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Abstract: Infrared small target detection is a key technology with a wide range of applications,
and the complex background and low signal-to-noise ratio characteristics of infrared images can
greatly increase the difficulty and error rate of small target detection. In this paper, an uncertainty
measurement method based on local component consistency is proposed to suppress the complex
background and highlight the detection target. The method analyzes the local signal consistency
of the image. It then constructs a confidence assignment function and uses the mutation entropy
operator to measure local uncertainty. Then, the target energy information is introduced through
an energy-weighting function to further enhance the signal. Finally, the target is extracted using an
adaptive threshold segmentation algorithm. The experimental results show that the algorithm can
effectively detect small infrared targets in complex backgrounds. And, the algorithm is at the leading
edge in terms of performance; the processing frame rate can reach 3051 FPS (frame per second),
96 FPS, and 54 FPS for image data with a resolution of 256 × 256, 1920 × 1080, and 2560 × 1440,
respectively.

Keywords: infrared; small target detection; FPGA

1. Introduction
1.1. Background

Infrared small target detection identifies and tracks a few pixels that make up a
small target in infrared images. It finds use in aerospace, ocean monitoring, and disaster
warning. This technology has important application needs in aerospace, ocean monitoring,
disaster warning, and other fields. However, infrared small target detection faces significant
challenges due to its characteristics. Small targets consist of few pixels with low signal
strength, leading to a very low signal-to-noise ratio. As image distance increases, target
size and signal strength decrease further. Additionally, cluttered backgrounds with similar
characteristics make distinguishing targets difficult. To address these challenges, the
current research focuses on algorithms for complex background suppression and small
target enhancement for infrared small targets.

1.2. Related Work

Infrared small target recognition can be divided into single-frame image processing
and multi-frame image processing. Li [1] used multi-frame image processing and proposed
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a Track-Before-Detect method for target recognition through candidate extraction, object
enhancement, and trajectory tracking. Wu [2] used single-frame image processing and
proposed a target-detection algorithm based on an adaptive threshold. In general, single-
frame processing is more concise and multi-frame processing can better handle background
information. In the way of implementation, some scholars use CPU to realize infrared
small target detection. Chen [3] used high-pass filtering based on the difference of local
neighborhood gray values for background suppression and achieved target recognition
and tracking by Unscented Kalman filtering on an FPGA and DSP. Bo [4] implemented
a local contrast method inspired by the human visual system and derived kernel models
on an FPGA. Zhang [5] implemented morphological filtering and local threshold adaptive
filtering on an FPGA and ARM. In addition, some scholars adopt the way of hardware and
software cooperation to achieve target detection. Roy [6] proposed a kind of hardware and
software codesign for real-time inspection. Initial target positioning is accelerated using
the FPGA, followed by in-depth processing of the region of interest through software. In
addition to traditional image-processing algorithms, some scholars have also tried to use
neural networks and other methods to realize infrared small target recognition. Hu [7]
transforms the small-target-detection task into an image-to-image conversion problem,
using convolutional neural networks to convert infrared small targets into target maps.

1.3. Motivation and Contribution

The infrared small target and its background in the image correspond to the fluctuating
background, noise, and target signal in different regions, bringing uncertainty to the spatial
characteristics of the observed data. Due to the uncertainty of observation caused by the
spatial variation of each component, the previous work did not analyze the characteristic
uncertainty of dim target detection, which can significantly impact the detection of infrared
small targets. Moreover, the parallel processing capability and reconfigurability of the
FPGA enable it to exhibit a superior performance in infrared small target detection.

In this paper, considering the relationships between signals of different components
and between signals of the same component, we propose the Energy-weighted Local
Uncertainty Measure (ELUM) based on signal component consistency. This method is
especially suitable for the rapid detection of small single-frame infrared targets in complex
scenes on the FPGA. Single-frame image processing is mainly based on the spatial-domain
information of the image and utilizes single-image data for target recognition, while multi-
frame image processing introduces time-domain information on this basis and utilizes
multi-frame images with temporal continuity for target recognition. Multi-frame image
processing can obtain the target’s motion data with the help of spatio-temporal information
to analyze and predict its motion trajectory, and this method is more effective when the
background is more similar to the target [8]. However, when the target moves too fast
or the background is not fixed, the effect of multi-frame image processing will be greatly
affected [9]. In addition, the computational complexity of multi-frame image processing is
large, and the computational efficiency is greatly limited. Therefore, single-frame image
processing has a wider range of application scenarios. The method used in this paper
adopts single-frame image processing, which has great advantages in processing efficiency
and can better meet the efficiency and real-time needs of target recognition. The main
contributions of this paper are as follows:

1. This paper first analyzes the characteristic uncertainty of dim target detection and
emphasizes its critical importance for enhancing the performance of infrared small
target detection.

2. This paper introduces a method that constructs a local consistency structure window
to analyze the consistency of signal components within a small target’s detection space,
which is particularly effective in complex backgrounds or under low signal-to-noise
ratio conditions.

3. This paper employs a variable entropy operator to measure uncertainty in the local
region, which is essential for improving the robustness of small target detection.
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The algorithm further incorporates an energy-weighting function designed with a
Gaussian matching filter.

4. A classical adaptive threshold segmentation algorithm is used to extract the target,
demonstrating its capability to process complex backgrounds using real data.

2. Background and Basic Principle
2.1. Analysis of Imaging Characteristics for Small Targets

Photonic imaging is a complex process subject to interference from multiple factors.
The degradation and deterioration of images are inevitable at various stages of the entire
imaging system chain [10]. Specifically, this section simplifies the analysis of the full-chain
photonic imaging system, describing the process as follows: target signals are transmitted
through atmospheric radiative transfer and modulated by the optical system before reach-
ing the focal plane of the remote sensing detector. The detector then integrates and samples
these signals to obtain digital image signals [11].

In addition, the interaction between atmospheric radiation and the optical system
inevitably leads to significant degradation of the target signal. Due to the diffusion of
light energy, the optical system acts as a spatial low-pass filter during imaging, filtering
out high-frequency components of the signal while retaining the lower frequencies. The
imaging produced by the optical system is often not ideal [12,13].

