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Abstract: This study aims to develop a robust and efficient system to identify ties and ballasts in
motion using a variety of non-contact sensors mounted on a robotic rail cart. The sensors include
distance LiDAR sensors and inductive proximity sensors for ferrous materials to collect data while
traversing railroad tracks. Many existing tie/ballast health monitoring devices cannot be mounted on
Hyrail vehicles for in-motion inspection due to their inability to filter out unwanted targets (i.e., ties
or ballasts). The system studied here addresses that limitation by exploring several approaches based
on distance LiDAR sensors. The first approach is based on calculating the running standard deviation
of the measured distance from LiDAR sensors to tie or ballast surfaces. The second approach uses
machine learning (ML) methods that combine two primary algorithms (Logistic Regression and
Decision Tree) and three preprocessing methods (six models in total). The results indicate that the
optimal configuration for non-contact, in-motion differentiation of ties and ballasts is integrating
two distance LiDAR sensors with a Decision Tree model. This configuration provides rapid, accurate,
and robust tie/ballast differentiation. The study also facilitates further sensor and inspection research

and development in railroad track maintenance.

Keywords: automated railroad track inspection; non-contact; in motion; LiDAR; machine learning

1. Introduction

Various studies have aimed at identifying, detecting, and assessing the condition of
railroad ties and ballasts, mainly using vision systems or ground-penetrating radars [1-5].
The emphasis is often placed on how ballast and tie degradation may increase the likelihood
of a derailment [6-10]. Other studies have used alternative technologies for making such
assessments, such as the research by Zhao et al. that has developed and fabricated a
laser-speckle strain sensor to measure the transfer length of concrete ties [11].

The mentioned techniques are non-contact and have the potential to be mounted
onboard Hyrail vehicles or manned and unmanned track geometry cars for autonomous, in-
motion assessment of tracks. Their goal is to provide an early warning to track engineers for
intervention before any track fault progresses to costly maintenance issues. These studies
can be collectively classified as track health condition monitoring research. However, these
methods lack the ability to filter out unwanted targets—for example, tie inspection systems
often struggle to ignore ballasts, reducing their overall effectiveness.

The primary purpose of our study was to develop an automated method for differ-
entiating between ties and ballasts, allowing health monitoring systems to focus more
accurately on their respective targets during in-motion operations. This study was mainly
aimed at distinguishing between ties and ballasts as part of a more extensive study to
assess the early stages of track instability from tie vibrations. Obviously, to determine tie
vibrations, one needs first to differentiate them from ballasts; hence, this study serves as a
preliminary step in developing non-contact, in-motion devices for inspecting ties or even
ballasts. The purpose of this system is to serve as an auxiliary unit that enhances the perfor-
mance of other track stability inspection devices. By providing real-time, high-accuracy
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differentiation between ties and ballasts, this system helps to narrow the focus of other
inspection tools, enabling them to more effectively target specific track components.

The existing methods used to distinguish between ties and ballasts are mainly based
on ultrasonic or vision methods. For instance, Datta et al. [12] developed an in-motion
method for reconstructing the deflection profile of railroad ties by means of non-contact
ultrasonic testing. To demarcate the ties, they use a vision-based image classification
approach. Sabato and Niezrecki [13] also used Digital Image Correlation (DIC) for a similar
goal. Bojarczak et al. [5] developed an algorithm based on a deep neural network for
semantic segmentation of ties and ballasts and eventually detecting ballast unevenness.
Despite these methods” effectiveness, a few issues exist, preventing them from being
installed on standard track geometry cars. First, their effectiveness for onboard applications
is limited because they are mainly intended for stationary or quasi-static implementation.
Second, they require significant post-processing, making them unsuitable for real-time or
near-real-time measurements.

To further advance tie and ballast detection methods, this study evaluated the ap-
plication of LiDAR-based methods that can be used at speeds suitable for Hyrail vehicle
implementation. The following sections will describe the system, its setup on a robotic
track cart for technological feasibility evaluation testing, the assessment of the test results
through developing new data analysis methods, and the application of the final system.

2. Setup

The experimental evaluation evaluated various methods and hardware implementa-
tions to achieve the study’s goal of differentiation between ties and ballasts in motion. A
remote-controlled track cart, shown in Figure 1, was constructed and used to house the re-
quired sensors and electronics [14]. A rail cart was selected due to its significant advantage
over other potential solutions, such as aerial vehicles and legged robots, because of their
poor performance in railroad environments and lack of ability to be tested over extensive
distances. This rail cart can successfully replicate Hyrail vehicles and track geometry cars
that are mainly used for track inspections. It is a stable platform that allows for continuous
monitoring of track conditions as the cart moves.

Figure 1. Railway Technologies Laboratory’s remotely controlled track cart used for in-motion
differentiation of ties and ballasts.

The cart is equipped with a traction-braking system and can run on various railroad
tracks. The cart’s frame is made of 80/20 extruded aluminum, offering flexibility in
mounting multiple sensors and data acquisition units. Its flexibility allows efficient testing
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across diverse railroad environments, including branch lines and mainlines. This flexibility
is crucial for the research objectives, as the cart can easily navigate various track conditions
while ensuring that sensors maintain a stable orientation towards their targets for accurate
data collection. Additionally, it features a “kill switch” to enable emergency braking if
needed. Its tapered and flanged wheels provide a stable run up to 10 mph (~16 km/h) in
both forward and reverse directions. Furthermore, the cart is designed to fit inside the bed
of a pickup truck, facilitating easy transportation to various track locations.

3. Methodology

Various sensors, configurations, and data analysis methods were developed and
explored to achieve optimal accuracy, efficiency, and robustness, ensuring that the system
complies with railroad standards. A set of sensors that exhibit promising potential for this
study will be discussed, followed by a series of tests for selecting the most suitable sensors
and the required data analysis for tie/ballast differentiation.

