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Abstract: The emergence of bio-based carbonaceous materials for various applications has attracted
significant attention during the last few years. Here, we report a rapid, efficient, and reproducible
microwave-assisted synthesis of graphene quantum dots (GQDs) with identical features irrespective
of the nature of biomass waste investigated. The synthesized GQDs were fully characterized by
X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, transmission electron
microscopy, and dynamic light scattering. The nanoparticles displayed narrow sizes of 1–2 nm and
high solubility in polar solvents such as water and ethanol. The protocol described herein is advanta-
geous in comparison to dealing with the synthesis of GQDs from biomass waste previously reported
since our protocol is faster owing to the use of microwave heating and the avoidance of dialysis
for the purification step. Furthermore, in solution, the water-soluble particles showed excitation-
dependent photoluminescence ranging from blue to orange emission wavelengths. Interestingly, thin
films displayed white-light emission under 325 nm UV-light excitation, while aggregation-induced
quenching was usually observed, opening the way for their potential use as a phosphor in white-light-
emitting diodes.

Keywords: graphene quantum dots; biomass wastes; nanomaterials; microwave; fluorescence

1. Introduction

Carbon dots were fortuitously discovered in 2004 [1] as an unexpected fluorescent
material within arc-discharge soot. Since then, carbon dots have rapidly emerged as a
new, fascinating member of the carbon nanomaterial family alongside carbon nanotubes,
fullerenes, and graphene. To date, the term “carbon dots” has usually referred to various
nanosized materials mainly composed of carbon. These materials can be divided into two
main categories, i.e., graphene quantum dots (GQDs) and carbon nanodots (CDs) [2]. GQDs
can be described as zero-dimensional (0D) nanomaterials possessing lateral dimensions
that are larger than their height and composed of a few layers of graphene sheets bearing
functional groups at the edges. According to their graphene-like structure, GQDs usually
display intrinsic crystal lattices which can be evidenced by HR-TEM characterizations in the
range of 0.15 to 0.25 nm [3]. In contrast to GQDs, the core structure of CDs is quasi-spherical
nanoparticles composed of an amorphous lattice structure [4].

Graphene quantum dots have been the subject of many published investigations and
reviews [5,6], owing to their wide range of attributes, e.g., excitation-dependent photolu-
minescence [7], chemical inertness, solubility in various polar solvents, possible further
functionalization, resistance to photobleaching, biocompatibility [8], and low cost. GQDs
are nanometer-sized particles (<20 nm) consisting of a partial sp2-hybridized graphitic
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core bearing various oxygen- and nitrogen-containing functional groups, where O- and
N- atoms are involved in the formation of carbonyl, hydroxyl, epoxy, and amine moieties,
mostly located at the edges. The presence of these functionalities allows GQDs to be highly
soluble in many organic solvents, thus making their processability much easier than that of
most other carbon-based materials [9,10].

Since their discovery, it has been demonstrated that GQDs have valuable applications
in many domains ranging from anti-counterfeiting [11], photocatalysis [12,13], batteries [14],
supercapacitors [15–17], solar cells [18–20], LEDs [21,22], sensors [23,24], bioimaging [25],
and as drug carriers [26]. Graphene quantum dots can be synthesized either by bottom-up
or top-down approaches [27,28]. Bottom-up synthetic strategies relate to physical or chemi-
cal treatments of small organic molecules to promote their graphitization. In comparison,
top-down approaches refer to the miniaturization of large carbon-based materials (graphite,
graphene oxide, carbon nanotubes, or fullerenes) by either hydrothermal or solvothermal
cutting [29], microwave-assisted exfoliation [30], electrochemical methods [31], or oxida-
tion [32]. Alternatively, GQDs can be synthesized from biomass-originating raw materials
such as biochar [33] or rice husks [34], thus limiting the overall process cost. Nevertheless,
typically, the majority of techniques used to prepare GQDs are limited to laboratory-sized
operations with long reaction times, the use of high pressure and high temperature, and
expensive materials. Also, ultracentrifugation and/or dialysis remain the main techniques
to purify GQDs, while being limited to small quantities. While graphene quantum dots
are already commercially available from some suppliers around the world, nowadays,
only a few dozen milligrams can be accessed at a price of ca. EUR 5000/g, hampering
the development of GQD-based applications at industrial scale. High-quality GQDs have
to be synthesized through cost-effective, reproducible, and scalable processes in order to
facilitate the applications to reach industry.

