ψ
ho,gtd
Y1 (ρ, φ)[3] = Hgtd

az (ρ, φ) =

√
k

2πρ
e−j(kρ−π/4) Haz(k cos(φ − γ))

2
sin |φ − γ| (134)

according to the definition of ψ̃y(η, v) in (3) and uiY1 = ui, viY1 = vi in (62)–(63). Note that
the invariance of uiY1 = ui, viY1 = vi in the rotation of the reference system is allowable only
in isotropic regions; otherwise, a more complex procedure is required for their definition in
arbitrary linear media (see Section 2).

Finally, we obtain the following GTD diffraction coefficient component due to face a:

Dgtd
Haz(φ) =

kHaz(k cos(φ − γ)) sin |φ − γ|
j2Ho

. (135)

The complete GTD coefficient is just the sum for the superposition of (128) and (135):

Dgtd
Hz (φ) = Dgtd

Hoz(φ) + Dgtd
Haz(φ). (136)

Figure 8 shows the GTD diffraction coefficient for the test problem under consideration,
that is, γ = 0.7π and plane wave illumination with Hz polarization with Ho = 1A/m,
φo = 0.1π, and k = 1 − j0.1. The figure reports the exact GTD coefficient in terms of
the absolute value and phase together with those obtained with the FIE-approximated
estimation of the spectra without and with the application of an iteration while selecting
A = 20, h = 0.05, θ = 0.1. Figure 9 shows the corresponding relative error of the GTD
diffraction coefficient on a log10 scale.

We note, as expected, that the solution with the iteration is correct, while the solution
without the iteration is lacking in its estimation near the faces of the angular regions, i.e.,
face o for φ = 0 and face a for φ = γ, as they are related to the spectra of Hoz(η) near
η = k (128) and Haz(η) near η = k (135), respectively (η = k corresponds to w = −π,
and is a physical branch point). In addition, note that the spectra of Hoz(η), Haz(η) near
η = −k (w = 0) are not used for the GTD computation; thus, the lack of possible precision
in the offending branch point does not impact the quality of the solution. Moreover,
the change in the slope and level of the relative error in Figure 9 is obtained using the
reported algorithm to improve the quality of the approximate solution provided by the
direct application of Fredholm factorization. In fact, FIE+iteration involves computation of
the GTD diffraction coefficient in (136) via (128) and (135), where the spectra Hoz(−k cos w)
and Haz(−k cos w) are obtained by enforcing (120) on the approximate spectra obtained
through the direct application of Fredholm factorization. This procedure mixes the spectral
resolution properties of the two faces, thereby improving the quality of the spectra and
recovering the degradation of the spectral resolution near w = π, 0, i.e., η = k,−k.
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Figure 8. GTD diffraction coefficient (absolute value and phase) for the test problem under consid-
eration: γ = 0.7π and plane wave illumination with Hz polarization with Ho = 1A/m, φo = 0.1π,
and k = 1 − j0.1. The figure reports the exact GTD coefficient together with those obtained with the
FIE-approximated estimation of the spectra without and with the application of an iteration while
selecting A = 20, h = 0.05, θ = 0.1.
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Figure 9. Relative error of the GTD diffraction coefficient on a log10 scale corresponding to the results
in Figure 8.

Finally, we comment that the direct implementation of FIEs in the w plane yields high-
precision results in isotropic angular region problems [12], exceeding the precision of the
current procedure in terms of spectra; however, we recall that the scope of the present work
involves presenting an effective procedure for computing diffraction that is implementable
in problems where the w plane cannot be defined, such as in arbitrarily linear media.

6. An Example of the Application of the Functional Equations in Complex Media:
Scattering from a PEC Half-Plane in a Gyrotropic Medium

The scattering of an electromagnetic plane wave at normal incidence by a perfectly
conducting semi-infinite screen embedded in a homogeneous gyrotropic medium (such as
plasma) is presented in this section with the goal of validating the proposed method, the
functional equations, and the WH equations in nonisotropic media. As our formulation is
in terms of field components, we selected [15,16,20,21] as studies for comparison; we did
not consider other literature where definitions in terms of potentials were employed. In
particular, we selected [15], where the distinguished axis of the electric gyrotropic medium
is parallel to the edge of the half-plane, i.e., as in plasma, with a uniform magnetic field
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impressed along the edge direction. This medium enforces a tensorial electric permittivity,
which in our reference system of coordinates (z, x, y) is

ε =

 ε3 0 0
0 ε1 +jε2
0 −jε2 ε1

, (137)

where z is the distinguished axis of the medium and µ = µo I, ξ = ζ = 0. As reported
in [15], this vector problem is separable into two equivalent scalar problems for the Ez
(H-mode) and Hz (E-mode) polarizations.