3.1. Sensors

The sensors selected for the study are shown in Figure 2. They include an inductive
proximity sensor for ferrous materials, distance LiDAR sensors, temperature and humidity
sensors, and accelerometers. The inductive proximity sensor is on the far-left side of the cart,
right on top of the tie plates. Two distance LiDAR sensors point downward on the right
and left sides of the cart. Humidity, temperature, and acceleration are ancillary sensors for
possible application of the track cart in other railroad-related system developments, such
as evaluating the migration of flange grease on rails and assessing track stability through
Doppler LiDAR sensors. Because these studies are outside this paper’s scope, these sensors
will not be discussed here.

Temperature and
Humidity Sensors

Accelerometer

)
S e o o
oo el
5 Inductive Proximity Sensor

Figure 2. Sensor installation onboard the track cart used for in-motion differentiation of ties
and ballasts.

The sensor selection was based on an early evaluation of various sensors, in which
some were rejected and others selected because of their promise of yielding satisfactory
results. The sensor selection was based on availability, cost-effectiveness, ease of integration,
and effectiveness in identifying ties or ballasts. The sensors that were not selected were
infrared temperature sensors (or cameras) and time-of-flight LiDAR sensors. They were
found to be too slow for in-motion measurements, even at low speeds. Others, such as time-
of-flight acoustic sensors, radars, and surface reflectivity /intensity sensors, were proven to
provide insufficient functional resolution to capture tie and ballast patterns definitively.
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The sensors selected for further integration into the system and track evaluation were
an inductive proximity sensor for ferrous materials and distance LiDAR sensors, as will be
discussed further next.

3.1.1. Inductive Proximity Sensor for Ferrous Materials

Ties are typically connected to rails with metal fasteners like spikes and tie plates. One
way to detect ties and identify their locations is to detect tie plates and possibly spikes
using inductive proximity sensors for ferrous materials. Typically, an “inductive proximity
sensor” is equipped with a Hall effect probe, which triggers a pulse when it detects a ferrous
object in its proximity (Hall effect sensors, named for the physicist Edwin Hall, incorporate
one or more Hall elements, generating a voltage proportional to an axial component in a
magnetic field. They are commonly used in proximity sensing, positioning, speed detection,
and current sensing applications in many industrial devices). For rail applications, the
sensor can be positioned above the tie plate and spikes, and the generated pulses can be
used to identify tie locations.

3.1.2. Distance LiDAR Sensors

LiDAR, Light Detection and Ranging [15], is a remote sensing method that uses a
pulsed laser which can be triangulated to measure the distance from the target point to the
lens itself [16]. Ties and ballasts have different surface characteristics to LIDAR, with ties
featuring a smoother and ballasts having a rougher pattern. This contrast can be detected
in motion using downward-facing vertical LIDAR sensors to identify alternating tie and
ballast sections.

Two Keyence IL-600 sensors from Keyence corporation of America (Itasca, IL, USA)
were adopted for this study due to their off-the-shelf availability and cost-effectiveness.
The Keyence IL-600 is a precise distance sensor with a nominal accuracy of 50 um and a
response time of 0.33, 1.0, 2.0, or 5.0 ms. The fastest response time ensures enough spatial
resolution (up to 1.3 cm) for the sensor to record sufficient samples for each tie (about
16 samples) at speeds of up to 40 mph (~65 km/h). A higher number of samples per
tie is needed to raise the confidence in the measured data on each tie, with 3—4 samples
potentially being the minimum. The required 200-1000 mm installation range provides
sufficient standoff distance for most railroad applications.

As shown in Figure 3, two sensors, designated as “right” and “left” sensors, were
implemented in line with each other in the lateral direction to enable the collection of data
on two parts of the track. Using two sensors allows data to be gathered at two locations
on ties and ballasts, reducing the likelihood of false positives and negatives. In addition,
having two LiDAR sensors would enable us to develop more sophisticated data analysis
methods based on measurements from both sensors. This will be elaborated further in
the Analysis section. Although not part of the objectives of this study, the sensors could
possibly be used to detect track anomalies, such as sunk, tilted, or bowed ties, by comparing
their outputs with each other. For instance, a tilted or bowed tie can be identified from
the data by comparing the left and right sensor measurements. If they return different
values over a tie, this means that the tie is tilted. The same procedure can be followed for
different anomalies.
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Figure 3. Left and right LiDAR sensor installation for in-motion differentiation of ties and ballasts
and their potential application for detecting track anomalies, such as sunk, tilted, or bowed ties.

3.1.3. Tachometer

A tachometer is also employed to monitor the location and speed of the rail cart along
the track. This device facilitates the transformation from the time domain to the spatial
domain. The tachometer comprises an 18-tooth gear and a Hall effect probe. Along with
the cart’s wheel diameter of 7.5 inches, a linear resolution of 1.66 cm can be achieved, as
derived from Equation (1). The tachometer is attached to the front shaft of the cart, which
is a passive (idler) shaft. This configuration was chosen because the active (driver) shaft
is directly connected to the DC motor, causing it to experience slippage (rotation without
corresponding linear movement) more often, which could result in false information. Thus,
using the passive shaft minimizes the occurrence of erroneous readings.

. . 1 wheel diameter
Linear resolution = ——————— X T X ————— 1)
number of tooth 2

3.2. Data Acquisition Unit

A single data acquisition unit with 16 A /D channels was selected to record the nec-
essary data throughout track tests. The data were sampled at 1000 Hz. The 1000 Hz
sampling frequency was selected based on conducting a series of tests in the early stages
of the study to assess the most beneficial sampling rate. The sampling frequency pro-
vides approximately 11 samples per tie, assuming an 8-inch-wide tie (~20 cm) and a
forward speed of 40 mph (~65 km/h), representing the higher range of the intended speed
for measurements.