Herein, we report on the synthesis and characterizations of small GQDs (≈1–2 nm)
that were prepared from various biomass wastes (orange peel, date stones, and oak acorns)
in a straightforward, rapid, and high-yielding chemical transformation performed under
fast microwave heating. The two-step procedure afforded the GQDs excellent uniformity
(in terms of size, morphology, chemical composition, and photophysical properties) irre-
spective of the different biomass waste source investigated. The water-soluble particles
showed excitation-dependent photoluminescence ranging from blue to orange emission
wavelengths in water solution. Interestingly, thin films displayed white-light emission
under UV excitation, while aggregation-induced quenching was usually observed in the
solid state.

2. Materials and Methods
2.1. Materials and Chemicals

All solvents were of reagent grade. All chemicals were used as received. Water was of
high purity characterized in terms of resistivity (typically 18.2 mΩ.cm at 25 ◦C). Nitric acid
was purchased from Merck (puriss. p.a., 65.0–67.0%). Sulfuric acid was purchased from
VWR International (95–97%).

2.2. Synthesis and Purification of GQDs

Various source materials, such as orange peel (A0), date stones (B0), and oak acorns
(C0) were first dried at 70 ◦C for 24 h, then crushed and ground. Then, GQDs were prepared
in two steps under microwave-assisted heating in a Monowave 400 device (Anton Paar)
following a procedure that has been recently reported [35,36]. Briefly, dried powder of
various non-food biomass wastes (200 mg) was suspended in conc. H2SO4 (16 mL) in a
G30 reaction tube and subjected to carbonization at 180 ◦C for 5 min. After being cooled,
the reaction medium was carefully diluted in water (200 mL) and the dark carbonized
suspension was recovered by centrifugation and subsequently dried at 70 ◦C overnight.
The yield of this step was 47% from orange peels (A1, 92 mg), 38% from date stones (B1,
76 mg), and 35% from oak acorns (C1, 70 mg). In the second step, the carbonized materials
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(50 mg) were heated with conc. HNO3 (5 mL) in a G10 reaction vessel at 150 ◦C for 5 min.
After cooling and concentration to dryness, 40% of GQDs were obtained from orange peel
(A2, 20 mg), 32% from date stones (B2, 16 mg), and 34% from oak acorns (C2, 17 mg).

2.3. Characterization

Fourier-transform infrared spectroscopy (FT-IR) was performed on a Nicolet iS5 FT-IR
Spectrometer. Elemental analyses were performed on a CHNS-O analyzer from Thermo
Scientific and results are given as average of three independent measurements.

The average particle size of CDs was measured by DLS using a VASCO KIN Particle
Size Analyzer apparatus (Cordouan Technologies, Pessac, France). All measurements
were performed on freshly prepared suspension diluted in ultrapure water, at 25 ◦C and
in triplicate. Data were analyzed using the multimodal number distribution Nano Kin®

software supplied with the instrument and expressed as mean (±SD).
UV-vis spectra were obtained with a Varian Cary® 50 UV-Vis spectrophotometer.

Fluorescence emission spectra were obtained using a FluoroMax-3 spectrofluorophotometer
(Horiba Jobin Yvon) at 298 K.

SEM images were acquired on a TESCAN VEGA 3 scanning electron microscope
equipped with a tungsten filament electron source operating at 30 kV. Samples were
prepared by depositing dry powders on conductive tapes. The conductivity of the sample
surface was further improved by a very thin conductive carbon coating to prevent charge
build-up on it prior to SEM analysis.