By applying the procedure described in Section 2 and with simplified definitions of
the quantities reported in Appendix A, we obtain the following (progressive, regressive)
eigenvalues:

λ1,3 = ±
√

η2 − k2
1 = ±jξ1, λ2,4 = ±

√
η2 − k2

2 = ±jξ2 (138)

where k2
1 = ω2µoε/ε1 = k2

oε/ε1, k2
2 = ω2µoε3 = k2

oεr3, εri = εi/εo, ε = ε2
1 − ε2

2, and
ko = ω

√
εoµo.

The corresponding eigenvectors ui, from which we can easily compute the reciprocal
vectors vi through inversion, are

u1 =

∣∣∣∣∣∣∣∣
0

j(−ε2η+ε1 jξ1)
εω
1
0

∣∣∣∣∣∣∣∣, u2 =

∣∣∣∣∣∣∣∣
µoω
ε2
0
0
1

∣∣∣∣∣∣∣∣, u3 =

∣∣∣∣∣∣∣∣
0

− j(ε2η+ε1 jξ1)
εω
1
0

∣∣∣∣∣∣∣∣, u4 =

∣∣∣∣∣∣∣∣
− µoω

ε2
0
0
1

∣∣∣∣∣∣∣∣. (139)

The problem shows simplification because of γ = π; see for instance the impact of the
anisotropies on (35) or

m = mi(π − γ) = mi+2(γ) = η; i = 1, 2. (140)

However, we keep the procedure as general as possible, i.e., applicable to wedge
problems (arbitrary γ); from (27) and (31), we obtain

ψ̃sa+(−mi(γ)) =
∣∣∣ Eaz cos(γ), Eaρ +

ηHaz sin(γ)
ωε1

, Haz cos(γ)− jHazε2 sin(γ)
ε1

, Haρ − Eazη sin(γ)
µoω

∣∣∣t. (141)

From here on, we omit the spectral dependence in the field components for better compact-
ness of the formulae. Applying (32), we obtain the following two functional equations for
region 1 in explicit form:

Eoxωε + Hozξ1ε1 + jηHozε2 = Haz[sin(γ)(ηε1 − jξ1ε2) + cos(γ)(ξ1ε1 + jηε2)] + Eaρεω, (142)

Hoxµoω − Eozξ2 = Haρµoω. (143)

Similarly, the procedure can be repeated for region 2. The complete set of equations high-
lights the decoupling of Ez from Hz polarization. Applying the PEC boundary conditions
on the faces, after some manipulations we obtain the following equations for the Ez and
Hz polarizations: {

Hox =
Haρ

2 +
Hbρ

2

− Eozξ2
µoω =

Haρ

2 − Hbρ

2

(144)

{
Eoxωε + Hozξ1ε1 + jηHozε2 = Haz[sin(γ)(ηε1 − jξ1ε2) + cos(γ)(ξ1ε1 + jηε2)]
−Eoxωε + Hozξ1ε1 − jηHozε2 = Hbz[sin(γ)(ηε1 + jξ1ε2) + cos(γ)(ξ1ε1 − jηε2)].

(145)

Now, we impose γ = π, i.e., the angular regions are defined for the half-plane problem. In
(144), we note that Ez polarization behaves as a half-plane problem immersed in a classical
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isotropic region [33] but with a propagation constant of k2
2 = ω2µoε3 = k2

oεr3, i.e., this can
be interpreted via a network representation with characteristic impedance ZEz = ωµo/ξ2,
confirming the findings of [15].