4. Experiments

Three groups of tests were conducted: in the laboratory, on a revenue-service track at
walking speeds, and in a simulated track environment at high speeds. These tests aimed
to thoroughly investigate the applicability and effectiveness of the proposed system. The
laboratory testing focused on evaluating the sensors’ ability to capture tie and ballast
surface figures in a controlled setting. The revenue-service track testing assessed the
system’s performance in an uncontrolled environment. Finally, high-speed testing on
the simulated track evaluated the system’s performance under high-speed conditions
resembling those of in-motion inspections. The data collected from these experiments were
used to develop robust data analysis methods for distinguishing ties and ballasts based on
sensor measurements.
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4.1. Laboratory Testing

The system was tested on a 40 ft track panel (~12 m) at the Railway Technologies
Laboratory (RTL). The robotic rail cart, equipped with all the mentioned sensors, ran over
a small section of the track with ties and ballasts to collect data. As shown in Figure 4, the
left distance LiDAR sensor was put on an unballasted section with only ties to establish
reference measurements for the ties. These measurements were used as the “ground truth”
for another sensor on the right with both ties and ballasts. In parallel with the LiDAR
sensors, an inductive proximity sensor was used to detect the ties. This sensor was used for
two purposes: first, to evaluate its applicability for differentiating between ties and ballasts;
second, to verify the accuracy of the LIDAR measurements in distinguishing between the
ties and ballasts.

Left LIDAR Inductive

proximity sensor

Unba}llasted section for the Left

Right LIDAR |

Figure 4. Laboratory evaluation of LIiDAR sensors on a 40 ft track panel for differentiating between
ties and ballasts.

The tests were intended to evaluate the system’s general capability and the applica-
bility of the sensors in tie/ballast detection at low speeds in a controlled environment.
Unless the LIDAR’s measurements are sufficiently consistent and repeatable, its success for
field measurements will be doubtful because of the uncontrolled environment common in
track measurements.

Figure 5a shows the measured distances from LiDAR sensors to their target surface
(tie, ballast, or ground) and an inductive proximity sensor. Note that the left distance
LiDAR measurement is used as the ground truth. The terms “activated” and “null” for
the inductive proximity sensor are used to indicate when the sensor is detecting a tie plate
(hence, a magnetic field is generated) and when no tie plate is detected and a magnetic
field is not generated. As shown in Figure 5a, the system accurately captured the surface
profile of the traversed track, down to its finest details. The recorded variations are highly
tangible and clear, allowing one to easily visualize the track layout. This level of precision
stands in contrast to other similar instruments mentioned before, which often suffer from
low resolution or slow sampling rates, whereas the LiDAR sensors used in this system
demonstrate superior accuracy and agility. The data in Figure 5a show irregular and
noisy measurements over ballast sections (unshaded areas) with more significant and
frequent variations. In contrast, the tie sections (orange-shaded areas) exhibit smoother
and relatively flat measurements compared to the ballast sections. The measurements
also show the surface height differences between ties and ballasts, which agree with a
visual inspection of the track. The variations observed in the inductive proximity sensor
measurements are attributed to the surface irregulates of the tie plates, as verified by
visual observations.
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Measured Distance from LiDAR Sensor to Tie/Ballast Surface for In-lab Testing
14

- Right

| —— Left

« Inductive Proximity Sensor (Activated)
* Inductive Proximity Sensor (Null)
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10

Distance (cm)

Ballast

0.0 0.5 10 15 2.0 25 3.0
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(b)

Figure 5. Laboratory system evaluation: (a) comparison between LiDAR sensor and inductive
proximity sensor measurements. Orange-shaded areas correspond to ties and unshaded areas to
ballasts; (b) response of the inductive proximity sensor to a sample tie, where gray dots indicate the
“null” regions (no Hall effect measurement) or ballasts and orange dots show the “activated” regions
(Hall effect measurement) or ties.

Figure 5a shows that the inductive proximity sensor does not detect the first half
of the second tie. The reason for this is illustrated in Figure 5b, which shows that the
first half of the left tie plate is sunk into the tie, making it out of the inductive proximity
sensor’s range. In contrast, the right tie plate is not sunk and remains in the sensor’s
measurement range; therefore, it is detected. Inductive proximity sensors tend to have a
small working range that requires putting the sensor as close as possible to the tie plate
(maximum: 15 mm), increasing the likelihood of interference with objects that may be
present on a track. Although there are inductive proximity sensors with more extensive
working ranges, their magnetic fields could get diverted to the rail, significantly increasing
the rate of false positives. At the conclusion of the laboratory tests, we deemed the
inductive proximity sensors unsuitable for revenue-service testing despite their success in
the controlled laboratory tests.

4.2. Track Testing

The track tests were performed in two different settings. First, the rail cart ran and
collected data on a branch line with a 115RE rail that is used infrequently and has somewhat
degraded tie and ballast conditions. Second, it was set on a main line with a 136RE
rail with far better tie and ballast conditions. These tests were conducted to assess the
system’s performance in recording the necessary data at higher speeds, over more extensive
distances, and in more realistic environments, including challenging conditions, such as
those encountered on branch lines, which could represent worst-case scenarios.