Transmission electron microscopy (TEM) investigations were carried out using a JEM—
ARM 200F Cold FEG TEM/STEM operating at 200 kV and equipped with a spherical
aberration (Cs) probe and image correctors (point resolution 0.12 nm in TEM mode). Grids
were prepared by placing a drop of GQD solution (200 µg/mL in water) on a carbon-coated
copper grid for four minutes. The drop was then removed by mean of a blotting paper and
the grid dried at room temperature for five minutes and at 80 ◦C for twenty minutes.

The X-ray photoelectron spectrometry (XPS) analyses were performed on a Kratos
Axis Ultra (Kratos Analytical, U.K.). The spectrometer is equipped with a monochromatic
Al Kα source (1486.6 eV). All spectra were recorded at a 90◦ take-off angle, with an analyzed
area of about 0.7 × 0.3 mm. Survey spectra were acquired with a 1.0 eV step and 160 eV
analyzer pass energy. The high-resolution regions were acquired with a 0.1 eV step (0.05 eV
for O 1 s and C 1 s) and 20 eV pass energy. A neutralizer was used to perform the recording
to compensate for the charge effects. Curves were fitted using a Gaussian/Lorentzian
(70/30) peak shape after Shirley’s background subtraction and using CasaXPS software.
The carbon C 1s was calibrated at 284.8 eV for C-C and C-H bonds.

3. Results and Discussion

In this work, GQDs were prepared by a facile two-step MW-assisted synthesis with
biomass wastes (orange peel (A0), date stones (B0), and oak acorns (C0)) as starting materi-
als. Firstly, the materials were dried, crushed, and ground to give homogeneous powders
as precursors. The microstructures of these powders were evaluated by scanning elec-
tron microscopy (SEM). Images (Figure 1a–c) demonstrate that all precursors’ powders
displayed important micro-porosity.

Within the first step, A0–C0 powders were subjected to acidic hydrothermal treatment
in monomode microwave reactors. The microwave heating method usually allows for the
setting up of green, fast, and economic processes in comparison with conventional refluxing
or solvothermal methods. Furthermore, monomode microwave reactors allowed us to set
up chemical transformations with an accurate implementation of synthetic parameters
(i.e., temperature and pressure) with high reproducibility between batches. Thus, samples
A0–C0 were heated at 180 ◦C for 5 min in conc. sulfuric acid to afford carbonaceous
products A1–C1 as dark powders. During this step, cellulose-based starting materials
A0–C0 underwent various successive chemical transformations such as depolymerization,
dehydration, and further polymerization, resulting in the formation of materials A1–C1



Appl. Sci. 2024, 14, 8807 4 of 13

with yields ranging from 35 to 47% (wt%). Their chemical composition was evaluated by
elemental analysis and FT-IR spectroscopy (Figure 2). Elemental analyses revealed that
oxygen content decreased significantly during the first step of our process, which was in
line with the dehydration process. Furthermore, sulfur atoms were included inside the
structure, even if at a low amount (1.7–2.2%).
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N1s spectra were analyzed (Figure 3b,c). The C1s spectra could be decomposed into four 
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The Fourier-transform infrared (FT-IR) spectra of products A1–C1 were highly similar
irrespective of the nature of the biomass waste and clearly showed the presence of oxygen-
containing functional groups such as carboxylic acid and hydroxyl groups. The presence
of carboxylic acid functional groups was confirmed by the presence of a broad band in
the region of 3300–2500 cm−1. In addition, C=O stretching was observed in the region of
1700 cm−1 and C-O-C stretching in the region of 1000 to 1200 cm−1. Furthermore, a strong
stretching vibration of C=C could be observed at 1574–1580 cm−1, indicating the presence
of sp2 units. We could also identify bands of small intensities at around 3000–3100 cm−1,
corresponding to C-H stretching.

The SEM images (Figure 1d–f) indicate that the shape of carbonaceous materials gener-
ated during the first step was not uniform. While A1 was composed of angular microstructures,
B1 and C1 were generally spherical. The particle sizes were a few dozen micrometers.

