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Abstract: In wireless communication and radar systems, long-distance signal transmission poses
significant challenges that affect overall system performance. In this paper, we propose an innovative
bistatic radar cross section (RCS) testing system designed to address these challenges, with a particular
focus on its long-distance signal transmission capabilities. This system is capable of accurately
measuring the RCS of a target and improving multipath channel modeling accuracy by using precise
RCS values. The integrated upper computer software extracts amplitude and phase information from
received echo signals, processes these data, and provides detailed outputs including the target’s RCS,
one-dimensional image, and two-dimensional image. The experimental results obtained prove that
this system can not only achieve effective long-distance signal transmission but also substantially
enhance the accuracy of RCS measurements, offering reliable support for multipath channel modeling.
However, the conclusions drawn are preliminary and require further experimental validation to
fully substantiate this system’s performance. Future work will focus on improving system accuracy,
minimizing the impact of environmental noise, and optimizing data-processing methods to enhance
the efficiency of wireless communication and radar applications.

Keywords: multipath channel; radar cross section; bistatic RCS; long-distance signal transmission;
photoelectric conversion; Mach–Zehnder modulator

1. Introduction

In the last two decades, modern wireless communication system technologies have
undergone rapid growth in response to the corresponding demand [1]. The multipath
effect, a prevalent phenomenon in wireless communication, occurs when radio signals
arrive at the receiving antenna via multiple paths. This effect can arise from factors such as
atmospheric ducting, ionospheric reflection, and reflections from surfaces like water bodies,
mountains, and buildings. Interference and phase shifts can ensue when the same signal
follows different paths to the receiver. Destructive interference resulting from this can
cause signal fading, which may render a signal too weak to be reliably received in certain
areas. This phenomenon is one of the most important causes of system fading. On the
other hand, if multipath effects are utilized effectively, communication efficiency can also
be improved. For example, using drones as relay stations can create intentional multipath
effects, enabling transmission across obstacles in complex environments [2,3] or ensuring
reliable long-distance communication [4,5].

Consequently, a comprehensive understanding of multipath fading channels is crucial
for the efficient design of wireless communication systems [6]. In statistical channel models,
distribution parameters are typically derived from extensive field measurement data [7],
which are used to characterize typical scenarios. Several classical models have been
established, such as the 3GPP/ITU 2D/3D channel models and the 3D millimeter-wave
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channel model [8,9]. However, statistical models frequently fail to precisely capture channel
performance at specific locations, leading to the widespread adoption of the ray-tracing
method. As shown in Figure 1, the ray-tracing channel model simplifies the wavefront into
multiple small ray tubes that propagate along their respective incident directions [10]. It is
a deterministic model based on high-frequency electromagnetic simulation technology and
uses Maxwell’s equations and appropriate boundary conditions to develop a deterministic
model that can ascertain the details of multipath propagation and derive the impulse
response of multipath fading for specific environmental conditions [11–13].
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Despite its advantages in providing accurate and detailed modeling of multipath
propagation, ray tracing has several inherent drawbacks. One major limitation is its high
computational complexity. Additionally, ray-tracing models are highly dependent on
detailed and accurate environmental information. Constructing a precise geometric model
of the propagation environment, including the shapes, positions, and material properties of
all relevant obstacles, can be labor-intensive and time-consuming. Furthermore, while ray
tracing can provide detailed insights into a signal’s propagation paths, it does not inherently
account for all wave phenomena, such as wave polarization and material anisotropy, which
might be relevant in certain scenarios.

Given these challenges, improving the accuracy of multipath channel modeling re-
mains a significant concern in the wireless communication and radar community. Some
researchers are attempting to improve the ray-tracing channel model. In [14], Yi Chen
et al. explored combining ray-tracing techniques with terahertz communication to enhance
multipath channel modeling. Their hybrid approach outperformed conventional models
by better capturing the temporal–spatial characteristics of multipath channels and the role
of ray tracing in accurate multipath propagation. However, it still faced challenges related
to the high computational demands of ray tracing. In [15], Yuanzhe Wang et al. introduced
Massive MIMO Communications, emphasizing the need to account for reflection, scatter-
ing, and diffraction to obtain more precise results. But they were unable to overcome the
challenge of modeling multipath channels in complex environments.

Some other researchers hope to improve the accuracy of multipath channel models by
using more novel techniques. Anh Hong Nguyen et al. developed a higher-precision model
for specular multipath components (SMCs) using gaussian processes, thereby improving
the accuracy of multipath channel modeling for ultra-wideband (UWB) and mm-wave
signals [16]. However, in some complex scenarios, Non-Line-of-Sight (NLoS) conditions
can severely distort UWB signals, thereby affecting modeling accuracy [17]. To address
this issue, Qiu Wang et al. introduced a 1D-ConvLSTM-Attention network (1D-CLANet)
enhanced by Squeeze-and-Excitation (SE). This SE-enhanced 1D-CLANet can identify NLoS
conditions during modeling. They will use this 1D-CLANet in future research to reduce
the modeling errors caused by NLoS conditions [18].