The Point Spread Function (PSF) of an optical system describes how a point source’s
energy spreads on the image plane. This is often represented using functions like the Bessel
or Gaussian function, noted as PSFopt.

The principle of a PSF imaging simulation involves convolving the original two-
dimensional light-distribution image with the optical system’s PSF to obtain the correspond-
ing 2D light distribution of the optical simulation image. The mathematical expression for
this operation is

I(x, y) = O(x, y)× PSFopt(x, y) (1)

In real-world cases, fast-moving weak and small targets show noticeable motion
relative to the detector. This motion causes energy changes, leading to variations in the
target image’s diffusion through the imaging chain [14]. Figure 1 illustrates an example of
the image blur for a weak and small moving target.

Assume the radius of the blur spot of the target on the focal plane is r pixels and
the number of pixels occupied by the blur spot is N0. After t seconds of exposure, due to
relative motion, the weak and small moving target will experience motion blur, causing the
number of pixels occupied in the image to change:

dx =
v · t

ξ
(pixel ) (2)

N = N0 + 2r · dx = N0 +
2r · v · t

ξ
(3)

Here, t represents the relative displacement of the target during the exposure time,
measured in units of pixel count; N represents the number of pixels occupied by the target
under motion blur; v is the speed of motion; and ξ is the pixel size.
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Figure 1. Example diagram of image spot of weak and small moving target.

2.2. Analysis of Background Characteristics in Complex Scenes

Interference elements from various scenes reduce the visibility of targets and increase
the difficulty of detecting weak and small targets. The main challenges associated with
scenes arise from their irregularity, dynamics, and potential visual similarity to the objects
of interest. Given an optical image I of size M × N, the variance of its grayscale values
measures the severity of changes in the grayscale distribution. This variance is defined
as follows:

σ2 =
1

M × N

M

∑
i=1

N

∑
j=1

|I(i, j)− µ|2 (4)

The smoothness (R) of an image measures the smoothness and coherence of the image
background. A higher value of R indicates a smoother image. The smoothness is defined
as follows:

R = 1 − 1
1 + σ2 (5)

Entropy can effectively measure the average information content in an image. A larger
entropy value indicates a more complex image, which is more likely to contain complex
background components. In contrast, a smaller value suggests a more uniform background.
Assuming the given image has a total of Ng gray levels, and the probability of the gray
level value x appearing is px, the image entropy is defined as follows:

E = −
Ng−1

∑
x=0

px log px (6)

Additionally, an image consistency metric can be computed to measure the smoothness
of the image. A lower consistency value indicates greater complexity and irregularity in
the image. The consistency is defined as follows:

U =
N−1

∑
x=0

(px)
2 (7)

The rank of an image can represent the richness of information, redundancy, and
noise present in the image. To quantitatively perceive the complexity of an image from a
global perspective, we introduce a method based on the rank-deficiency ratio of the image
matrix. For image data I of dimensions M × N, the Rank-Deficiency Rate (RDR) is defined
as follows:

RDR =
#(Q > thro)
min(M, N)

(8)

Here, Q represents the singular values of matrix I and thro denotes the tolerance value
for determining the rank of the matrix. #(Q > thro) represents the count of singular values
in matrix I that are greater than thro. The RDR quantifies the complexity of the image
on a global scale. However, the inherent difficulties in searching for or extracting objects
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of interest from the image background are influenced by many local factors [15]. Local
edges, contours, and other texture information in images significantly affect target-detection
results. Therefore, it is necessary to consider multiple descriptive factors when qualitatively
and quantitatively analyzing image complexity [16]. Utilizing research on image complexity
analysis, the Gray-Level Co-occurrence Matrix (GLCM) can provide texture features and
multi-dimensional parameters that describe scene complexity. However, these feature
parameters may overlap and be redundant. In this study, four easily calculable and less
correlated texture parameters—energy, contrast, Inverse Difference Moment (IDM), and
correlation—are selected to assess the complexity of local scenes.

Considering an M × N scene I with Ng gray levels, let (i1, j1) and (i2, j2) be two pixels
in scene I, where they are located at a distance d along direction θ. The GLCM of the scene
is calculated as follows:

P(x, y, d, θ) = #{(i1, j1), (i2, j2) ∈ M × N|I(i1, j1) = x, I(i2, j2) = y
}

(9)

The Angular Second Moment (ASM) is used to describe the uniformity of the back-
ground distribution. A lower ASM value indicates that the elements are concentrated
near the diagonal of the GLCM, suggesting a more uniform gray-level distribution and
finer texture. Conversely, a higher ASM value indicates an uneven gray-level distribution,
implying a coarser texture:

ASM =
Ng−1

∑
x=0

Ng−1

∑
y=0

P(x, y, d, θ)2 (10)

Contrast (CON) is a statistical measure that describes the variation or roughness of
texture and reflects the clarity of the image texture. In our application, the clearer the
texture details and the more pronounced the contrast differences, the more likely they are
to cause significant interference with target recognition:

CON =
Ng−1

∑
x=0

Ng−1

∑
y=0

(x − y)2P(x, y, d, θ) (11)

Correlation (COR) is used to measure the similarity of the GLCM elements in either
the row or column directions. When rows or columns are similar, the COR value is higher,
indicating lower background complexity:

COR =
Ng−1

∑
x=0

Ng−1

∑
y=0

(x − µ1)(y − µ2)

δ1δ2
(12)

Here, µ1 and µ2 represent the means of the normalized GLCM elements along the row
and column directions, respectively. δ1 and δ2 denote their variances.