Figure 6 shows a sample section of the track testing for each setting. The raised and
smooth surfaces represent the ties, while the lower and more irregular surfaces are the
ballast. The highlighted sections mark the locations of the ties. As the plots indicate, the
surface tracks are well-captured by the sensors. Note that the left and right measurements
are slightly shifted to enable easier differentiation between the two. Plotting them without
the shift would place them nearly on top of each other, making it more difficult to identify
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any differences. Additionally, some data drop-ins observed during branch-line track testing
(Figure 6a) were caused by sunlight interference with the lasers. This issue was addressed
in future tests by adding shade covers to block the sunlight. As shown in Figure 6b, there
were no drop-ins during the mainline testing because the covers were installed for this
test. Additionally, the mainline testing results in Figure 6b display smoother tie surfaces
compared to the branch-line testing. For example, some cracks are visible in Figure 6a but
not in Figure 6b.

Measured Distance from LiDAR Sensor to Tie/Ballast Surface for Branch Line Testing (Green Plot Shifted)

144 _ Left Tie Ballast
£ 121 — Right
S 104 I
g ° (Ll | M ¥ MY v l| ‘
s u W bl L W
0 4 |
o 2

o1 . .

18 19 20 2N 23 24 25
Traveled Distance (m)
(a)

14 Measured Distance from LIDAR Sensor to Tie /Ballast Surface for Mainline Testing (Green Plot Shifted)

12{ — Llent Tie
'é 101 —— Right
< gl
o 8
g 6
o
o 4
a \I_’____,_-

0 Ballast

41 2 43 44 a5 46 a7

Traveled Distance (m)
(b)

Figure 6. A sample of track testing results performed on a branch track and a mainline: (a) measured
distances from LiDAR sensors to the tie/ballast surfaces on a branch track, with the left (green)
plot shifted for better visualization of the plots; (b) measured distances from LiDAR sensors to
the tie/ballast surfaces on a mainline, with the left (green) plot shifted. Like the previous plots,
orange-shaded areas are associated with the ties, and the unshaded regions are associated with
the ballasts.

It must be noted that the track tests in both settings were limited to walking speeds, in
the range of approximately 1.5 to 4.0 mph (2.4 to 6.4 km/h). The track cart was remotely
controlled by an operator who was following it. Although the cart can move at speeds of
up to 10 mph (16 km/h), the test speeds were limited to speeds the operator could walk
while safely negotiating the ties and ballasts.

4.3. High-Speed Testing

Although the earlier branch-line track testing indicates that the LIDAR system can
successfully differentiate between ties and ballasts, these runs were performed at low
speeds, usually less than 4 mph (6.4 km/h). The low speeds were due to the speed
limitation of the track cart used for the tests and the need for safe operation while following
the cart. Due to lack of access to track time and standard Hyrail vehicles, it was decided to
answer the question about how well the system can perform at higher speeds by conducting
a series of tests with a road vehicle over a simulated track consisting of alternating wood
planks and ballasts. The main concern was the adequacy of the selected sampling rate,
specifically, having sufficient data points on the surface of the ties and ballasts to adequately
identify them with low numbers of false positives and false negatives.

The simulated track on an asphalt surface outside the RTL facility and the system
installation on the rear of a Chevy Silverado pickup truck are shown in Figure 7. Figure 7a
displays the simulated track that consisted of 13 planks with the same width as an 8-inch
tie (~20 cm) and a length of 2 ft (~0.66 m). The planks were painted to resemble the tie
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surface color. The space between the planks was filled with ballast nearly 3 to 4 cm lower
than the top surface of the planks to provide a clear distinction between ties and ballasts
in the data. Figure 7b shows the left and right LIDAR sensors mounted to an aluminum
structure attached to the hitch of a Chevy Silverado pickup truck. This installation proved
to be accessible and adequate for the intended tests. This setup was chosen to ensure safe
operation while closely replicating real-world conditions during high-speed testing with
Hyrail vehicles. A road vehicle, due to its nature, introduces more stochastic vibrations com-
pared to standard Hyrail vehicles, as they have a more flexible suspension system [17,18],
presenting a worst-case scenario. However, after initial testing, it was determined that the
system effectively mitigated the impact of these unwanted vibrations, still capturing satis-
factory data. As shown in Figure 8, despite the vehicle’s vibrations, the sensors successfully
recorded the surface figure of the simulated track.

(b)

Figure 7. High-speed test setup: (a) a simulated track set up on an asphalt surface with a tie and

ballast arrangement like a railroad track; (b) distance LiDAR sensor installation on the rear of a Chevy
Silverado for the simulated high-speed tests.

Figure 8 shows a segment of the measured distances from the LiDAR sensors to
the surface of the ties and ballasts at 19 and 37 mph (30 and 59 km/h). Comparing the
measurements with the track’s setup indicates that the sensors correctly identified the
width of the ties and the gaps between them, which were filled with ballast. Beyond the
sample measurements shown in Figure 8, we performed tests at speeds ranging from 4 to
37 mph (6.4 to 59 km/h), specifically at 19, 31, and 34 mph (30, 50, and 55 km/h). Although
not included here, for brevity, the results for other speeds are similar to those shown in
Figure 8, and they similarly indicate the success of the LiDAR system in sampling the ties
and ballast sections.

Interestingly, the results in Figure 8 and other measurements indicate that the LIDAR
sensors successfully capture irregularities associated with tie and ballast surfaces, with the
ballast exhibiting more significant surface variations than the ties, as expected. Comparing
Figure 8a,b shows a notable consistency in measurements. The tie surface features in
Figure 8b closely resemble those in Figure 8a, proving the system’s repeatability. For
example, the irregular surface of the first tie, caused by a piece of tarp on top of it, was
detected in both tests. It is worth mentioning that the ballast surface has many associated
uncertainties, so data from those sections were not expected to be repeatable. For safety
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reasons, shade covers were not used to block sunlight during this series of tests, resulting in
some data drop-ins observed during high-speed testing (Figure 8). However, these drop-ins
can be neglected, as they comprise less than 1 percent of the data.