Among the work of researchers, Abdelfattah Fawky et al. creatively demonstrated the
importance of incorporating radar cross sections (RCSs) into channel modeling, creating a
high-precision 3D deterministic model that provided more accurate predictions of signal
behavior in complex environments [19]. This suggests that by accounting for the scattering
processes occurring along the signal path in more detail, including the precise RCS values
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of various scatterers, the overall channel model can be made significantly more accurate. In
our paper, we aim to obtain higher-precision RCS values by introducing bistatic testing,
and we hope that this high-precision RCS can contribute to developing multipath channel
modeling methods that are accurate, have low computational complexity, and are less
affected by complex environments.

The RCS of a target represents the effective area perceived by the radar. The formula
for defining the RCS is shown in Equation (1) [20]. It is the ratio of the power reflected by
a target towards the emission source within a unit solid angle to the plane wave power
density incident on the target from a given direction.

σ = lim
R→∞

4πR1R2
|Es|2

|Ei|2
(1)

In this formula, σ denotes the RCS, typically measured in m2 or dBm2; R1, R2 represent
the distances between the target and the radar’s transmitting and receiving antennas,
respectively; Es is the electric field strength of the scattered wave at the receiving antenna;
and Ei is the strength of the incident wave at the target. The RCS is the hypothetical
area that intercepts a specific amount of power, which, when scattered uniformly in all
directions, produces an echo at the radar station equivalent to that of the actual target. The
RCS is the hypothetical area that intercepts a quantity of power such that, when scattered
uniformly in all directions, it generates an echo at the radar station equivalent to that of the
target. In wireless communication, the radar’s transmitting antenna can be equivalent to
the radio wave’s transmitting station, and the radar receiving antenna can be equivalent to
the radio wave’s receiving station. Thus, the RCS can characterize the scattering of radio
waves by obstacles along the propagation path. The RCS values of some common objects
are shown in Table 1 below.

Table 1. RCS values of common objects [21].

Target RCS (m2) RCS (dBm2)

Insect 0.00001 −50
Bird 0.01 −20

Human 1 0
Bicycle 2 3

Automobile 100 20
Pickup truck 200 23

In practical engineering, the RCS definition formula is generally not used. Instead,
the radar equation, as shown in Equation (2), is used for RCS measurement [22]. In this
formula, Pt, Pr represent the radar’s transmitted power and received power, respectively,
while Gt, Gr correspond to the gains of the transmitting and receiving antennas, respectively.
λ denotes the radar’s operating wavelength.

σ =
(4π)3(R1R2)

2

PtGtGrλ2 · Pr (2)

Traditional RCS testing systems typically use a monostatic radar configuration, where
the transmitting and receiving antennas are located at the same radar station. However,
with continuous technological advancements, bistatic radar RCS measurements are attract-
ing attention due to their higher accuracy and efficiency [23]. The RCS testing system must
ensure coherence between the transmitted and received signals. In monostatic radar sys-
tems, where the transmitter and receiver are co-located at the same base station, time and
frequency synchronization is readily achievable through the use of a shared clock source,
ensuring signal coherence. In bistatic radar systems, where the transmitter and receiver
are spatially separated, each must use its own clock. The differences between these clocks
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make it difficult to coordinate transmission and reception. There are two common methods:
One consists of equipping both bases with high-precision atomic clocks. The coherent
population trapping (CPT) atomic clock, widely used in synchronization communications,
has a frequency stability of approximately 10−10, while the highest-precision rubidium
atomic clocks can achieve a frequency stability of 10−14 [24]. However, the production and
maintenance costs of high-precision atomic clocks are extremely high. Another method
consists of extracting a synchronization signal from one base and transmitting it to another
base, thereby achieving synchronization between the two bases. The key to this method
is ensuring that the synchronization signal maintains phase stability after long-distance
transmission between the two bases.

This article presents a signal transmission system designed for a bistatic RCS testing
system to address the issue of time synchronization. As the testing system is an electro-
magnetic measurement system and the distance between the two radar stations is over
300 m, using wireless electrical signal transmission could interfere with the scattered waves,
affecting the test results. On the other hand, using wired electrical signal transmission
over such distances would lead to significant attenuation. Therefore, our design adopts an
optoelectronic conversion approach. Before transmission, the reference signal is converted
into an optical signal, transmitted via optical fiber to the other base station, and then
demodulated back into an electrical signal. The optoelectronic conversion system is linear
and does not disrupt the coherence of the entire testing system. The linearity of this system
is a key indicator in determining whether RCS measurements can be performed. In the
following Section 3, the phase stability of the system is specifically tested, and in Section 4,
the negative impacts that system nonlinearity may have on the overall RCS measurements
are analyzed.

2. System Principle and Simulation

The entire testing system is an inter-pulse frequency-hopping radar, and its operating
principle is illustrated in Figure 2. A local oscillator signal provides the time base for
two agile frequency signal sources, ensuring time synchronization between them. Agile
frequency signal source 1 generates a signal x(t) with a frequency f1 = fi, which is split into
two paths. One path is used as the transmission signal, which, after modulation, amplitude
control, and power amplification, is transmitted towards the target by the antenna. The
other path serves as the intermediate frequency (IF) for down-conversion to obtain the
signal xre f (t). The signal z(t) generated by agile frequency signal source 2, with a frequency
f2 = fi + f I , is also split into two paths. One path is used as the reference local oscillator and
mixed with the processed echo signal y(t) to obtain signal y′(t). The other path serves as
the RF input for down-conversion to obtain the signal xre f (t). Thus, the frequency of signal
xre f (t) should be f2 − f1 = f I . Finally, the signal xre f (t) this time acts as the IF, and the other
signal, y′(t), undergoes a series of processes, including sampling, digital phase locking,
quadrature digital down-conversion, and baseband signal post-processing. This process
allows one to obtain various measurements, such as the target’s RCS, one-dimensional
image, and two-dimensional image.