The IDM is a statistical feature parameter that reflects the local texture of the scene.
When the IDM value is larger, the textures in different regions of the background scene are
more uniform:

IDM =
Ng−1

∑
x=0

Ng−1

∑
y=0

P(x, y, d, θ)

1 + (x − y)2 (13)

In summary, for any scene image, eight parameters can be extracted and combined
into a background feature vector, as shown below:

BF = [RDR, R, E, U, CON, ASM, COR, IDM] (14)
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2.3. Analysis of Target-Complex Background Coupling

Background clutter and noise may interfere with the radiative diffusion of the target
energy signal, causing changes in the energy distribution, which are described here as the
result of the interaction between the target and the background. The interaction between
the target and the background is mainly reflected in the spatial and temporal changes in
energy and distribution, including changes in the energy value in the image element when
the background is occluded by the target and changes in the local area perturbation due to
the target entering different background regions [17].

The SCR used to evaluate weak targets in complex scenes is based on the difference
between the target and the background, defined as follows [18]:

SCR =
µT − µB

σB
(15)

In this equation, µT and µB refer to the average grayscale signal of the target and
background regions, respectively, and σB is the standard deviation of the grayscale signal
of the background region.

The standard evaluation of the signal-to-heterodyne ratio places the background in
the global field of view and ignores local significance [19]. Therefore, a localized signal-to-
heterodyne ratio is introduced on top of the signal-to-heterodyne ratio, which describes the
difference between the target and the background in a localized region [20]:

LSCR =
µT − µLB

σLB
(16)

In this equation, µLB refers to the average grayscale signal of the background region
within a specified range L near the target and σLB is the standard deviation of the grayscale
signal of the corresponding background region.

The Target Significant Rate (TSR) is a statistical parameter that reflects the significance
of the target in the whole scene; generally speaking, the value of the TSR is between 0
and 1, and when the TSR equals 1, it indicates that the target has the highest energy in the
whole scene:

TSR = exp(
µT − µB

max(B)− µB
− 1) (17)

In this equation, max(B) is the maximum gray value within the global background
region B.

In summary, for the optical data of any scene, the following target feature vectors
are adopted in this paper as the main quantitative metrics for target saliency assessment
as follows:

TF = [TSR, SCR, LSCR] (18)

Figure 2 shows a schematic of the signal information of a typical target in a real scenario.
The first step of target detection in a complex scene is to identify all regions of interest

in the image, including the actual target region, as well as interfering regions that are
similar to the target. These interfering regions show high feature similarity with the actual
target, which may lead to confusion when recognizing the real target. In this study, a
target-confusion-element assessment metric is proposed in anticipation of assessing the
degree of difficulty of target detection from the perspective of confusable elements [21].
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 Figure 2. Typical target information in real-world scenarios (a–d). Note: From left to right are the
original image, the 3D grid map of the whole image, and the grid map within the local area of
the target.

The short-time Fourier transform can be used to analyze local signals with the help
of a window. The Gabor transform is a type of short-time Fourier transform, and by
introducing a Gaussian window, the spectral characteristics of a signal can be analyzed
within a specific window range. The energy distribution of a weak target consists of its
energy and morphological characteristics, and Gabor filtering in a fixed direction not only
maintains the energy structure of the target in a specific direction but also enhances the
specific frequency content in that direction while suppressing other frequency components.
Here, the use of the Gabor transform for null domain filtering allows for the enhancement
of point-like structures similar to the target while preserving significant edge and texture
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features in the image, forming a basis for evaluating potentially similar elements. The
standard 2D Gabor function is described as follows:

gσ,ω0(x, y) =
1

2πσxσy
e

1
2 (

x2

σ2
x
+

y2

σ2
y
)
ejω0(x+y) (19)

where σx and σy are the standard deviations of the Gaussian window function in the
horizontal and vertical directions, respectively, and ω0 is the spatial frequency of the
plane wave.

Considering the size of the weak target, in order to enhance the adaptability to different
sizes of targets as small as possible, the filter kernel parameters λ = 2 and θ = 0, 45◦, 90◦,
and 135◦ are chosen in this paper. The design of the filter kernel is shown in Figure 3.

Figure 3. Four-directional Gabor filter kernel.

The original image is convolved using a filter kernel to obtain a resultant map of the
features of the image in the specified direction:

Ii
gabor = I × gabor(θi) (20)

IGabor =
N

∑
i=1

Ii
gabor

N
(21)

where N = 4 is the filtering result of different angles and IGabor is the resultant map of image
features fused with filtering features of different directions based on IGabor to calculate the
evaluation index of the region similar to the target based on the potential similarity point
elements.

Firstly, the concept of a High Pixel Rate (HPR) is defined here to estimate the potential
target confusion that may be caused by the highlighted elements in the whole image by
counting the number of pixels in the image that are higher than the target signal strength:

HPR =
#(IGabor > µTgabor )

#IGabor
(22)

where #(IGabor > µTGabor ) denotes the number of pixels in the optical data with an intensity
greater than the target signal and #IGabor denotes the total number of pixels in the image.

Further, R, E, U, ASM, CON, COR, and IDM are computed from IGabor considering
texture features retained after filtering.
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In summary, for the image data of any scene, eight point-similarity-based parameters
for evaluating target confusion elements are extracted from the point of view of confusion-
prone elements and combined into the following confusion feature vectors:

CF = [ HPR, Rcf, Ecf, Ucf, CONcf, ASMcf, IDMcf, CORcf] (23)

Typical scenes were analyzed using a measure of the confounding factors contained in
the background of the image, and the results are shown in Table 1.

Table 1. Analysis results of background confusion characteristics in typical scene images.

HPR Rc f Ec f Uc f CONc f ASMc f IDMc f CORc f

(a) 0.0019 0.4677 1.4847 0.4330 0.2737 0.5653 0.4060 0.8675
(b) 3.81 × 10−6 0.7733 2.7218 0.1737 0.2856 0.8575 0.1764 0.8683
(c) 0.2610 0.8991 3.0797 0.1653 0.5424 0.8800 0.1959 0.8127
(d) 0.0652 0.9836 4.7025 0.0487 4.8836 0.8385 0.0177 0.5227

2.4. Detectability Assessment

In order to assess the detectability of the target, this section will discuss the perfor-
mance of three aspects of the target’s own feature assessment, the background’s own feature
assessment, and the background element confusion assessment in a comprehensive manner
and study the quantitative assessment techniques of the detectability of the weak target.