With further mathematical manipulation of (145), we obtain −2Hoz +
2iEoxηωεε2
ξ2

1ε2
1+η2ε2

2
= Haz + Hbz

− 2Eoxξ1ωεε1
ξ2

1ε2
1+η2ε2

2
= Haz − Hbz

(146)

and the second equation in (146) shows the same WH kernel as that of Equation (25) in [15]:

G−1
Hz

= −
ξ2

1ε2
1 + η2ε2

2
2ξ1ωεε1

= −
(k2

1 − η2)ε2
1 + η2ε2

2

2
√

k2
1 − η2ωεε1

= −
k2

1ε2
1/ε − η2

2
√

k2
1 − η2ωε1

(147)

with the sole irrelevant distinction of a multiplication by a scalar. Moreover, the characteris-
tic pole of the surface wave phenomenon is easily recognizable from the numerator, as also
found in [15]. The solutions to the problem can be achieved with the proposed approximate
technique that was validated in previous sections or via the classical WH procedure, as
in [15]; however, this is beyond the scope of the present study.

7. Conclusions

Spectral methods (such as SM, KL, and WH) are well-consolidated, fundamental, and
effective tools for the correct and precise analysis of electromagnetic diffraction problems
with one propagation constant, although they are not immediately applicable to problems
with multiple propagation constants.

In this study, we propose a comprehensive theoretical package in the spectral domain
with all necessary mathematical tools that for the first time extends the possibilities of spec-
tral analysis to electromagnetic problems involving wedges immersed in an arbitrary linear
medium, and is additionally extendable to multiple penetrable angular regions. The theory
is presented in an exhaustive way, showing the theoretical background, implementation,
and validation. The methodology is based on transverse equations for layered angular
structures, the characteristic Green function procedure, the Wiener–Hopf technique, and
our novel direct Fredholm factorization method, which reduces GWHEs with multiple
propagation constants to integral representations in a unique complex plane. Validation
through examples is applied, starting from demonstrating the effectiveness of direct Fred-
holm factorization applied to GWHEs in the scattering from a PEC wedge immersed in
an isotropic medium and ending with the validation of functional equations of angular
regions in arbitrary linear media with the analysis of a PEC half-plane immersed in particu-
lar anisotropic media. While numerically implementing the method, we observed that one
of the main difficulties resides in the correct estimation of kernel functions for the presence
of multivalued functions that need particular attention in their definition and calculation.

The proposed equations are interpreted using a network formalism in order to provide
a systematic perspective, particularly for the analysis of complex scattering problems where
the complexity of the geometry is broken into subdomains of canonical shapes in which
the angular regions are immersed in/made of arbitrarily linear media.

This work presents significant advancements in the spectral analysis of electromag-
netic problems from different mathematical, physical, and engineering perspectives: (1) the
first spectral method capable of handling scattering in arbitrary linear media with multiple
propagation constants; (2) direct Fredholm factorization, a novel solution procedure for
GWHEs, particularly those with multiple propagation constants; (3) a network interpre-
tation of spectral functional equations and related integral representations for angular
regions filled by arbitrary linear media (4) computation of the field at each point within
the angular region, avoiding spectral analytical extension; and (5) improved quality of
approximate spectral solutions from FIEs by reimposing the GWHEs of the problem, which
we name iteration.
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This theoretical package has been validated and is ready for future applications.
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Appendix A. Explicit Form of Expressions Used in the Main Text

Appendix A contains details and supplements to the main text, in particular explicit
expressions that would be cumbersome to report in the main text due to issues with
readability and preserving completeness.

The explicit expressions of the 4 × 4 matrices Myo, My1, My2 used in Section 2 for (4), i.e.,

My(−jαo,
∂

∂x
) = Myo + (

∂

∂x
)My1 + (

∂

∂x
)2My2 (A1)

for arbitrary linear media are presented in factorized form as follows:

Myo =
j(ωM(0)

yo + αo M(1)
yo + α2

o M(2)
yo /ω)

ϵyyµyy − ζyyξyy
(A2)
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M(0)
yo =


ζxyζyzξyy − ζxzζyyξyy + ζxzµyyϵyy − ζyzµxyϵyy − ζxyµyyϵyz + ζyyµxyϵyz −ζxxζyyξyy + ζxyζyxξyy − ζxyµyyϵyx + ζyyµxyϵyx + ζxxµyyϵyy − ζyxµxyϵyy
ζyyζzzξyy − ζyzζzyξyy + ζyzµzyϵyy − ζzzµyyϵyy − ζyyµzyϵyz + ζzyµyyϵyz −ζyxζzyξyy + ζyyζzxξyy − ζyyµzyϵyx + ζzyµyyϵyx + ζyxµzyϵyy − ζzxµyyϵyy
−ζyzξyyϵxy + µyyϵxyϵyz + ζyyξyyϵxz − µyyϵxzϵyy + ζyzξxyϵyy − ζyyξxyϵyz ζyyξyyϵxx − µyyϵxxϵyy − ζyxξyyϵxy + µyyϵxyϵyx − ζyyξxyϵyx + ζyxξxyϵyy
−ζyzξzyϵyy + µyyϵyyϵzz + ζyyξzyϵyz − µyyϵyzϵzy + ζyzξyyϵzy − ζyyξyyϵzz ζyyξzyϵyx − µyyϵyxϵzy − ζyxξzyϵyy + µyyϵyyϵzx − ζyyξyyϵzx + ζyxξyyϵzy