Additionally, the signal transmission system can theoretically be connected at any
point in the entire testing system to increase the extent of signal transmission. A schematic
diagram of this system is shown in Figure 3.

The modulated signal, Sr(t), is input into an electro-optical modulator, where it
modulates the optical carrier signal, Ein(t), generated within the modulator, forming the
modulated optical signal, Sm(t). After long-distance optical fiber transmission, Sm(t)
undergoes a phase shift and attenuation, resulting in the optical signal Sc(t). Sc(t) then
enters a photodetector and is converted back into the electrical signal, S′

r(t).
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2.1. Selection of an Electro-Optic Modulator

Optical modulators encode an electrical signal onto an optical wave, known as the
optical carrier. This encoding can manipulate the amplitude, phase, frequency, polarization,
or any combination of these properties of the optical carrier [25]. To meet the demand for
long-distance and high-capacity service in modern optical transmission networks, high
speed, compactness, and low power have become the mainstream development themes for
future electro-optical modulators [26,27]. Among the various electro-optical modulators,
the Mach–Zehnder modulator has become one of the most widely used types in recent
years due to its advantages: high speed, low cost, and low complexity [28].

The Mach–Zehnder modulator (MZM) is an interferometric device constructed from
a material exhibiting a strong electro-optic effect (such as LiNbO3, GaAs, InP). Lithium
niobate (LiNbO3)-based MZMs are commonly used for modulation in communication
systems with a capacity of up to 40 Gb/s. However, their application is constrained by
high drive voltages, a large physical footprint, and a lack of integrability [29]. In contrast,
indium phosphide (InP)-based MZMs offer higher 3 dB bandwidths and require lower
drive voltages [30]. But they are also more expensive than the former. The structure of the
MZM is illustrated in Figure 4. The optical input Ein is divided between the upper and
lower modulator arms, where phase modulation occurs via two phase shifters driven by
the electrical signals V1, V2. The modulated signals are then recombined to produce the
optical output Eout.
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The MZM has three operating modes: Maximum Transmission Point (MATP), Quadra-
ture Point (QTP), and Minimum Transmission Point (MITP). By setting an appropriate DC
bias voltage, the operating mode of the MZM can be selected. When the bias voltage is set
to 0, the MZM is in the MATP mode, and the output optical intensity is at its maximum. In
this mode, since the bias voltage is 0, the refractive indices of the upper and lower arms do
not change, and the optical signals in both arms are not modulated. When the bias voltage
is set to half of the modulator’s half-wave voltage, the MZM is in the QTP mode, and the
output optical intensity is half of the maximum optical intensity. The externally applied
voltage alters the refractive indices of the upper and lower arms, causing the optical signals
in each arm to undergo varying levels of phase modulation. This process induces a phase
shift between the optical signals in the two arms, resulting in a coherent superposition
within the optical coupler. When the bias voltage is set to the modulator’s half-wave
voltage, the MZM is in the MITP mode, and the output optical intensity is 0. In this mode,
when the DC bias voltage is equal to the MZM’s half-wave voltage, the optical amplitudes
in the upper and lower arms cancel each other out in the optical coupler, resulting in an
output optical field of 0.

As the MZM is one of the more mature technologies among the various optoelectronic
modulation methods, with relatively simple principles and moderate hardware costs, we
employed an MZM operating in single-drive push–pull mode, which modulates the signal
in terms of amplitude. In the push–pull-mode MZM, there is only one radio frequency (RF)
electrode and one direct current (DC) electrode, as depicted in Figure 5. Two RF signals of
equal amplitude and opposite phases are applied to the upper and lower arms of the MZM.
The MZM operates in the QTP state to avoid the need for carrier and phase recovery [31].
In this state, only the intensity modulation of the input optical signal occurs. The output of
the modulator in this operating mode can be represented as follows:

Eout(t) =
α

2
Ein(t)

[
exp

(
jπ

V cos(ωst + θs) + VDC
2Vπ

)
+ exp

(
−jπ

V cos(ωst + θs) + VDC
2Vπ

)]
(3)

in which Ein(t) represents the optical carrier signal input to the MZM, α denotes the
insertion loss of the MZM, Vπ is the half-wave voltage of the modulator, and V, ωs, θs
represent the amplitude, angular frequency, and initial phase of the modulating signal V(t),
respectively. VDC represents the DC bias voltage applied to the upper and lower arms.



Appl. Sci. 2024, 14, 8797 7 of 20

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 22 
 

modulating signal ( )V t , respectively. DCV  represents the DC bias voltage applied to the 
upper and lower arms. 

 
Figure 5. A schematic diagram of the single-drive push–pull-mode MZM. 