The contrast between the target and background directly affects the performance of
the detection algorithm. In order to improve the tracker’s ability to recognize targets in the
local background region, a number of methods have been proposed to assess the degree of
fluctuation of the augmented response map and the confidence level of the detected targets.
The Target Saliency Degree (TSD) is used to measure the difficulty of recognizing targets in
local and global background regions and is defined as follows:

TSD = TSR × SCR × LSCR (24)

TSD =
1

1 + TSD
(25)

where SCR and LSCR are the results after normalization by the Norm function. The Norm
function maps the values of x to between 0 and 1, and the distribution density of the values
can be adjusted by the tuning parameter k [22]. The selection of k affects the smoothness
and the trend of the values of x, and it can be applied to contrast enhancement and feature
scaling in image processing:

Norm(x, k) =
x

x + k
(26)

The value of k can be determined with reference to actual SCR and LSCR usage
experience; k is set to one for SCR and three for LSCR.

In a single-frame image, the background is the main factor affecting the target-
recognition accuracy. Complex edges and texture elements in the background can cause
significant interference in target detection and recognition. The Background Complexity
Degree (BCD) is defined as follows and combines global and local measures of background
complexity:

BCD =
RDR + R + E + CON

U + ASM + IDM + COR
(27)

where E, U, and CON are normalized using Norm(·, 1) for normalization.
In addition, beyond the characteristics of the target and the background itself, it is

necessary to evaluate the target-like elements in the background scene. In this paper, we
propose the target intra-frame confusion degree to reflect the evaluation of the intra-frame
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confusion degree caused by the similarity between the target and the global background,
and the Target Confusion Degree (TCD) is defined as follows:

TCD =
HPR + Rcf + Ecf + CONcf

Ucf + ASMcf + IDMcf + CORcf
(28)

where Ecf, Ucf, and CONcf are normalized using Norm(·, 1) for normalization.
On the basis of the above analysis, this paper integrates the three partial parame-

ters—target characteristics, background characteristics, and background element confu-
sion—to construct the feature matrix. The evaluation of the difficulty of the weak-target-
detection task is obtained, and the Target Detectability (TD) is expressed as follows:

TD =
Norm(BCD, 1) + Norm(exp(TCD), 1)

TSD
(29)

By normalizing the above equation, the difficulty of the weak-target-detection task in
a single-frame image can be calculated as follows:

TD =
tanh(8 × (Norm(TD, 1)− 0.5))

2 × tanh(4)
+ 0.5 (30)

3. Spatial Enhanced Detection Algorithm

The complex background seriously interferes with the signals of weak targets in the
airspace. It is difficult to suppress the background effectively in the detection of low signal-
to-clutter ratio targets in complex scenes, which tends to lead to false alarms, and too strong
background suppression often leads to partial loss of the target signal. In this chapter, we
examine methods to enhance the target signal while effectively suppressing the background.
Based on the coupling characteristics of dim targets and complex environments, this chapter
introduces an optical imaging mechanism into spatial-domain processing and combines the
difference between target and background characteristics in the imaging process to build a
single-frame processing method for signal enhancement and the background suppression
of low signal-to-clutter ratio targets in complex scenes [23]. Inspired by the observation
uncertainty caused by the spatial component changes in different elements in a space, this
section proposes a Local Uncertainty Measurement based on the principle of component
consistency to suppress complex scenes and detect small targets in complex backgrounds.
On the basis of suppressing background clutter, the target signal is better retained and
enhanced. The experimental results show that the proposed algorithm achieves a better
detection performance in complex scenarios and has an excellent real-time performance.

3.1. Energy-Weighted Local Uncertainty Measure

In the process of the ultra-long distance detection of small moving targets, due to the
interference of atmospheric conditions, noise, and other factors, as well as the limitation of
detection equipment and precision, the target information will be polluted when transmit-
ted through the signal acquisition channel. As the accuracy of the observation information
decreases gradually, it becomes more difficult to accurately identify the target position from
the detection data.

The object and its background in the image correspond to different component signals,
and the occurrence of a fluctuating background, noise, and target signals in different regions
brings uncertainty to the spatial characteristics of the observed data. Common methods use
the local entropy operator to calculate the image complexity of the local region to measure
the difference between the target and context, suppressing the cloud background. However,
it is difficult to process complex background data without considering the relationship
between different component signals and the relationship between the same component
signals. Based on the uncertainty thought driven by the spatial variation of each component,
this paper first analyzes the characteristic uncertainty of dim target detection and proposes
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a Local Uncertainty Measure (LUM) based on the principle of component consistency,
hoping to achieve dim target detection with a complex background.

The uncertainty measurement method evaluates local component consistency. This
helps distinguish the target from the background. The method is divided into two stages:
the local component uncertainty measurement and signal enhancement based on the
energy-weighting function. In order to suppress the background clutter, the component
consistency confidence is assigned by analyzing the component consistency of the local
signal, and the uncertainty in the local region is measured by the local entropy operator.
Then, the target energy information is introduced through the energy-weighting function
to further enhance the target signal. Finally, an adaptive threshold segmentation algorithm
is used to extract the target.