−ζxyµyyξyz + ζxyµyzξyy + ζyyµxyξyz − ζyyµxzξyy − µxyµyzϵyy + µxzµyyϵyy ζxyµyxξyy − ζxyµyyξyx − ζyyµxxξyy + ζyyµxyξyx + µxxµyyϵyy − µxyµyxϵyy
−ζyyµzyξyz + ζyyµzzξyy + ζzyµyyξyz − ζzyµyzξyy − µyyµzzϵyy + µyzµzyϵyy ζyyµzxξyy − ζyyµzyξyx − ζzyµyxξyy + ζzyµyyξyx + µyxµzyϵyy − µyyµzxϵyy
−ζyyξxyξyz + ζyyξxzξyy + µyyξyzϵxy − µyzξyyϵxy − µyyξxzϵyy + µyzξxyϵyy ζyyξxxξyy − ζyyξxyξyx − µyxξyyϵxy + µyyξyxϵxy + µyxξxyϵyy − µyyξxxϵyy
−ζyyξyyξzz + ζyyξyzξzy + µyyξzzϵyy − µyzξzyϵyy − µyyξyzϵzy + µyzξyyϵzy ζyyξyxξzy − ζyyξyyξzx − µyxξzyϵyy + µyyξzxϵyy + µyxξyyϵzy − µyyξyxϵzy

 (A3)

M(1)
yo =


ζyzξyy − µyyϵyz ξyy(ζyx − ζxy)− µyyϵyx + µxyϵyy µyzξyy − µyyξyz −µyy(ζxy + ξyx) + ζyyµxy + µyxξyy

0 ζzyξyy − µzyϵyy 0 ζzyµyy − ζyyµzy
ζyyϵyz − ζyzϵyy ξyyϵxy + ζyyϵyx − ϵyy(ζyx + ξxy) ζyyξyz − µyzϵyy ζyy(ξyx − ξxy) + µyyϵxy + µyx(−ϵyy)

0 ξzyϵyy − ξyyϵzy 0 ζyyξzy − µyyϵzy

 (A4)

M(2)
yo =


0 −ξyy 0 −µyy
0 0 0 0
0 ϵyy 0 ζyy
0 0 0 0

 (A5)

My1 =
M(0)

y1 + αo M(1)
y1 /ω

ϵyyµyy − ζyyξyy
(A6)

M(0)
y1 =


µxyϵyy − ζxyξyy 0 ζyyµxy − ζxyµyy 0

−ζyzξyy + ζzyξyy − µzyϵyy + µyyϵyz µyyϵyx − ζyxξyy −ζyyµzy + ζzyµyy + µyyξyz − µyzξyy µyyξyx − µyxξyy
ξyyϵxy − ξxyϵyy 0 µyyϵxy − ζyyξxy 0

ζyzϵyy + ξzyϵyy + ζyy(−ϵyz)− ξyyϵzy ζyxϵyy − ζyyϵyx −ζyyξyz + ζyyξzy + µyzϵyy + µyy(−ϵzy) µyxϵyy − ζyyξyx

 (A7)

M(1)
y1 =


−ξyy 0 −µyy 0

0 ξyy 0 µyy
ϵyy 0 ζyy 0
0 −ϵyy 0 −ζyy

 (A8)

My2 =


0 0 0 0

−ξyy 0 −µyy 0
0 0 0 0

ϵyy 0 ζyy 0

 (A9)
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We note that the expressions of Myo, My1, My2 reported in (A2), (A6), and (A9), respec-
tively, when in factorized form with respect to αo, allow for immediate evaluation in the
case of normal incidence αo = 0 by nullifying the contribution of M(1)

yo , M(2)
yo , M(1)

y1 in (A2)
and (A6).
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