2.2. Derivation of the System Formulas 

Let us assume the modulating signal ( )rS t  in Figure 2 is a standard cosine signal: 

( ) cos( )r m m mS t A tω ϕ= +  (4)

mA  is the amplitude of the modulating signal. mω  and mϕ  represent the angular 
frequency (the following will be referred to as “frequency”) and initial phase of the mod-
ulating signal, respectively. Since the MZM operates in QTP mode, 0.5DCV Vπ= . There-

fore, the modulated optical signal ( )rS t  obtained after the modulating signal ( )mS t  
passes through the electro-optic converter can be represented as follows: 

( )

( )

( )

( ) ( ) ( )

cos + 0.5
exp

2
( )

2 cos + 0.5
exp

2

         = exp cos + + exp cos +
2 4 4

m m m

m
m in

m m m

m
in m m m m

A t V
j

V
S t E t

A t V
j

V

E t jm t j jm t j

π

π

π

π

ω ϕ
π

α

ω ϕ
π

α π πω ϕ ω ϕ

 + 
  

  
=  

 + 
+ −  
   

    + − −        

 (5)

In this formula, ( )inE t  represents the optical carrier signal: 

( )0( ) expin c cE t E j t jω ϕ= +  (6)

0E  represents the amplitude of the optical carrier signal, and c cω ϕ、  represent 

the frequency and phase of the optical carrier signal. mα  denotes the insertion loss of the 

modulator, and Vπ  is approximately 6 V in this design. ( 2 ) mm V Aππ=  is referred to 
as the modulation index. 

According to the Jacobi–Anger expansion, 

exp( cos ) ( )exp( )n
n

n
jm j J m jnθ θ

∞

=−∞

=   (7)

By substituting Equation (7) into Equation (5), we obtain the following: 

Figure 5. A schematic diagram of the single-drive push–pull-mode MZM.

2.2. Derivation of the System Formulas

Let us assume the modulating signal Sr(t) in Figure 2 is a standard cosine signal:

Sr(t) = Am cos(ωmt + φm) (4)

Am is the amplitude of the modulating signal. ωm and φm represent the angular fre-
quency (the following will be referred to as “frequency”) and initial phase of the modulating
signal, respectively. Since the MZM operates in QTP mode, VDC = 0.5Vπ . Therefore, the
modulated optical signal Sr(t) obtained after the modulating signal Sm(t) passes through
the electro-optic converter can be represented as follows:

Sm(t) = αm
2 Ein(t)

 exp
(

jπ Am cos(ωmt+φm)+0.5Vπ
2Vπ

)
+ exp

(
−jπ Am cos(ωmt+φm)+0.5Vπ

2Vπ

) 
= αm

2 Ein(t)
[
exp

(
jm cos(ωmt + φm) + j π

4
)
+ exp

(
−jm cos(ωmt + φm)− j π

4
)] (5)

In this formula, Ein(t) represents the optical carrier signal:

Ein(t) = E0 exp(jωct + jφc) (6)

E0 represents the amplitude of the optical carrier signal, and ωc, φc represent the
frequency and phase of the optical carrier signal. αm denotes the insertion loss of the
modulator, and Vπ is approximately 6 V in this design. m = (π/2Vπ)Am is referred to as
the modulation index.

According to the Jacobi–Anger expansion,

exp(jm cos θ) =
∞

∑
n=−∞

jn Jn(m) exp(jnθ) (7)

By substituting Equation (7) into Equation (5), we obtain the following:

Sm(t) =
αm

2
Ein(t)

∞
∑

n=−∞

 exp
(

j
π

4

)
jn Jn(m) exp(jn(ωmt + φm))

+ exp
(
−j

π

4

)
(−1)n jn Jn(m) exp(jn(ωmt + φm))


=

αm

2
Ein(t)

∞
∑

n=−∞
jn Jn(m) exp(jn(ωmt + φm))

[
exp

(
j
π

4

)
+ (−1)n exp

(
−j

π

4

)] (8)

Here, Jn(m) represents the first-kind n-order Bessel function. In the case of small
signal modulation, only the DC component and the first-order component are considered.
Therefore, the above equation can be written as follows:

Sm(t) = αm
2 Ein(t)


j0 J0(m)

[
exp

(
j π

4
)
+ exp

(
−j π

4
)]

+jJ1(m)
[
exp

(
j π

4
)
− exp

(
−j π

4
)]

exp(j(ωmt + φm))
+j−1 J−1(m)

[
exp

(
j π

4
)
− exp

(
−j π

4
)]

exp(−j(ωmt + φm))


=

√
2αm
2 Ein(t)[J0(m)− J1(m) exp(j(ωmt + φm))− J1(m) exp(−j(ωmt + φm))]

(9)
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The signal undergoes transmission through a single-mode fiber (SMF) with a length
of l, wherein the transfer function of the SMF is given by the following:

H(ω, l) = e−γle−jβ(ω) (10)

l, β(ω), γ represent the length, propagation constant, and amplitude attenuation
coefficient of the SMF, respectively. By performing a Taylor expansion on β(ω) and using
β(ω0), β′(ω0), β′′ (ω0) to denote the propagation constant at point ω0 and the values of
the first and second derivatives, we can obtain the following:

β(ω) = β(ω0) + (ω − ω0)β′(ω0) +
1
2
(ω − ω0)

2β′′ (ω0) + · · · (11)

From Equations (9)–(11), we can obtain the expression for the modulated optical signal
obtained after it propagates through the SMF with a length of l as follows:

Sc(l, t) =
√

2
2

αmE0

 J0(m) exp(j(ωct − β(ωc)l) + jφc)
−J1(m) exp((j(ωct + ωmt + φm)− β(ωc + ωm)l) + jφc)
−J1(m) exp((j(ωct − ωmt − φm)− β(ωc − ωm)l + jφc))

e−γl (12)

Finally, the photocurrent detected by the photodetector is given by the following:

S′
r(l, t) = µ|Sc(l, t)|2

= 1
2 α2

mE2
0µJ0

2(m)e−αl + α2
mE2

0µJ1
2(m)e−αl

−α2
mE2

0µJ0(m)J1(m)e−αl cos{ωmt + [β(ωc − ωm)− β(ωc)]l + φm}
−α2

mE2
0µJ0(m)J1(m)e−αl cos{ωmt − [β(ωc + ωm)− β(ωc)]l + φm}

+α2
mE2

0µJ1
2(m)e−αl cos{2ωmt − [β(ωc + ωm)− β(ωc − ωm)]l + 2φm}

(13)

Here, µ is the responsivity of the photodetector, and α = Re(γ) represents the power
attenuation coefficient of the optical wave during transmission in the fiber. Considering
the Taylor series expansion of β(ωc), the photocurrent can be expressed as follows:

S′
r(l, t) = 1

2 α2
mE2

0µJ0
2(m)e−αl + α2

mE2
0µJ1

2(m)e−αl

−α2
mE2

0µJ0(m)J1(m)e−αl cos
{
[ωmt − ωmβ′(ωc)l] +

[
1
2 ω2

mβ′′ (ωc)l
]
+ φm

}
−α2

mE2
0µJ0(m)J1(m)e−αl cos

{
[ωmt − ωmβ′(ωc)l]−

[
1
2 ω2

mβ′′ (ωc)l
]
+ φm

}
+α2

mE2
0µJ1

2(m)e−αl cos{2ωm[t − β′(ωc)l] + 2φm}
= 1

2 α2
mE2

0µ
(

J0
2(m) + 2J1

2(m)
)

e−αl

−2α2
mE2

0µJ0(m)J1(m)e−αl cos
[

1
2 ω2

mβ′′ (ωc)l
]

cos[ωmt − ωmβ′(ωc)l + φm]

+α2
mE2

0µJ1
2(m)e−αl cos{2ωm[t − β′(ωc)l] + 2φm}

(14)

Here, β′(ωc)l = τ0 is referred to as the group delay of the carrier, β′′ (ωc) = λ2D/2πc,
where D, λ, and c represent the fiber’s dispersion coefficient, optical wavelength, and
the speed of light in a vacuum, respectively. By comparing the input and output of the
photoelectric conversion system, it can be observed that, after considering the negative sign
in the phase of the first harmonic term of S′

r(l, t), it can be simplified to φ = ωm · τ0 + φm +π.
When comparing the phase of the modulating signal Sr(l, t), the difference between the
two is ∆φ = ωm · τ0 + π. The parameter τ0 represents the group delay of the entire system,
which is solely determined by the system itself and the length of the optical fiber, making
∆φ a fixed constant.

Moreover, as shown by Equation (12), it is evident that the primary factor determining
the intensity of the n-th harmonic is the n-th order Bessel function value of the modulation
index m. As shown in Figure 6, in the case of small-signal modulation, where m is relatively
small, Jn(m) for n > 2 becomes significantly smaller than J0(m) and J1(m); thus, it can be
considered negligible.
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2.3. System Simulation

In the previous section, we concluded through theoretical derivation that the system
fundamentally meets the phase stability requirements. In this stage, we used Matlab 2020a
to conduct simulations to gain an intuitive understanding of the waveform and phase
variations at each node of the system as well as observe the impact of various component
parameters on system gain and waveform.

Firstly, we set the simulation parameters for the system. Since the carrier used in
the photoelectric conversion is typically a laser with a wavelength of 1550 nm, which
corresponds to a frequency of approximately fc = 1.9 × 105 GHz, and the frequency
range of the modulated electrical signal is fm = 1–40 GHz, it follows that in practical
applications, ωm ≪ ωc. Thus, for the modulating signal, we set the parameters as follows:
amplitude Am = 1V, frequency ωm = 1, and initial phase φm = 0. For the optical carrier
signal, we set the amplitude E0 = 10V, carrier signal frequency ωc = 100 to satisfy the
condition ωm ≪ ωc for amplitude modulation, and carrier signal initial phase φc = 0.
The half-wave voltage of a LiNbO3 MZM is generally between 3 and 10 V. A lower half-
wave voltage can enhance the performance of the MZM by increasing the modulation
speed, reducing the heat generation, and lowering the drive voltage requirements, thereby
improving overall efficiency. However, MZMs with lower half-wave voltages require more
complex fabrication processes and incur higher production costs. After comprehensive
consideration, the half-wave voltage of the MZM was set to Vπ = 6V, which is also the
voltage used for the actual product. Thus, the modulation index m = (π/2Vπ)Am = π/12.
The insertion loss is αm = 0.5. A waveform comparison between the modulated signal
Sm(t) and the modulating signal Sr(t) is shown in Figure 7.