Figure 4 shows the detailed ELUM processing flow. Increasing the size of the com-
putational unit results in a quadratic increase in resource consumption, while excessively
small computational units struggle to capture critical image information. Consequently,
the minimum unit of the computational module is defined as 3 × 3. (1). Construction of
the three-layer nested sliding window: First, the algorithm constructs a three-layer nested
sliding window structure centered on the target-detection area. This structure expands
outward from the central window to form a 5 × 5 multi-level window, comprising the
central layer, the neighborhood layer, and the outermost environmental layer. The central
layer directly corresponds to the target area, while the neighborhood and environmental
layers are designed to capture the contextual information surrounding the target. (2). As-
sessment of local signal component consistency: The environmental layer is utilized to
evaluate the consistency of signals within the neighborhood layer. The objective of this
step is to identify signal patterns that significantly differ from background noise or other
interfering factors by comparing the signal characteristics of the various components in
the neighborhood layer. Through this evaluation, the method effectively distinguishes
target signals from surrounding environmental noise, thereby enhancing the accuracy of
subsequent processing. (3). Generation of the uncertainty distribution map: Based on the
consistency assessment results obtained from the neighborhood layer, confidence levels
regarding component consistency are assigned to each measurement point. These data
are utilized to generate an uncertainty distribution map, which illustrates the strength
of the signal consistency at each point, providing a foundation for subsequent filtering
and target-confirmation processes. (4). Gaussian template matching filtering: A 3 × 3
Gaussian template matching filter is applied within the three-layer nested window. This
step enhances the contrast between the target signal and the background by performing
local weighting and smoothing on the signal, thereby rendering the signal characteris-
tics of the target area more pronounced. The Gaussian template utilized is given by
[1/16, 2/16, 1/16; 2/16, 4/16, 2/16; 1/16, 2/16, 1/16], where each coefficient’s denomina-
tor is a power of two. This configuration of the Gaussian template facilitates effective
matched filtering while reducing computational overhead on the hardware. (5). Generation
of the energy-weighted uncertainty map: The local energy-weighting factor is calculated
based on the filtered data to produce the energy-weighted uncertainty map. This map
reflects the likelihood of the presence of targets in various regions after signal enhancement,
providing a quantitative basis for the final target detection and localization. (6). Threshold
segmentation and target detection: Finally, threshold segmentation techniques are em-
ployed to process the energy-weighted uncertainty map, allowing for the separation of
high-probability target areas. Through this stage of processing, the algorithm is capable of
accurately identifying and localizing targets within the image.
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Figure 4. Schematic diagram of the ELUM method.

3.2. Local Uncertainty Measurement

In this paper, an uncertainty measurement method based on a local-component-
consistency-evaluation assignment for target signal enhancement is proposed to help
distinguish the target from the background. The uncertainty measurement is conducted
in two steps: First, a confidence assignment function is constructed based on the results
of the local component consistency evaluation. Then, the local component uncertainty of
the image is measured according to the feature consistency of the local region of the image.
Similar to methods inspired by the human visual system, the LUM can be calculated by
sliding a window. The size of the sliding window is determined by the center window;
the optimal size of the center window should be able to wrap the target signal, with the
complete window structure being 5 × 5 in size. By adjusting the size of the center window,
one can effectively deal with different sizes and shapes of the target.

In a complex background, there are different characteristics between the target and
background and different types of backgrounds. Assume that a small window containing
only similar-image background signals is relatively stable when the following occurs:

1. When the window only covers the background signal, the local gray value is stable
and the consistency is high;

2. When the target signal is wrapped in the window, the local gray value is also relatively
stable, but the energy in the window should be significantly higher than that in the
background area;

3. When the window-wrapping target is at the interface with the background, the local
gray value has an obvious gradient and low consistency.

In this paper, a local signal’s gray consistency evaluation standard is defined, which
is used to evaluate the signal component consistency between the central region and the
surrounding eight neighborhood regions:

LCij =
G0

ij

LBij
×

G0
ij

max
(

Gk
ij

) (31)

LBij =
1
K

K

∑
k=1

Gk
ij (32)
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where LCij represents the consistency evaluation result of the pixel at coordinate (i, j) and
the signal components of the surrounding eight neighborhood regions. Gij coordinates
(i, j) as the center of the 3 × 3 area. Gk

ij corresponds to the first number k, a neighborhood
grayscale average. The value of k is eight.

The component consistency evaluation LCij shows the following results:

• If the location of the Gij region center is in high consistency with its eight neighboring
regions, then LCij ≈ 1;

• If the energy at the center of the Gij region is low, then LCij < 1;
• If the energy in the center of the Gij region is higher, LCij > 1.

In information theory, entropy is usually used to represent the uncertainty of random
variables; that is, to calculate the expected amount of information, the following equation
is used:

H(X) = − ∑
x∈X

p(x)× log p(x) (33)

where p(x) is the occurrence probability of the event x. In evidence theory, the confidence
assignment function is often used to assign p(x). Based on this, a local component un-
certainty method based on a variation entropy operator is proposed, which uses local
consistency as the confidence assignment function.

When the window is crossed over the target region, the component uncertainty in
the region is high because the local component consistency is low and the consistency
confidence assignment function is low.

The uncertainty of the component consistency of the local spatial signal can be mea-
sured by the variation entropy operator. The proposed mutation entropy operator is
expressed as follows:

Uij = −
K

∑
k=0

Mk
ij × log

(
1 −

(
Mk

ij

)2
)

(34)

where Uij is the uncertainty of the position of the pixel (i, j). Mk
ij is the component con-

sistency confidence value assigned to each block in the window structure centered on
(i, j).

The confidence assignment function can be expressed as

Mk
ij =

LCk
ij

∑
(

LCij
) (35)

In this way, the confidence of each block in the window structure is processed so that
the sum is one. The Local Uncertainty Measurement results are scaled to the same scale
to ensure that the uncertainty results measured at different sliding window positions can
be compared.

Figure 5 shows the distribution curve of the variation entropy function used in the
case of binary information sources. Compared with the information entropy curve, the
variation entropy used changes more sharply at both ends and more gently in the middle.

In a scenario based on local component consistency as a reliability distribution function,
if the estimates of local component consistency in the sample region are close, the variation
entropy function will give a lower entropy value, reflecting that the elements in the region
have a lower uncertainty. Conversely, if the estimates of local component consistency differ
significantly within the sampling region, the value of the variation entropy function is
higher, indicating significant variation and high uncertainty in the region.

The entropy operator is not sensitive to the composition difference in a small range
but shows a high sensitivity to the difference in a large range. Regions with significant
differences in local component consistency usually appear at the target’s location and
around areas with extreme changes in background edges and corners. The high sensitivity
of variation entropy means that it is able to ignore those small changes in composition and
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focus more on features with significant differences. This property can effectively suppress
background noise and improve the overall performance of the algorithm.
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Figure 5. Entropy operator curves proposed under binary information sources.