In the second step, carbonaceous materials A1–C1 were treated with conc. nitric
acid in microwave reactors at 150 ◦C for 5 min, after which the black carbon suspension
was completely digested to afford a clear orange solution. After purification, the final
A2–C2 GQDs were obtained as yellowish powders with yields ranging from 33 to 40%
(wt%). After purification, the prepared GQDs were then systematically characterized in
terms of chemical composition (elemental analysis and XPS), size (DLS and TEM), and
photophysical properties (absorbance and luminescence spectroscopies).

GQDs A2–C2 displayed almost the same chemical composition as that evidenced by
X-ray photoelectron spectroscopy (Figures 3a, S1a and S2a, and Table 1). From the full-
scan XPS spectrum (Figure 3a) C, N, O, and S were detected with peaks at 284.8 eV (C1s),
405.9 eV (N1s), 532.9 eV (O1s), and 167.6 eV (S2p), respectively. All GQDs displayed almost
the same spectra. To determine the C and N configurations in the A2 GQDs, C1s and
N1s spectra were analyzed (Figure 3b,c). The C1s spectra could be decomposed into four
main peaks at 284.8 eV, 286.1 eV, 287.5 eV, and 288.9 eV, attributed to sp2 C=C, C-O/C-N,
C=O, and COOH groups, respectively. The N1s spectrum could be deconvoluted into three
peaks centered at 400.4 eV, 402.1 eV, and 405.9 eV, corresponding to pyridinic/pyrrolic N,
graphitic N, and N-O, respectively. The N-O moieties could presumably be attributed to
nitro functional groups (NO2) linked to the aromatic structure, originating from nitric acid
treatment. This was in perfect agreement with previous reports [37,38]. As a matter of fact,
nitration of aromatic rings can occur during electrophilic aromatic substitutions without the
need for sulfuric acid as catalyst [39]. In addition, the O1s signal at 531.6 eV demonstrated
the presence of C=O bonds. Finally, the S2p signal at 166.9 clearly demonstrated the
presence of oxidized forms of sulfur-based functional groups, very likely sulfones and
sulfoxides [40,41]. Furthermore, the elemental molar ratio of C, N, S, and O for the three
GQD batches A2–C2 was calculated from the XPS analyses and the results are depicted
in Table 1.

Table 1. Percentage of C, N, O, and S atoms in GDQs A2 (synthesized from orange peel), B2 (synthesized
from date stones), and C2 (synthesized from oak acorns) determined by XPS measurements *.

Sample A2 Sample B2 Sample C2

C content (%) 58.1 ± 2.1 64.7 ± 2.2 65.2 ± 2.4
N content (%) 5.4 ± 0.2 4.0 ± 0.1 4.9 ± 0.2
O content (%) 34.7 ± 1.2 30.5 ± 1.0 29.6 ± 1.1
S content (%) 1.8 ± 0.1 0.8 ± 0.1 0.3 ± 0.1

* The elemental analysis results are expressed as the mean of three independent measurements ± the standard deviation.

First, the elemental content was similar in the three samples investigated in spite
of the different biomass waste sources. While the oxygen content was hardly modified
during the second step, sulfur was incorporated within the structures in the range of
0.3–1.8%. Additionally, we observed that nitrogen content increased to reach 4–5.4% atomic
content, thereby confirming the presence of nitrogen-based functional groups, very likely
nitro groups as supposed on the basis of XPS data. FT-IR spectroscopy was used to further



