
Citation: Hallaji, E.; Razavi-Far, R.;

Saif, M. Robust Federated Learning

for Mitigating Advanced Persistent

Threats in Cyber-Physical Systems.

Appl. Sci. 2024, 14, 8840. https://

doi.org/10.3390/app14198840

Academic Editor: Fabrizio Marozzo

Received: 30 August 2024

Revised: 25 September 2024

Accepted: 27 September 2024

Published: 1 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Robust Federated Learning for Mitigating Advanced Persistent
Threats in Cyber-Physical Systems
Ehsan Hallaji 1,* , Roozbeh Razavi-Far 1,2 and Mehrdad Saif 1

1 Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada;
roozbeh.razavi-far@unb.ca (R.R.-F.); msaif@uwindsor.ca (M.S.)

2 Faculty of Computer Science, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
* Correspondence: hallaji@uwindsor.ca

Abstract: Malware triage is essential for the security of cyber-physical systems, particularly against
Advanced Persistent Threats (APTs). Proper data for this task, however, are hard to come by, as
organizations are often reluctant to share their network data due to security concerns. To tackle this
issue, this paper presents a secure and distributed framework for the collaborative training of a global
model for APT triage without compromising privacy. Using this framework, organizations can share
knowledge of APTs without disclosing private data. Moreover, the proposed design employs robust
aggregation protocols to safeguard the global model against potential adversaries. The proposed
framework is evaluated using real-world data with 15 different APT mechanisms. To make the simu-
lations more challenging, we assume that edge nodes have partial knowledge of APTs. The obtained
results demonstrate that participants in the proposed framework can privately share their knowledge,
resulting in a robust global model that accurately detects APTs with significant improvement across
different model architectures. Under optimal conditions, the designed framework detects almost all
APT scenarios with an accuracy of over 90 percent.

Keywords: federated learning; advanced persistent threats; robust aggregation; cyber security;
malware triage

1. Introduction

The security of the network layer in cyber-physical systems (CPSs) is of paramount
importance in various domains [1–3]. While conventional Intrusion Detection Systems
(IDSs) are effective at flagging common cyber-attacks in network traffic, they often struggle
to differentiate more advanced threats that use a sequence of different attack mechanisms
to achieve malicious objectives [4,5]. This limitation prevents security experts from fully
understanding the true objectives of the attacks once they are detected.

Advanced Persistent Threats (APTs) are a prime example of these sophisticated attacks
that jeopardize network security in CPSs [4–6]. In contrast to commonly known cyber-
attacks, APTs are continuous attacks that take place over time. These targeted attacks are
designed to remain undetected in the system for the duration of the attack. Mitigating
APTs requires more complex solutions, as conventional defense mechanisms often fall
short in detecting these attacks [7]. Failure to flag APT attacks can lead to catastrophic
consequences, including financial problems and loss of information. For example, in 2009,
an APT attack named Stuxnet hacked into the Supervisory Control and Data Acquisition
(SCADA) system and Programmable Logic Controllers (PLCs) of a nuclear plant, aiming at
the physical destruction of this facility [8].

These challenges necessitate tailored solutions to eliminate APTs promptly. Many re-
search efforts are dedicated to the detection of APTs using machine learning techniques [9,10].
Detection models are the core of malware triage, distinguishing sophisticated malware
and prioritizing it over regular malware [11,12]. In this process, the characteristics of the

Appl. Sci. 2024, 14, 8840. https://doi.org/10.3390/app14198840 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14198840
https://doi.org/10.3390/app14198840
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9956-4003
https://orcid.org/0000-0002-4330-3656
https://orcid.org/0000-0002-7587-4189
https://doi.org/10.3390/app14198840
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14198840?type=check_update&version=1

Appl. Sci. 2024, 14, 8840 2 of 14

detected malware should be analyzed based on past events and the dynamics of the net-
work so that the potential impact of the attack on the system can be estimated. This enables
security teams to manage their resources and eliminate the threat more effectively. By
doing so, organizations can identify and respond to APTs promptly, which, in turn, reduces
the risk of long-term infiltration and damage [13]. In other words, utilizing this approach
facilitates streamlining the response process, allowing security teams to focus on the most
critical threats first, such as APTs, while efficiently handling less severe malware incidents.