Just as the information entropy follows the maximum entropy principle, the proposed
mutation entropy operator follows the minimum entropy theorem, and the minimum value
is obtained when Mk

ij = 1/(K + 1):

Entropymin = − log

(
1 −

(
1

K + 1

)2
)

(36)

Based on the above, to suppress the background to a greater extent, the measured
component uncertainty is modified into the following form:

LUMij = Uij − Entropymin (37)

When the signal component consistency is higher in the local region, the uncertainty is
lower. The smaller the value of the variation entropy operator is, the closer the performance
of the modified uncertainty operator is to 0.

3.3. Energy-Weighting Coefficient

In the process of the uncertainty measurement, the uncertainty of the local pixel
component consistency is calculated. However, the calculation of the variation entropy
does not strengthen the energy difference between different regions. Here, background
estimation is performed by Gaussian filtering, and the residual signal is obtained.

The energy-weighting factor is designed based on local energy differences. Based
on the uncertainty graph, the energy information contained in the target is strengthened
and the target signal is improved. Considering that the weak target signal has a two-
dimensional Gaussian shape, the background signal can be smoothed by Gaussian filtering:

Igaus(i, j) =
1

∑
x=−1

1

∑
y=−1

GK(x, y)I(i + x, j + y) (38)

where I is the raw image data. Igaus is the result of the Gaussian filtering of the original
image. GK is the Gaussian template, here set as GK = [1/16, 2/16, 1/16, 2/16, 4/16, 2/16,
1/16, 2/16, 1/16].

After the Gaussian template matching convolution, the residual difference between
the original image and the Gaussian filtering image can be obtained:
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Ires(i, j) = I(i, j)− Igaus(i, j) (39)

The target center energy decreases due to the accumulation of neighboring pixel
energy, and the pixel energy increases due to the accumulation of neighboring pixel energy.
Using the same sliding window as the component consistency evaluation process, the local
energy difference in the residual image can be calculated as the signal energy weighting:

EWij = max
{

0, Ires(i, j)− Ib(i, j)
}

(40)

Ib(i, j) is the residual mean of Ires(i, j) in the surrounding eight neighborhood locations.
After calculating the LUM and the weighting factor, the ELUM can be defined as

ELUM(i, j) = EW(i, j)× LUM(i, j) (41)

4. Hardware Accelerator Design
4.1. Overall Hardware Architecture

In the hardware implementation, we used both pipeline and parallel designs. These
designs help to optimize the processing speed and resource utilization. The overall archi-
tecture is shown in Figure 6.

Figure 6. Overall hardware architecture.
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By adopting a pipeline design, we split the task into four phases so that each phase
can work independently. This allows the data to be processed in one phase while other
phases can process different data in parallel. The requirements of the algorithm in this
paper include background-suppression operations and target-enhancement operations.
This naturally provides the conditions for hardware parallel implementation. Consistent
with the algorithm, the overall hardware architecture of this paper is also divided into two
independent computing paths. The primary task of the first computation path is to generate
LUM(i, j). Its core function is to realize background suppression to reduce the interference
of background noise during target detection. At the same time, the second computation
path synchronously generates EW(i, j). Its main function is target enhancement based
on background suppression. Through parallel design, the demand for memory access
is effectively reduced, thus reducing the pressure on storage resources. In the design
proposed in this paper, the computational complexity of the first line is higher than that
of the second line. To solve this problem, we inserted a buffer after the calculation of the
second line. By temporarily storing the calculation result, the second line can wait for the
first line to complete the calculation of LUM(i, j).

In the first stage of pipeline processing, the input image is scanned. This design
realizes the filtering of different kernels through the reuse of the Imfilter module. In the
first stage, we use Imfilter_0 to achieve filtering without extra precision. Among them,
the mean filter is realized by using the mean filter kernel. At the same time, the Gaussian
filter is realized by using the Gaussian filter kernel. In the first stage, we also use the
Ordfilt2 module for filtering. The maximum filtering is implemented using the maximum
filtering kernel.

In the second stage of the pipeline, combined with the data obtained in the first
stage, we continue to scan the image. In the parallel algorithm background-suppression
circuit, this design adopts the special Consis_eval module to achieve the component
consistency measurement. This module includes the multiplication operation and the
division operation, allowing us to calculate LC(i, j). Then, we use Imfilter_1 to achieve
double-precision filtering. We use the Imfilter_1 module to filter the previous LC(i, j)
through the cumulative kernel. In the parallel algorithm of the target-enhancement line,
this design first runs the Imfilter_1 module. In the Imfilter_1 module, the results of the
Gaussian filtering obtained in the first stage are filtered again; that is, the decentralized
mean filtering. Then, the Gain_max module is designed to realize the energy-maximum
calculation. The Gain_max module includes subtraction and comparison operations to
calculate EW(i, j)

In the third stage of the pipeline, we only execute the background-suppression algo-
rithm. Firstly, the Lc_Block_div module is designed. The Lc_Block_div module is used to
compute the confidence assignment function, including the division operation. We then
import the result of the resulting confidence assignment function into the Entory_log mod-
ule. The Entory_log module is used to calculate the mutation entropy operator, including
multiplication and division and comparison and log operation, which needs to be called
the Cordic IP core. In the second stage of the pipeline, the target-enhancement algorithm
is implemented. Therefore, in the third stage, we only pass the result of the second stage
through the buffer and wait for the end of the background-suppression algorithm to ensure
the continuity of the entire pipeline processing.

In the fourth stage of the pipeline, this paper combines the background-suppression
algorithm with the target-enhancement algorithm to obtain the final output result. In this
paper, a special Mul_max module is designed to realize the combination of background
suppression and target enhancement. The Mul_max module includes multiplication and
comparison operations to calculate the final output result.
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4.2. Submodule Design
4.2.1. Filter Module

The filter modules include two kinds, which realize Gaussian filtering and maximum
value filtering, respectively.