Measured Distance from LiDAR Sensor to Tie/Ballast Surface for High-speed Testing (30 km/hr)

-
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Measured Distance from LiDAR Sensor to Tie/Ballast Surface for High-speed Testing (59 km/hr)
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Figure 8. High-speed testing of LiIDAR system on a simulated railroad track: (a) 19 mph (30 km/h);
(b) 37 mph (59 km/h). The orange-shaded areas correspond to ties, while the unshaded areas
correspond to ballasts.

5. Analysis

Although the unprocessed (raw) LiDAR measurements are distinct enough to the
human eye for tie and ballast classification, an automatic differentiation method is needed
to process large datasets resulting from track measurements over extended distances. The
purpose of this section is to explore various data analytic methods that can process the
LiDAR sensor measurements, enabling accurate and efficient differentiation of ties from
ballasts in an automated manner.

First, a statistical data analysis method (i.e., moving standard deviation) is evaluated
because of its effectiveness in extracting surface variation characteristics. Next, two machine
learning (ML) methods, namely Decision Tree and Logistic Regression, are considered
to better deal with data uncertainty and ambiguity. Additionally, several preprocessing
techniques are investigated to transform the LiDAR measurements into more suitable
parameters for training the ML models. The downsides and upsides of each model are
elaborated, and the model shown finally to be the best in terms of accuracy and robustness
will be selected for analyzing the LiDAR data for tie and ballast differentiation.

5.1. Moving Standard Deviation

As noted earlier, based on visual observation of the track and the measurements,
tie surfaces are expected to have fewer variations than ballast surfaces because of their
different surface characteristics, irrespective of their height level. This approach uses
surface variance to distinguish between ties and ballasts. A moving window over discrete
data sections is used to calculate the standard deviation within each window, denoted as

“moving standard deviation” here. Equation (2) represents the standard deviation formula.

Figure 9 illustrates the process of moving standard deviation. The red bracket with the size
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of ws moves along the data and calculates the standard deviation of the data within the
data points within the window (i.e., x;). X denotes the average of the data points, x;.
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Figure 9. A graphical illustration of moving standard deviation for analyzing the LiDAR sensor
measurements used for tie and ballast differentiation.

It is expected that the resulting moving standard deviation would enforce the surface
characteristics in the ties and ballasts, leading to more confidence in differentiating between
them than would be possible from the individual data points, x;. The standard deviation
over the ties is expected to be lower than over the ballasts, enabling us to identify each.

Figure 10 shows a sample plot for the mainline track testing mentioned earlier. The left
axis shows the measured distance from the LiDAR sensor to the tie and ballast surfaces. The
right axis shows the moving standard deviation for a spatial window of 4 inches (~10 cm).
A spatial window is used because the measurements are made at various speeds that would
yield differing numbers of samples on tie and ballast surfaces. Using a spatial window,
such as one over 4 inches, would enable a more direct comparison between measurements
at different speeds by relating them to a physical reference, such as one-half of the nominal
width of a tie. The moving standard deviation (the purple line) exhibits an interesting
pattern: it reaches a trough toward the center of the tie and a peak near the boundary
between the ties and ballasts. This is because the data near the center of the tie are more
consistent and have fewer variations, leading to lower standard deviations. In contrast, the
measurements at the interface between the ties and ballasts are highly varied, leading to
larger standard deviations.

Measured Distance from LiDAR Sensor to Tie/Ballast Surface for Branch Line Track Testing
and its Moving Standard Deviation (Window Size = 10 cm) - Right LiDAR

—r 4.0

Ballast ™ o

Tie 25 g
Edges /\- = ,

61 62 Ballast 63

Traveled Distance (m)

Figure 10. LiDAR system measurements for branch-line track testing at 4 mph showing measured
distances from the LiDAR sensor to tie and ballast surfaces (gray line) and the moving standard
deviation of the distances for a 4-inch spatial window (purple line). Ties are marked with orange
shading, and unshaded areas represent ballasts.
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The newly introduced parameter, moving standard deviation, is more interpretable
for computers in distinguishing ties and ballasts compared to using measured distances.
This method captures surface variations more effectively and enforces new distinct pat-
terns associated with ties and ballasts (local minimums and maximums), enabling easier
differentiation between ties and ballasts than before.

Even though this method proved to be successful in differentiating between ties and
ballast on the mainline track, it may prove inadequate for branch lines where the variation
in data is larger than in the sample data used here. Specifically, large variations in tie
surfaces, such as cracks and cuts or displaced and titled ties, can adversely affect the
accuracy of the results. Additionally, the ambiguities in correctly identifying the troughs
and peaks could lead to errors in autonomously identifying ties and ballasts. A more
capable data analysis approach is desired to address these uncertainties.

5.2. Machine Learning Approaches

Another approach for detecting and learning data patterns and better differentiating
between ties and ballasts is machine learning (ML). ML models can generally handle highly
uncertain tasks, making them well-suited for this task. Due to the high capability of ML
models in handling large datasets and automating decision-making processes, the newly
developed models are expected to address the challenges previously associated with using
the moving standard deviation. With the extensive amount of data collected through our
experiments, these models can learn complex patterns and adapt to various conditions,
improving the accuracy and reliability of tie and ballast differentiation. The desired ML
model will receive the LiDAR data as input and return a classification of tie or ballast as
output (prediction).