Appl. Sci. 2024, 14, 8807 6 of 13

characterize the nature of functional groups in A2–C2 (Figures 3d, S1b and S2b). All samples
displayed identical IR profiles with four main bands, but with some slight differences based
on respective intensities. The IR band located at 3300–3500 cm−1 could be assigned to
carboxylic acid functional groups, the intense band at 1600–1610 cm−1 was assigned to
C=C bonds as the elementary units of sp2 conjugated graphene structure, the band at
1340–1350 cm−1 was assigned to NO2 stretching, and the one at 1110 cm−1 reflected the
stretching of C-O bonds which could have originated from epoxy groups. These IR results
fully support the existence of various oxygen-based functional groups on the surface
of GQDs, which is fully consistent with XPS data. Furthermore, the identification of
the presence of various functional groups on GQDs was consistent with their excellent
solubility properties in many solvents such as water, ethanol, methanol, acetone, and
dimethylformamide. For instance, GQD solubility in water is ~2 mg.mL−1, while it is
~500 mg·mL−1 in pure ethanol.
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The size of the final graphene quantum dots was determined by DLS from aqueous
suspensions (Figures 4a and S3). The results indicated that all GQDs displayed a narrow
size distribution centered at approximately 1.6–1.7 nm. This highlights the success of our
protocol to form nanoparticles of identical size and chemical composition regardless of
the waste source investigated. Also, these observations attest to the high dispersibility of
our GQDs in solution. The high-resolution transmission electron microscopy (HR-TEM)
images (Figures 4b,c and S4) totally corroborate the observations made by DLS, depicting
individual nanoparticles of less than 2 nm.
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ing the diffraction and fringe pattern.
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ments due to strong van der Waals attractions between graphene-like sheets. Also, GQD 
TEM images show clear hexagonal honeycomb networks, as expected for graphene quan-
tum dots.[42] Also, the high-resolution TEM (HR-TEM) image (Figure 4b) exhibits crystal 
structures. Detectable lattices in the selected-area electron-diffraction (SAED, inset of Fig-
ure 4b) pattern revealed the crystalline structure of GQDs. Well-resolved lattice fringes 
with an interplanar spacing of 0.210 nm were observed, which is close to the (101) facet of 
carbon graphite.

The synthesis of graphene quantum dots from biomass wastes has emerged as a cred-
ible alternative feedstock owing to their renewable, cheap, and green characteristics, par-
ticularly in comparison with glucose and citric acid, which that have been extensively 
used as precursors for GQD synthesis [43,44]. In that context, many biomass sources such 
as rice husks [34], plant leaves [45], charcoal [46], honey [47], coffee [48], and lignin [49] 
have been used to produce GQDs. In comparison with this investigation, Table 2 depicts 
the synthetic routes, purification procedures, yields, and range of sizes reported in recent 
and relevant publications.

Table 2. Various bioprecursors used to produce GQDs and relevant information.
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(nm)
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(wt%)
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Rice husks

- Tube furnace 700 °C for 2 h
- NaOH 700 °C for 2 h
- Ultrasonication with H2SO4 and HNO3 for 

10 h
- Solvothermal heating at 200 °C for 10 h

Filtration with 0.22 µm 3–6 15 [34]

Figure 4. Size characterization of A2 GGDs (originating from orange peel) determined by (a,b) HR-TEM
and (c) DLS with analysis by number. The micrograph (a) depicts dispersed GDQs on the carbon
support. An individual graphene quantum dot of ~2 nm is depicted in (b) with inset depicting the
diffraction and fringe pattern.

It is noteworthy that nanoparticles had a tendency to aggregate when deposited on the
holey carbon-based TEM grids (Figure 4a) which is expected for planar aromatic fragments
due to strong van der Waals attractions between graphene-like sheets. Also, GQD TEM
images show clear hexagonal honeycomb networks, as expected for graphene quantum
dots [42]. Also, the high-resolution TEM (HR-TEM) image (Figure 4b) exhibits crystal
structures. Detectable lattices in the selected-area electron-diffraction (SAED, inset of
Figure 4b) pattern revealed the crystalline structure of GQDs. Well-resolved lattice fringes
with an interplanar spacing of 0.210 nm were observed, which is close to the (101) facet of
carbon graphite.

The synthesis of graphene quantum dots from biomass wastes has emerged as a
credible alternative feedstock owing to their renewable, cheap, and green characteristics,
particularly in comparison with glucose and citric acid, which that have been extensively
used as precursors for GQD synthesis [43,44]. In that context, many biomass sources such
as rice husks [34], plant leaves [45], charcoal [46], honey [47], coffee [48], and lignin [49]
have been used to produce GQDs. In comparison with this investigation, Table 2 depicts
the synthetic routes, purification procedures, yields, and range of sizes reported in recent
and relevant publications.