The Imfilter_0, Imfilter_1, and Imfilter_2 modules can realize Gaussian filtering; these
three modules are designed for different levels of precision, and their internal logic structure
is basically the same, as shown in Figure 7.

 

Figure 7. Filter module design.

The Imfilter module consists of three main parts: The first part is a row and column
counter that counts the row and column pixels of the input image data and indicates the
current element position for the calculation. The second part is used to generate a 3 × 3
window, consisting of two RAM-based shift registers with the depth of the RAM being
the number of columns of the input image and the output of which is a 3 × 3-sized filter
window for calculating the value of the current element, containing nine windows of data.
The third part implements the actual filtering function and contains mainly multiplication
and addition logic, which first multiplies the input nine window data corresponding to the
values of the convolution kernel and then adds the nine multiplication results. This part
uses a pipelined design, where the result of the multiplication and the intermediate result
of the addition are saved in registers to form a three-stage pipeline. The convolution kernel
can be parameterized as required, and by configuring a specific convolution kernel, this
module can also implement mean value filtering.

The Imfilter_0 module is designed for input image data with no extra precision, and
the input data bit width is eight. The Imfilter_1 module and Imfilter_2 module are designed
for input image data with 1× fixed and 2× fixed precision, respectively, and the input data
contain extra fixed bits and 2× fixed decimal places.

The Ordfilt2 module can achieve maximum filtering; its internal structure of the row
and column counter and window generator part is the same as the Imfilter module, and
the difference is that the filtering function part of the multiply–add logic is replaced by two
levels of comparison logic to achieve the maximum filtering function.

4.2.2. Component Consistency Measurement Module

The calculation of component consistency is implemented by the Consis_eval module,
whose hardware structure is shown in Figure 8.
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Figure 8. Composition consistency calculation module design.

Calculating the component consistency requires the use of the mean filtered and
maximum filtered data of the image. Component consistency results are obtained by
dividing the image data by the mean filter data and the maximum filter data, respectively,
and then multiplying the two division results. The division and multiplication in the
module are implemented using IP cores, and the two division operations are executed in
parallel using pipeline division IP cores. The design of the module needs to pay attention
to the alignment of the elements because the division and multiplication are conducted for
the corresponding pixels.

4.2.3. Confidence Assignment Function Module

The confidence assignment function is implemented by the Lc_Block_div module,
whose inputs include the delayed component-consistent data and the result of processing
the component-consistent data by an Imfilter_1 module, where the values of the con-
volution kernel of the Imfilter_1 module are all set to one and the processed data are
actually the result of the summation of the component-consistent data. The Lc_Block_div
module mainly implements the division operation of component-consistent data with the
summation result, using the pipelined division IP core.

4.2.4. Mutation Entropy Function Module

The mutation entropy function is implemented using the Entory_log module, whose
hardware structure is shown in Figure 9.

Figure 9. Mutation entropy function module design.

The modules in red are fixed-point operations, including two multiplication operations
and one subtraction operation, while the modules in purple are floating-point operations,
including the conversion between fixed-point and floating-point data and floating-point
logarithmic operations. The multiplier is used to square the result of the confidence
assignment function, subtract the squared result from one, use the logarithmic operation,
and finally multiply it with the delayed result of the confidence assignment function. The
delay of the data is managed using a shift register in the blue section of the buffer.
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The complete mutation entropy function also requires a summation of the multiplica-
tion result, and an Imfilter_2 module is inserted after the Entory_log module to complete
the summation operation, with its convolution kernels all configured with a value of one.

4.2.5. Remaining Operational Modules

The Gain_max module is mainly used for the calculation of the energy-weighting
coefficient; the module implements the subtraction operations and comparison operations,
subtracts the image data and the Gaussian convolution data to obtain the residual data,
compares the residual data with 0, and uses the larger value as the final energy-weighting
coefficient. Since the residual data are signed numbers, it is only necessary to judge whether
the highest bit of the data is 1 to determine whether the data are greater than 0.

The Mul_max module implements the multiplication of the local uncertainty and the
energy-weighting factor to obtain the final uncertainty result with energy weighting.

5. Experimental Results and Comparison
5.1. Experimental Results

The hardware architecture needs to be calculated in the fixed-point format. In contrast,
the accuracy of the software simulation is double-precision floating point. Therefore, in
the process of hardware implementation, due to the existence of the truncation error, the
implementation result of the algorithm will be biased, which can be solved by choosing
the appropriate digit width of the fixed-point number. To address this, the precision loss
data under different fixed-point bits are analyzed first. Based on these considerations, the
relative error calculation method is designed in this paper:

error =
∑ |Resultso f tware(i, j)− Resulthardware(i, j)|

∑ |Resultso f tware(i, j)| , (Resultso f tware(i, j) > 16) (42)

Since the background of this paper pays more attention to the highlighted points (the
higher gray value), the elements with a gray value of 16 and below are not considered here.

The results are shown in Figure 10. It can be seen that with the increase in fixed, the
relative error shows a decreasing trend. After 11 digits, there is no obvious change, and the
relative error stabilizes at 0.87%.

Figure 10. Relative error with the increase in fixed. Fixed refers to the number of decimal places in a
fixed-point number.
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To further validate the robustness and practical performance of our proposed method,
this study employs a comprehensive and diverse infrared image dataset [24]. This dataset is
specifically designed for the detection and tracking of small low-altitude flying targets and
is generated through field recordings and post-processing, making it particularly suitable
for the detection of fixed-wing unmanned aerial vehicles in complex backgrounds. The data
collection encompasses a variety of environmental conditions, including sky and cluttered
backgrounds, to simulate the diverse challenges encountered in real-world scenarios. The
entire dataset consists of 22 image sequences, 30 trajectories, 16,177 frames, and 16,944
annotated target instances. Each target is associated with a clearly defined position label,
and each image sequence corresponds to a detailed annotation file. This dataset not
only provides a rich resource for the analysis of infrared target characteristics but also
holds significant value for research in small target detection and precision guidance. By
leveraging this extensive and substantial dataset, we are able to evaluate the performance of
our algorithm under varying levels of noise, atmospheric conditions, and other real-world
variables. These experimental results contribute to a more comprehensive demonstration of
the effectiveness and adaptability of our design, and they also provide a robust benchmark
for future research in related fields, as shown in Figures 11–13. Each test dataset generates
four graphs. The images include the original drawing, the MATLAB R2021a double-
calculation result, the simulation hardware calculation result (fixed = 11), and the actual
hardware simulation result.