In the figure above, the blue and green curves represent the complete modulated
signal Sm(t) and the signal Sm(t) with only the DC and first-order components retained,
respectively. The red curve represents the modulating signal Sr(t). It is evident from the
figure that the envelopes of the blue and green curves almost entirely match the red curve.
Unlike traditional amplitude modulation, the envelope of the modulated signal is no longer
perfectly aligned with the phase of the modulated signal but instead undergoes a phase
inversion. This is due to the inherent principles of the MZM, as shown in Equation (9).
Comparing the blue and green curves shows that they overlap almost completely, with
only slight differences around the peaks, confirming the approximation mentioned in
Equation (9) that “In the case of small signal modulation, only the DC component and the
first-order component are considered”.
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Regarding the case where the modulation index is increased to m = 1, a comparison
between the true values and the approximate values is shown in Figure 8. At this point,
there is a significant difference between the true and approximate values, and neither
envelope matches the modulated signal anymore, indicating that the intensity modulation
of a single push–pull MZM is only applicable when the modulating signal amplitude is
less than the half-wave voltage of the modulator. Therefore, in practical applications, it is
essential to control the amplitude of the modulating signal.
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For the optical fiber in the system, the simulation parameters were set as follows:
the attenuation coefficient of the fiber α = 0.3 dB/km, the refractive index n = 1.45, the
operating wavelength λ = 1550 nm, and the dispersion coefficient D = 17 ps/(nm · km).
The length was set to l = 500 m, and a rough calculation revealed that the group delay is
τ0 = 2420 ns. For the photodetector, the responsivity is a positive number that is always
less than 1. For convenience in calculations, it was set to µ = 0.5. A comparison between
the system’s output signal Sr

′(t) and input signal Sr(t) is shown in Figure 9:
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In the figure, it can be observed that the demodulated signal has an added DC com-
ponent and a higher amplitude than the modulating signal, while the frequency remains
almost identical to the input signal. Due to the group delay τ0 being only 2420 ns, the
phase difference ωm · τ0 in ∆φ caused by the group delay is negligible, resulting in a phase
difference of π between the two signals. Performing a discrete Fourier transform with
18,850 points on the demodulated signal yields the results shown in Figure 10.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 22 
 

For the optical fiber in the system, the simulation parameters were set as follows: the 
attenuation coefficient of the fiber 0.3 /dB kmα = , the refractive index 1.45n = , the op-
erating wavelength 1550nmλ = , and the dispersion coefficient 17 / ( )D ps nm km= ⋅ . 
The length was set to 500l m= , and a rough calculation revealed that the group delay 
is 0 2420nsτ = . For the photodetector, the responsivity is a positive number that is al-

ways less than 1. For convenience in calculations, it was set to 0.5μ = . A comparison 
between the system’s output signal ' ( )rS t  and input signal ( )rS t  is shown in Figure 9: 

 
Figure 9. Comparison of modulating signal and demodulated signal. 

In the figure, it can be observed that the demodulated signal has an added DC com-
ponent and a higher amplitude than the modulating signal, while the frequency remains 
almost identical to the input signal. Due to the group delay 0τ  being only 2420 ns, the 

phase difference 0mω τ⋅  in ϕΔ  caused by the group delay is negligible, resulting in a 
phase difference of π  between the two signals. Performing a discrete Fourier transform 
with 18,850 points on the demodulated signal yields the results shown in Figure 10. 

 
Figure 10. DFT of the demodulated and modulating signals. 

Upon comparing the DFT results of the demodulated and modulating signals, it be-
comes evident that the proportion of the second harmonic component in the demodulated 
signal ' ( )rS t  is much smaller than that of the first harmonic and the DC component. This 

Figure 10. DFT of the demodulated and modulating signals.

Upon comparing the DFT results of the demodulated and modulating signals, it
becomes evident that the proportion of the second harmonic component in the demodulated
signal Sr

′(t) is much smaller than that of the first harmonic and the DC component. This
also confirms that neglecting the higher-order components of the demodulated signal, as
mentioned in Equation (14), is a reasonable approximation.

The simulation results corroborate the theoretical derivations, with both confirming
that the system is fundamentally feasible. These findings provided a solid foundation for
the subsequent practical measurements. Moving forward, real-world testing will further
validate the system’s feasibility and help identify any potential issues that may not have
been captured in the theoretical analysis.

3. System Testing

The main goal of these system tests was to validate the performance of the long-
distance signal transmission system within the bistatic RCS testing configuration. The
tests were designed to obtain information on the gain and phase stability of the signal
transmission system to determine whether its integration into the entire testing system
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would affect the system’s functionality. Additionally, the tests involved the observation
of the clutter and higher-order harmonics introduced by the system to assess whether a
filtering device was needed. To prevent the amplitude of the photocurrent detected by the
photodetector module from being too small, which could affect subsequent signal process-
ing, the system cascades an amplifier model GWPA010400-35-24, made by Beijing Gwave
Technology Co., Ltd. (Beijing, China), after the photodetector. The detailed parameters are
shown in Figure 11.
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3.1. Spurious and Higher-Harmonic Testing

When conducting spurious and higher-harmonic testing, a standard cosine signal
generated by a signal source is used as the input for the system, and the electrical signal
outputted by the system is connected to a spectrum analyzer for analysis. A schematic
diagram and the actual setup of the system for testing are depicted in Figure 12.
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Figure 12. Schematic and test setup of the spurious and higher-harmonic test.