Like the moving standard deviation method, a moving window is used to process
the data at each location. However, unlike the moving standard deviation, which uses a
spatial window, this method defines the window size based on the number of surrounding
data points required to classify an individual point as tie or ballast. The window size is
a tunable parameter that needs to be optimized to achieve the best results. To select the
required window size for our model, we evaluated the accuracy that can be achieved for
each method for various window sizes, ranging from small to large. This task considers
two standard classification “algorithms”: Logistic Regression and Decision Tree. Through a
series of initial tests, these two algorithms were selected from a larger pool of classification
algorithms, including Support Vector Machines (S§VMs), k-Nearest Neighbors (k-NN), and
neural networks. Logistic Regression and Decision Tree were chosen because they belong
to two distinct families—linear and non-linear, respectively—and demonstrated higher
accuracy [19].

Logistic Regression uses a linear function to model the relationship between features
(i.e., inputs) and a binary outcome. It then applies a sigmoid function to convert this linear
output into a 0 or 1 probability, indicating the likelihood of belonging to a specific class [20].
A “0” probability suggests a high likelihood of ballast, and “1” indicates a tie. Equation (3)
shows the formula associated with Logistic Regression, where by + by x is the linear function
for separating the classes (i.e., ties and ballasts). by and b; are the parameters that will be
learned through the training process.

1
1+ e (botbix)

p 3)

In contrast, as Breiman et al. (1984) described, the Decision Tree creates a tree-like
structure, where each internal node splits the data based on a chosen feature value. This
process continues recursively until the data at each leaf node belong predominantly to a
single class [21].

These algorithms differ in their interpretability. Logistic Regression provides a single
equation representing the entire model, making it relatively straightforward to understand
the pattern of each input. On the other hand, a Decision Tree offers a series of branching
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rules that often provide a more intuitive understanding of how decisions are made, as the
tree visually represents the decision process.

Both Logistic Regression and Decision Tree are supervised learning algorithms, mean-
ing they require training with input data and their respective output labels. In other words,
the models need ground-truth labeled data to learn the patterns associated with each label
(tie or ballast) and effectively differentiate ties from ballasts. Once trained, these models
can predict future unseen data. A small portion of each dataset (approximately 20 percent)
is manually labeled as either tie or ballast (i.e., 1 or 0) to construct a ground-truth “labeled
dataset” to facilitate this. A portion of the labeled dataset (approximately 60 percent), called
here the “training dataset”, is used to train the models. The performance of these trained
models is then evaluated using the remaining 40 percent of the labeled dataset, referred to
as the “test dataset”. Various train-test splits, ranging from 50-50 to 90-10, were tested,
and the 6040 split was found to maximize accuracy while minimizing overfitting. Finally,
the final trained model was applied to the unlabeled dataset to identify ties and ballasts.

Initially, the measured distances from one of the LiDAR sensors (e.g., the left sensor)
to tie or ballast surfaces were used as “input” to train the ML models using both Decision
Tree and Logistic Regression algorithms. The difference between the left and right LIDAR
sensor measurements was explored as an input for training the models. Finally, to improve
the models further, the standard deviation of the difference between the left and right
measurements was also evaluated to train the models.

In summary, the measured distance from the LiDAR sensors to the tie or ballast
surfaces was considered to be the “input” for training the ML model in the first place
and then gradually upgraded to the difference between the left and right LIDAR sensors’
measurements, and then the standard deviation of the difference between the left and right
measurements was used to achieve higher accuracy and robustness. In Section 5.3, the logic
behind these models will be described further, and the most efficient and robust model will
be identified. Figure 11 illustrates how six different models were developed based on three
different inputs (i.e., preprocessing methods) and two different algorithms.

Logistic Regression H Model 1 ]
Decision Tree ]—-[ Model 2 }

{ Input 1: Distance LIDAR measurements

To improve the model

1 - Logistic Regression ]——[ Model3]
Input 2: The left and right LiDAR
measurements difference
Decision Tree ]——[ Model 4 ]
To improve the model
- 1 — Logistic Regression H Model 5 ]
Input 3: Moving standard deviation of the
left and right difference
Decision Tree H Model 6 ]

Figure 11. A schematic of six distinct models, developed and investigated to determine the best
model for processing LiDAR data to differentiate between ties and ballasts.

5.3. Application of Machine Learning to LiDAR Data

The primary objective of this section is to explore various parameter configurations to
develop the most optimal and robust model for analyzing the LiDAR sensors” measure-
ments for tie and ballast differentiation. Three essential parameters have been identified
that significantly impact the model’s performance: the algorithm, the input for training
the ML models, and the window size. As previously mentioned, the two algorithms under
consideration are Logistic Regression and Decision Tree, and the three inputs are illustrated
in Figure 11. These six models will be evaluated across different window sizes based on
their accuracy. Here, “accuracy” is assessed by Equation (4).
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Number of data points that are correctly classified by the model
Number of data points in the test data set

Accuracy = (4)

This section is divided into three subsections, each dedicated to analyzing one input.
For each input, both algorithms (Logistic Regression and Decision Tree) are considered
across a wide range of window sizes.

5.3.1. Measured Distance from LiDAR Sensors to Tie/Ballast Surfaces

First, for simplicity, we used the measured distances from LiDAR sensors to tie/ballast
surfaces for training the machine learning models for both Logistic Regression and Decision
Tree algorithms. Figure 12 shows a sample of distance LIDAR measurements from the
mainline track testing. Distinct patterns for ties (orange-shaded) and ballasts (unshaded)
are evident throughout the data, which were explored by the models.

Measured Distance from LiDAR Sensor to Tie /Ballast Surface for Mainline Testing
Used for Training the Machine Learning Models

2] —lef Tie
—— Right

Distance (cm)

0 Ballast
61 62 63 64 65 66 67
Traveled Distance (m)
Figure 12. A sample of measured distances from LiDAR sensors to tie/ballast surfaces used for
training the ML models for tie/ballast differentiation. Ties are marked with orange shading, and
unshaded areas represent ballasts. (Plots are shifted by 3 cm for clarity).