Figure 11. Test data example 1. The targets are highlighted with red boxes.

Through extensive testing on the dataset, the algorithm implemented in this paper
demonstrates a false positive rate of only 7.69%, indicating a high level of recognition
accuracy. This algorithm is capable of reliably identifying infrared small targets across
various types of backgrounds.
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Figure 12. Test data example 2. The targets are highlighted with red boxes.

Figure 13. Test data example 3. The targets are highlighted with red boxes.

5.2. Comparison

This section presents a systematic analysis and discussion of the research findings.
First, the evaluation criteria and specific parameters employed in this study are outlined.
These metrics provide an objective basis for assessing the performance of the methodology.
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Subsequently, based on these criteria, a detailed evaluation of the ELUM framework
proposed in this paper is conducted, followed by a comprehensive comparison with
existing methods to verify its superiority. The evaluation criteria and methods used in this
study are described below.

LUT resources are defined as the configurable logic blocks within an FPGA that
implement combinational logic functions. Each LUT can perform any logic operation by
programming its inputs and outputs. LUT utilization reflects the flexibility and efficiency
of hardware design in implementing complex logic functions and serves as a critical metric
for assessing the design logic density and resource optimization. The LUT count is a key
indicator of how efficiently a design uses the FPGA’s logic capabilities and can directly
influence the overall performance and scalability of the system.

Throughput is defined as the volume of data processed or transmitted by the hardware
within a given time interval. It reflects the system’s capacity to handle large quantities of
data efficiently and serves as a critical performance metric. Throughput is a key indicator
of the system’s ability to manage data flows and its operational capacity. In this paper,
throughput is represented by the number of infrared image pixels processed per unit time,
as expressed by the following:

Throughput = Resolution × FPS (43)

We implemented the hardware design of the ELUM architecture on a Xilinx Kintex-7
series FPGA and conducted a comprehensive performance comparison with other existing
designs. Table 2 presents the implementation results of our design after placement and
routing, alongside the results of some recently proposed designs. The ELUM design is con-
figurable to accommodate input images of varying resolutions by adjusting its parameters.
Table 3 presents the processing speed of the proposed design at different input image reso-
lutions. The design was proven to achieve a resolution of 3112 × 2048 pixels at a frame rate
of 30 fps, ensuring that the system maintains a sufficient processing speed while preserving
high image quality. Given that other designs handle images with varying resolutions, we
use the previously mentioned throughput as a unified metric for comparison.

Table 2. Implementation results.

Ref Resolution FPS Throughput (Pixels/s) LUT DSP Power (mW)

[4] 320 × 240 25 1,920,000 2587
[5] 500 × 500 104.2 26,050,000 8440 54 372
[7] 256 × 256 56 3,670,016 35,573 48.7
[1] 320 × 240 204.1 15,674,880 19,401 4
[6] 640 × 480 30.3 9,308,160 24,936

[25] 760 × 576 25 10,944,000 28,848
our 256 × 256 3051 199,950,336 5301 38 292

Note that our pixel depth is 8-bit.

Table 3. Processing speed for different input image resolutions.

Resolution FPS

256 × 256 3051
1920 × 1080 96
2560 × 1440 54
3112 × 2048 30
4096 × 3112 15

Among all the FPGA implementations listed in the table, our design achieves the
highest throughput, reaching up to 199,950,336 pixels per second, which represents a
significant improvement over other hardware designs. From the perspective of logical
resources, specifically LUTs, the algorithm proposed in this paper requires only 5301 LUT6s
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for implementation, markedly fewer than all other designs except [4]. Although the
design in [4] utilizes a minimal amount of LUT resources, its throughput is limited to only
1,920,000 pixels per second. Additionally, we utilized Xilinx’s power estimation tool to
analyze the power consumption of the ELUM algorithm during operation. As shown in
Table 2, the power consumption of the algorithm proposed in this paper is notably lower
compared to other implementations with a similar performance.

6. Conclusions

In this paper, an uncertainty measurement method based on local component con-
sistency is proposed for suppressing the complex background in infrared images and
highlighting the target, thereby achieving the detection of small infrared targets. The local
component consistency can reflect the feature difference information between the target and
the background. Using the local component consistency as a confidence assignment func-
tion, the uncertainty of the image is measured using the mutation entropy function, which
is highly sensitive to a wide range of compositional differences. The proposed method
enhances the signal and suppresses background noise. The algorithm is implemented in
hardware and deployed on the FPGA to improve the processing speed. After the experi-
mental analysis, the algorithm proposed in this paper has strong detection capabilities and
a strong processing performance.

The methods in this paper can be applied to areas where target recognition is required
in complex environments. For example, in autonomous driving, tiny targets at longer
distances can be recognized to provide an early warning, thus improving safety. In addition,
the method in this paper focuses on single-frame images. By introducing time-domain
information, multi-frame images can be processed to dynamically analyze tiny targets, thus
realizing the recognition of small video targets.
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Abbreviations
The following abbreviations are used in this manuscript:

Symbol Notation
ELUM Energy-weighted Local Uncertainty Measure
LUM Local Uncertainty Measure
EWF Energy-weighting function
PSF Point Spread Function
RDR Rank-Deficiency Rate
GLCM Gray-Level Co-occurrence Matrix
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IDM Inverse Difference Moment
ASM Angular Second Moment
CON Contrast
COR Correlation
TSR Target Significant Rate
HPR High Pixel Rate
TSD Target Saliency Degree
TCD Target Confusion Degree
TD Target Detectability
BCD Background Complexity Degree
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