Among the various synthetic routes reported to produce GQDs from biomass precur-
sors, the procedure we developed is extremely rapid owing to the use of microwave heating
which allow each step to proceed in five minutes, while other procedures need some hours
to proceed. Considering the purification step, avoiding the use of dialysis is a substantial
advantage since that purification technique is expensive and very time-consuming. Also, it
is worth considering that the GQDs we produced were of smaller size than most of those
reported in the literature. Finally, the weight percentage yield was in the same range as
other reported yields.
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Table 2. Various bioprecursors used to produce GQDs and relevant information.

Precursors Synthetic Methods Purification Procedure Size Range (nm) Yield (wt%) Ref.

Rice husks

- Tube furnace 700 ◦C for 2 h
- NaOH 700 ◦C for 2 h
- Ultrasonication with H2SO4

and HNO3 for 10 h
- Solvothermal heating at

200 ◦C for 10 h

Filtration with 0.22 µm 3–6 15 [34]

Plant leaves

- Neem leaves pyrolyzed at
1000 ◦C for 5 h under Ar

- Ball-milling for 1 h
- H2SO4:HNO3 (3:1 mixture)

at 90 ◦C for 5 h

NaOH and filtration
with 0.22 µm 5–6 /* [45]

Charcoal
- H2SO4:HNO3 (3:1 mixture)

sonication for 2 h
- 100 ◦C for 24 h

Simple filtration
and drying 2–15 /* [46]

Honey
- Honey + 1-Butanol at 80 ◦C

for 1 h
- Hexadecylamine at 160 ◦C

Centrifugation 1–3 /* [47]

Coffee

- Hydrazine and
ultrasonication for 30 min

- Solvothermal heating at
200 ◦C for 10 h

Filtration with 0.22 µm,
then dialysis for 2 days 2–5 33 [48]

Lignin
- Ultrasonication for 12 h
- Solvothermal heating at

180 ◦C for 24 h
Dialysis for 2 days 2–6 21 [49]

Orange peel

- H2SO4, 180 ◦C for
5 min, microwave

- HNO3, 150 ◦C for
5 min, microwave

Evaporation 1–2 20 This work

* The yield (weight percentage) has not been given.

The optical properties of the GQDs prepared from different waste sources were further
examined in detail. The UV-vis absorption spectrum of A2 (Figure 5a) was identical to
those of B2 and C2 (Figures S5a and S6a, respectively). The light-yellow solution showed
two absorption peaks in the UV range, including a small and broad one centered at
350 nm ascribed to n − π* transitions in C=O and a peak at 200 nm which was related to
π electron transition from π to π* of C=C bonds in the aromatic domains of the graphitic
structure. Steady-state fluorescence spectroscopy was performed with diluted water so-
lutions of A2–C2 in order to get insight into the photoluminescence features of the pre-
pared nanoparticles. All samples displayed typical excitation-dependent photolumines-
cence behavior using different excitation wavelengths ranging from 300 nm to 500 nm
(Figures 5b, S5b and S6b). With the increase in the excitation wavelength, GQDs displayed
emission peaks, shifting to longer wavelengths up to 600 nm when excited at 500 nm.
Although the excitation-dependent PL mechanism is still a controversial topic [50], this
tunable emission is of great interest for applications in various domains. The origin of this
excitation-dependent photoluminescence is very likely the result of defect emission, i.e., the
recombination of an excited electron in the various surface states with holes in the valence
band [7]. Indeed, we could eliminate the quantum-confinement effect according to the
narrow size distribution of the as-prepared nanoparticles. The multi-photoluminescence
colors of the GQDs could be of high interest for multicolored bioimaging and could be
modulated through surface functionalization.
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Figure 5. Photophysical properties of water-dispersed A2 GQDs. (a) UV-vis spectrum and (b) normalized
emission spectra of GQDs recorded for progressively longer excitation wavelengths ranging from 300
to 500 nm (with a 50 nm increment).