The models were assessed across various window sizes, ranging from 5 to 55 data
points. This range was determined to be sufficient after several trial-and-error iterations.
Larger window sizes would lead to higher accuracies but require more data points. There-
fore, selecting the smallest window size to achieve the necessary accuracy is advantageous.
Figure 13 shows the performance of ML models using Decision Tree/Logistic Regression
over different window sizes when trained on the measured distances from LiDAR sen-
sors to tie/ballast surfaces. As shown in Figure 13, the Decision Tree algorithm exhibits
higher accuracies than Logistic Regression. Additionally, the accuracy for both algorithms
increases with the increase in window size. Both algorithms, however, reach a plateau at
higher window sizes.

Logistic Regression Decision Tree
95 95
20 20
85 85
£ 80 ES 80
> >
3 0
el 4
5 75 5 1
2 2
4 <
70 70
65 65
60 60
55 55
10 20 30 40 0 10 20 30 40 50
Window size Window size

Figure 13. Accuracy of models from Logistic Regression and Decision Tree algorithms for various
window sizes trained on the left LIDAR’s distance measurements (distance from LiDAR sensor to
tie/ballast surfaces).

The analysis shows that the tie/ballast differentiation achieved by both algorithms
can be negatively influenced by the condition of ties (e.g., elevated, sunk, tilted, or cracked)
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or factors such as their position, elevation, and alignment. To remedy this issue, we
evaluated other approaches, such as using the difference between the left and right LIDAR
measurements to gauge the two measurements against each other and possibly make the
ML models less sensitive to tie conditions.

A model using the Decision Tree algorithm, trained on the measured distances from
the LiDAR sensors to tie/ballast surfaces with a window size of 40, was applied to an
unseen (unlabeled) section of the data. In Figure 14, the blue line represents the model’s
predictions, with 1 indicating a tie and 0 indicating ballast. At a specific location in this
dataset, two ties with cracks are present, as shown in Figure 14. The model struggles to
distinguish between ties and ballasts in these cracked sections.

The Model's Differentiation Results
Decision Tree Trained onlyeasured Distance from LiDAR Sensors to Tie/Ballast Surface

Crack \q——
—— Tie/Ballast e N 1
—— Right 12
— Left
10 M]‘ -r'\rr“f
[
g M *-Ff‘
g
& 6
(=)

128 130 132 134 136 13.8
Traveled Distance (m)

Figure 14. A sample section illustrating the model’s performance in differentiating ties and ballasts.
The blue line represents the model’s predictions, where 1 indicates a tie and 0 indicates ballast. The
model is trained on the left LIDAR’s distance measurements (distance from the LiDAR sensor to the
tie/ballast surface) using the Decision Tree algorithm with a window size of 40. Both ties (highlighted
in orange) are cracked.

5.3.2. The Difference between Left and Right LiDAR Sensor Measurements

The difference between the left and right LIDAR sensor measurements could be used
as input to train the model. This approach is expected to enhance the signal-to-noise ratio,
as ballasts typically exhibit more significant surface irregularities in lateral, longitudinal,
and vertical directions. While significant differences in surface figures between a tie’s left
and right sides (i.e., where the sensors are pointed) are not expected, the ballast sections’
left and right sides can vary considerably. Hence, by comparing—or differencing—the left
and right LIDAR measurements, more regularities in the tie sections and irregularities in
ballast sections can be enforced in the data, facilitating a more accurate distinction between
the two.

Figure 15 shows a sample section of the difference between the left and right LIDAR
sensor measurements. Comparing Figure 15 with Figure 12, it is evident that the surface
figure variation between ties (orange-shaded) and ballasts (unshaded) is now much more
pronounced here.

Figure 16 shows the performance of ML models using Decision Tree/Logistic Re-
gression over different window sizes when trained on the difference between the left and
right LIDAR sensor measurements. Figure 16 proves that ML models perform better when
trained on the difference between the left and right LIDAR sensor measurements than
before by showing a slight increase in accuracy based on the Decision Tree algorithm across
all window sizes. The improvement is attributed to the improved classification of abnormal
ties as ties. However, Logistic Regression could not learn the pattern from these data, since
it employs a simple linear classifier; hence, its results are not shown. As expected, using
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the difference between the left and right measurements as input to the models could result
in a more accurate and reliable model. A similar trend to that observed in Figure 13 can be
seen in Figure 16, where accuracy increases with larger window sizes and reaches a plateau
at higher values.

Difference Between Left and Right LiDAR Sensor Measurements
Used for Training the Machine Learning Models

'g Ballast Tie

o 4]

o -

] 2

& 4

5

b 3 -6

= -8 v v -
61 62 63 64 65 66 67

Traveled Distance (m)

Figure 15. An example of the difference between the left and right LIDAR sensor measurements used
for training the ML models for tie/ballast differentiation.

Decision Tree
95

90 1

85 4

80 4

754

Accuracy 9%,
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55

10 20 3 40 50

Window size
Figure 16. Accuracy of models from the Decision Tree algorithm for various window sizes trained on
the differences between the left and right LIDAR sensors” measurements.

5.3.3. Machine Learning on the Standard Deviation of the Difference between the Left and
Right Sensor Measurements

Although the previous method demonstrated good performance, there is potential to
achieve even higher accuracy. Another approach could be combining standard deviation
with machine learning to combine the strengths of both methods. Machine learning
excels in classification tasks by learning patterns from different classes to distinguish
them. Meanwhile, the standard deviation method reveals more precise and more distinct
patterns in a dataset. Integrating these two approaches may achieve better classification
performance. The idea is to apply the “moving standard deviation” mentioned earlier to
the difference between the left and right sensor measurements.