Starting with a representative 10 GHz signal, the spurious conditions of the system
were tested. The output frequency of the signal source was set to 10 GHz with a power
output of −10 dBm. The resolution bandwidth (RBW) and video bandwidth (VBW) of the
spectrum analyzer were set to 10 Hz and 300 Hz, respectively. The spurious conditions
around the center frequency were observed, and the results are shown in Figure 13. From
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the results, it can be gleaned that there was almost no spurious interference from other
frequencies near the center frequency. Subsequently, using a 4 GHz signal as a represen-
tative, the higher-harmonic conditions of the system were tested. The output frequency
of the signal source was set to 4 GHz with a power output of −10 dBm. The frequency
sweep range (span) of the spectrum analyzer was set from 1 to 20 GHz to observe the
higher-harmonic conditions. The results are shown in Figure 14.
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The figure shows that the power of the first harmonic in the output signal is 8.98 dBm,
while the power of the second harmonic is only −26.66 dBm, which is 35.64 dB lower than
the first harmonic, consistent with the conclusion in Section 2. Additionally, it can be noted
that there are third-order harmonics present in the system output; these were introduced by
the amplifier cascaded after the photodetector. The power of the third harmonic is 46.06 dB
lower than that of the first harmonic, almost negligible, and does not affect the normal
operation of the system. The test results for higher harmonics at other frequencies are
summarized in Table 2.
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Table 2. Higher harmonics at various frequencies with −10 dBm of input power.

Frequency/Hz First Harmonic/dBm Second Harmonic/dBm Delta/dB

1 G 11.67 −27.33 33.00
4 G 8.00 −28.33 36.33
8 G 8.67 −30.83 39.50

10 G 9.00 −30.83 39.83
15 G 8.83 −31.50 40.33

The test results indicate that the signal transmission system does not necessarily
require a filtering device. However, if conditions allow for the introduction of a filtering
device, such a device can reduce the interference from the existing spurious and higher-
order harmonics.

3.2. Dynamic Range Testing

The principle and environment for dynamic range testing are the same as those in
Section 3.1. Using an input signal frequency of 18 GHz as an example, the input–output
response curve of the system is shown in Figure 15.
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In the figure, the blue curve represents the measured data, while the red curve is the
fitted curve for the linear region, with the following fitting equation: y = 0.9959x + 14.0081.
The line loss at 18 GHz is 4.65 dBm, resulting in a calculated linear region gain of 18.66 dBm
for the system at 18 GHz. The saturation input power is approximately 10 dBm, and the
saturation output power is around 20.5 dBm. Using the same method, the test results at
1 GHz, 4 GHz, 8 GHz, 10 GHz, and 15 GHz are shown in Figure 16.

Finally, the system’s gain, saturation input power, and saturation output power are
summarized in Table 3.

Table 3. Dynamic range test results for the system.

Frequency
(GHz)

Linear Region Gain
(dBm)

Saturation Input Power
(dBm)

Saturation Output Power
(dBm)

1 25.50 2 23.5
4 24.05 3 23.00
8 23.43 4 22.00
10 22.80 6 22.33
15 19.47 9 19.83
18 18.66 10 20.50
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3.3. Phase Stability and Group Delay Testing

A principle diagram and the testing environment for system phase stability testing
are shown in Figure 17. The system was connected to a vector network analyzer, and
the S21 parameter of the network analyzer was used to obtain the group delay and the
phase variation of the system over 8 h of continuous operation at different frequencies. The
system group delay was determined to be 1503 ns.
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Figure 17. Diagram and test setup of the phase stability and group delay test.

During testing, the system needed to operate for 1 h to reach a stable state. Using the
phase at the 1 h mark as a reference, the subsequent hourly phase changes relative to the 1;
h, mark were recorded. The results are shown in Table 4.

Table 4. Phase stability test results.

Frequency
(GHz)

Continuous Operation Time

1H 2H 3H 4H 5H 6H 7H 8H

2 0◦ −0.01◦ 0.11◦ 0.09◦ 0.01◦ 0.07◦ 0.18◦ 0.37◦

5 0◦ 0.02◦ 0.25◦ −0.05◦ −0.28◦ −0.19◦ 0◦ 0.45◦

10 0◦ −0.22◦ 0.19◦ −0.45◦ −0.95◦ −0.84◦ −0.53◦ 0.35◦

20 0◦ 0.2◦ 1.08◦ −0.49◦ −1.3◦ −1.05◦ −0.49◦ 1.18◦

30 0◦ 0.18◦ 1.45◦ −0.45◦ −1.8◦ −1.45◦ −0.59◦ 2.05◦

39 0◦ −0.13◦ 1.7◦ 1.38◦ −0.28◦ −0.15◦ 0.35◦ 3.37◦
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The testing results indicate that the system meets the functional requirements: clutter
and high-order harmonics are within acceptable limits, with no need for additional filtering;
the gain levels satisfy the RCS testing criteria; and the phase stability is adequate for both
one-dimensional and two-dimensional imaging. Overall, the system performs as required
for practical applications.