During the course of a current research project dealing with the synthesis of new
organic materials for energy applications in solid devices, we were interested in studying
the photoluminescence of our GQDs in the solid state. Aggregation-induced luminescence
quenching of carbon-based nanomaterials (CDs and GQDs) is the main obstacle for their
application in the solid state. Indeed, solid-state fluorescence is highly desirable in nu-
merous applications such as optoelectronic devices and sensors, which generally require
photoluminescent materials emitting in the solid state. Some rare recent reports deal with
the emission of CD-based films [51–53]. We were pleased to observe (Figures 6 and S7)
that our GQDs deposited on a silicon wafer displayed a white-light emission without the
need for dilution inside a solid dispersant, as has been described in recent studies using
agarose [51], polyvinyl alcohol (PVA) [52], or silica matrix [53]. Thus, all A2–C2 GQD
samples displayed almost identical white-light emission profiles under 325 nm, with a
broad peak centered at 550 nm. It is noteworthy that the emission of our GQDs in the solid
state was completely different to the emissions observed in solution and the reason for this
is still unclear.
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4. Conclusions

In summary, we have developed a straightforward and reproducible method to pre-
pare graphene quantum dots (GQDs) from biomass waste of different natures by a two-step
microwave-assisted synthesis. Preparations were carried out at laboratory scale and could
be easily scaled-up, as we proved within our recent patent [36]. To date, we have been
delighted to observe that, in spite of the nature of the waste investigated, the resulting
GQDs displayed similar properties, regarding their chemical composition and their size
and morphology as well as their photophysical properties. DLS and TEM analyses showed
that the as-prepared GQDs were monodispersed with similar size distribution in the range
of 1–2 nm and with crystal lattices similar to those observed in graphite. In terms of
chemical composition, XPS and IR analyses allowed us to identify the presence of some
functional groups such as carboxylic acid, and hydroxyl, ether, nitro, and sulfoxide groups
that were connected to the graphene-like structure backbone. Regarding the photophysical
properties, the nanoparticles exhibited excitation-dependent photoluminescence that was
very likely the result of defect emission, i.e., the recombination of an excited electron in
the various surface states with a hole in the valence band. Interestingly, our nanoparticles
displayed a white-light-emitting feature under UV-light excitation in the solid state. This
is a noteworthy point since most CDs and organic molecules are not emissive in the solid
state due to multiple FRET occurring between close objects. Furthermore, aggregation-
induced luminescence quenching of carbon-based nanomaterials is the main obstacle for
their applications, such as in optoelectronic devices and sensors. These encouraging results,
combined with the ease of synthesis, make our cheap and easily accessible GQDs very
promising nanomaterials as a new phosphor in white-light-emitting diodes and full-color
display panels. In this direction, work is currently underway to fabricate GQD-based films
and evaluate their electroluminescence features.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app14198807/s1. Figure S1. (a) XPS survey scan of the GQDs
B2. (b) ATR-FTIR spectra of GQDs B2. Figure S2. (a) XPS survey scan of the GQDs C2. (b) ATR-FTIR
spectra of GQDs C2. Figure S3. DLS size distribution (by number) of (a) B2 and (b) C2 dispersed
GQDs water suspension at a concentration of 1mg/mL. Figure S4. HR-TEM images of the as-prepared
GQDs (a) B2 and (b) C2. Figure S5. Photophysical properties of water-dispersed GQDs B2. (a) UV-vis
spectrum and (b) normalized emission spectra of GQDs recorded for progressively longer excitation
wavelengths ranging from 300 to 500 nm (with a 50 nm increment). Figure S6. Photophysical
properties of water-dispersed GQDs C2. (a) UV-vis spectrum and (b) normalized emission spectra of
GQDs recorded for progressively longer excitation wavelengths ranging from 300 to 500 nm (with a
50 nm increment). Figure S7. White light emission obtained from GQDs films deposited on a silicon
wafer based on GQDs B2 and C2. The spectrum has been truncated at 650 nm for clarity in order to
remove the peak corresponding to the second harmonic of excitation.
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