Figure 17 shows the standard deviation of the difference between the left and right
sensor measurements from the previous subsection. The data have clear and distinct
patterns over ties (orange-shaded) and ballasts (unshaded).

Figure 18 shows the performance of ML models using Decision Tree/Logistic Regres-
sion over different window sizes when trained on the standard deviation of the difference
between the left and right sensor measurements. Figure 18 reveals that the Decision Tree
algorithm achieves accuracies comparable to those obtained using the difference between
the left and right sensors. Additionally, it performs more consistently across various win-
dow sizes, demonstrating robust performance at different speeds. This is because the
Decision Tree algorithm does not rely on the number of data points, which can vary at
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higher speeds due to a constant data acquisition rate, resulting in fewer recorded data
points. Logistic Regression, which previously performed poorly, now exhibits behavior
similar to the Decision Tree algorithm, demonstrating improved and consistent accuracy
across different window sizes.

Standard Deviation (SD) of the Difference Between the Left and Right LiDAR Sensors' Measurements

’g e Used for Training the Machine Learning Models
*:,-)' Ballas! [\‘
06
§w\74\ wﬂVﬁwW/\f“/
Y o4
3 N
.“g 02 |
g 0.0 . \V},/
) 61 62 63 64 65 66 67

Tie
Traveled Distance (m)

Figure 17. A sample standard deviation of left and right difference LIDAR measurements used in
training the ML models for tie/ballast differentiation.

Logistic Regression Decision Tree
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Figure 18. Accuracy of models from Decision Tree and Logistic Regression algorithms for various
window sizes trained on the standard deviation of the differences between the left and right LIDAR
sensors’ measurements.

Training the machine learning model using the Decision Tree algorithm on the standard
deviation of the difference between the left and right LIDAR sensor measurements yields
the highest possible accuracy, regardless of the window size. The final model, identified as
Model 6 in Figure 11, with a window size of 35, was selected for its excellent performance in
tie/ballast differentiation compared to the others. Figure 19a shows the model’s predictions
over an unseen section of the data in a blue line, with 1 indicating a tie and 0 indicating
ballast. The high accuracy and precision of the model in distinguishing ties and ballasts are
visually evident in this figure. In the entire sampled section, all the ties and ballasts are
successfully identified, and the boundaries of each are marked with high precision. The
two ties marked with black stars are the same ties shown in Figure 14. The model now
performs significantly better than the previous version.

Figure 19b presents the confusion matrix for the model, where 95.2% of the ballast
data points are classified as ballast, and 92.4% of the ties are classified as ties. The high and
closely matched percentages demonstrate the model’s effectiveness in accurately classifying
both ties and ballasts. The total accuracy of this model is approximately 93.8%. Note that
all the accuracies and percentages are calculated for the test dataset.
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The Model's Tie/Ballast Differentiation Results and Measured Distance from LiDAR Sensor to Tie/Ballast Surface
(Green Plot Shifted)

=T Ballast Traveled Distance (m)

(a)

Confusion Matrix for the Final Model (Percentage)

True
Ballast

Tie

Ballast Tie
Predicted

(b)

Figure 19. The final model’s performance: (a) The left and right LIDAR sensor measurements, along

with the model’s output, in distinguishing between the ties and ballasts over a segment of unseen
(i-e., unlabeled) data. The blue line indicates ties (marked as 1) and ballasts (marked as 0). The two
ties marked with stars are the same ties shown in Figure 14. (b) The confusion matrix shows the
percentage of ties and ballasts correctly predicted by the model.

6. Application

The final developed system is capable of accurately distinguishing ties and ballasts in
real time while mounted on moving platforms such as Hyrail vehicles and track geometry
cars. It operates at speeds of up to 40 mph (65 km/h), which aligns with the operating
speed of Class I railroads and performs successfully across various track conditions. This
system can be integrated with other track inspection technologies, including ground-
penetrating radar, infrared sensors, ultrasonic sensors, and Doppler LiDARs, to focus
on their respective targets more effectively. Many of these devices, currently limited to
stationary or quasi-stationary applications due to their inability to differentiate between
targets, can now perform in-motion analysis over extended distances with the help of this
system, facilitating railroad maintenance, reducing costs, and enhancing safety.

7. Conclusions

The goal of this research was to develop a robust, accurate, and effective method for
identifying ties and ballasts—a crucial step before implementing inspection approaches
that rely on differentiating between ties and ballasts in motion. The system studied here
uses two downward-facing distance LiDAR sensors on a moving rail cart. The LiDAR
sensors measure the differing Doppler effects caused by ties and ballasts.

Seven techniques were proposed to process the distance of the LIDAR sensors’ mea-
surements, starting with the moving standard deviation method aimed at extracting surface
figure variations of the track. Despite its simplicity, this method proved unreliable and
unsuitable for automated detection. Subsequently, two machine learning algorithms—
Logistic Regression and Decision Tree—and three preprocessing methods (inputs) were
explored to automatically differentiate between ties and ballasts. Among these six ML mod-
els, the one with the Decision Tree algorithm exhibited exceptional accuracy, robustness,
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and efficiency, even at high speeds, mainly when applied to the standard deviation of the
difference between the left and right LIDAR sensors’ measurements; furthermore, unlike
computer vision systems designed for similar purposes, this system requires significantly
fewer computational resources, making it more feasible for real-time implementation.

In conclusion, the developed system integrates two distance LiDAR sensors (left and
right) with Decision Tree algorithms applied to the standard deviation of the difference
between the sensors’ measurements, providing an effective and practical solution for non-
contact, in-motion differentiation of ties and ballasts. This system holds the potential to
be used onboard Hyrail vehicles, offering a valuable tool for differentiating between ties
and ballasts during track inspection or health monitoring, facilitating more targeted and
efficient maintenance interventions.
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