4. System Application

The actual structure of the bistatic testing system after integrating the signal transmis-
sion system into the entire testing setup is shown in Figure 18. Except for the transmitting
antenna and the photodetector in the signal transmission system located at the Transmitting
Base, all the other components of the testing system are situated at the Receiving Base. The
Core contains the local oscillator clock source and the two agile frequency signal sources. It
also performs mixing to obtain the intermediate frequency reference signal, as well as the
final sampling, quadrature demodulation, and other processing tasks.
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Figure 18. The principle diagram of the dual-station RCS testing system.

Via analysis in conjunction with Figure 2, it can be gleaned that for a series of n
frequency incrementation pulses with a carrier frequency of fi = f0 + k · ∆ f , k = 0, 1 . . . ,
n − 1, the transmission of a specific pulse can be represented as follows:

x(t) = cos(2π fit + θ1) kT2 ≤ t ≤ kT2 + T1, (15)

where f0 is the base frequency, which can be set according to the testing requirements, with
the test system covering a frequency range of 1–40 GHz; ∆ f is the inter-pulse frequency
increment, set to 1 MHz; T1 is the pulse width, determined by the maximum size of the
target; and T2 is the pulse repetition period, determined by the distance to the target. The
target echo signal can be represented as follows:

y(t) = cos[2π fi(t − τ) + θ1], (16)

where τ = 2R/c, R is the target distance, and c is the speed of light. The signal generated
by agile frequency signal source 2 is as follows:

z(t) = [2π( fi + f I)t + θ2], (17)

where one path, after mixing with signal x(t), yields the reference intermediate frequency
(IF) signal xre f (t), while the other path, after mixing with the echo signal y(t), produces
signal y′(t): {

xre f (t) = cos(2π f I t + θ3)
y′(t) = cos(2π f I t + 2π fiτ + θ2 − θ1)

(18)
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After undergoing a series of processes including sampling, digital phase locking,
quadrature digital down-conversion, and baseband signal post-processing, signals y′(t)
and xre f (t) yield the processed result Gk:{

Gk = cos ψk + j sin ψk
ψk = −2π fi· 2R

c + β, β = θ3 − θ2 + θ1
(19)

Each pulse corresponds to a result, Gk, and the system emits 30 pulses per measure-
ment. As a result, a series of 30 echo information samples was obtained. Performing an
IDFT on the echo data yielded the target’s distance and position information, i.e., the one-
dimensional image. Next, the region of interest was centered around the target position,
with zero-padding applied before performing a DFT. The frequency domain data were then
used to compute the power spectrum of the echo, which allowed for the calculation of the
target’s RCS value.

According to the system specifications, the transmission power of the system needs
to reach at least P0 = 21.63 dBm to meet the testing requirements. Before introducing
the long-distance signal transmission system, the system’s achieved transmission power
was Pt = 27 dBm. Therefore, as long as the loss introduced by the signal transmission
system is within 6.37 dBm, the requirements will be met. As indicated by the previous test
results, the system not only did not undergo attenuation but also provided a gain of at
least 15 dBm. Thus, its integration would not affect the overall transmission power of the
system. Moreover, the results shown in Figure 19 indicate that the positional information
in the one-dimensional image is only obscured when the introduced random phase error
reaches around 1.6π. In the test results, the phase error of the signal transmission system is
less than 3 degrees (0.016π), which meets the required specifications.
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Finally, after integrating the optoelectronic conversion system into the entire bistatic
RCS testing system, we completed the measurement of the target’s RCS. Due to the lack
of a physical vehicle or model, we selected a standard metal sphere as the test target. The
metal sphere had a radius of approximately r ≈ 0.1784 meters, and the RCS value for a
sphere of this size is around −10 dBm2. The testing environment is shown in Figure 20.
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Figure 20. Scenes depicting the RCS test.

The frequency chosen for the test was 10 GHz, with elevation angles of 0◦, 45◦, and 90◦

and horizontal angles ranging from −45◦ to 45◦. The final measurement results are shown
in Figure 21. From the figure, it can be gleaned that the measurement results differ from the
theoretical value of −10 dBm2 by no more than 0.1 dB, indicating that the introduction of
the optoelectronic conversion system did not affect the accuracy of the RCS measurement.
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5. Conclusions

Combining an RCS with multipath effects allows a more detailed consideration of the
scattering process when electromagnetic waves encounter obstacles, which is beneficial
for improving the accuracy of multipath channel modeling. To achieve more accurate RCS
measurements, we designed a signal transmission system between the bases of a bistatic
RCS measurement system to achieve time synchronization between the bases. The operat-
ing frequency of the system can cover 1–40 GHz and remains linear, ensuring the phase
coherence of the entire RCS testing system. The accompanying upper computer software for
the system extracts amplitude and phase information from the received echo signals. After
computational processing, the target’s RCS, one-dimensional image, and two-dimensional
image can be obtained. However, the system currently only reaches the stage where it can
function normally. In upcoming work, we will try to improve the accuracy of the testing
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system. Specific efforts will include reducing or eliminating the coupling between the
test target and the ground during testing, minimizing the impact of environmental noise
on the test results, and incorporating near-field-to-far-field transformation theory in data
processing. The more accurate the RCS values obtained by the testing system, the higher
the accuracy of multipath channel modeling.

Future research will focus on integrating RCS scattering characteristics with wireless
communication in both vehicular networks and UAV communication systems. With this
approach, we aim to incorporate more detailed scattering effects from vehicles and drones
into channel modeling, thereby achieving greater accuracy [32].
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