Existing APT detection models can be categorized into anomaly detection and signature-
based detection models [7]. Signature-based models usually employ supervised learning
to distinguish between benign and malicious traffic [14,15]. Nonetheless, given the small
proportion of APT samples in network traffic, signature-based models may fail during op-
eration despite the high accuracy they exhibit during training (i.e., the accuracy paradox)
[16]. Moreover, signature-based methods may struggle to detect unknown APT samples, as
their supervised models usually recognize data distributions similar to those of their training
data [17]. Conversely, anomaly detection methods are designed to detect abnormal patterns
that may indicate an adversary in the network [10,14]. However, this approach usually creates
an excessive workload for the security team when the false alarm rate increases. As a solution,
rule mining can be used to rank the detected anomalies and assist in triaging them [10].

The similarity between the signature-based approach and the anomaly detection
approach stems from their need for large amounts of training data [7,14]. Since these
models depend on centralized data offerings, their scope of knowledge is quite limited,
and hence the effectiveness of detection is adversely affected, especially against new APTs.
Similar to other data-driven methods, building an automated system for the detection
and triage of APTs requires ample high-quality data. Nevertheless, such data are hard to
come by for several reasons. Firstly, due to the complexity and long-term nature of APTs,
simulating these attacks in a lab setting is very challenging and time-consuming. Secondly,
real-world data associated with real-world cases of APTs are very rare, as organizations
are reluctant to share their network data publicly due to security concerns. One potential
solution to this problem is using federated learning (FL), which enables collaborative
learning via parameter sharing and data decentralization [18]. Although FL can be used as
a solution for data decentralization in distributed training, its privacy and security are still
concerning, as the FL surface itself may be subjected to adversaries, as investigated in the
literature [19–21].

To address the aforementioned challenges, this paper makes the following contributions:

• To tackle the issue of data scarcity and secure knowledge sharing, we design a secure
detection framework through which different organizations can jointly train a global
model for malware triage without sharing their private data, thereby adhering to
privacy regulations.

• In addition, adaptive clipping is used to safeguard the global model against adver-
saries that may degrade detection performance.

• To ensure the detection model does not experience the accuracy paradox, the detec-
tion framework is evaluated using highly imbalanced and non-i.i.d. datasets across
different nodes.

• Experiments are conducted using public records associated with 15 APT cases to
ensure the practicality of the designed framework for real-world applications.

The remainder of this paper is organized as follows. Section 2 states the targeted
problem and briefly reviews the required background for this paper. Section 3 presents the
proposed methodology. Section 4 illustrates and analyzes the experimental results. Finally,
this paper concludes in Section 5.

2. Background

The contribution of this paper lies at the intersection of APT defense and FL. This
section briefly reviews each of these topics to clarify the connection between these fields in

Appl. Sci. 2024, 14, 8840 3 of 14

this work. Then, the data utilized for simulating a case study is introduced at the end of
this section.

2.1. Advanced Persistent Threats

The integration of physical components, a network layer, and an application layer
in modern CPSs makes them susceptible to cyber-attacks [22–24]. An APT is one of
the most concerning types of these threats [25]. These sophisticated attacks have very
specific objectives and are executed gradually, with a tendency to maintain long-term
access to the system. Moreover, the attackers operating an APT often orchestrate the
attack themselves rather than using automated tools and codes. They are skilled and
well resourced, combining several tools and techniques to carry out each step of the APT.
Furthermore, the continuous and persistent nature of APTs makes them hard to detect by
security teams, as they cannot definitively categorize an attack as an APT due to a lack of
information. Thus, the security team must promptly detect any APTs in the system so that
enough resources and manpower can be allocated to eliminate such threats.

The detection of APT attacks is often performed as part of the malware triage process,
where different adversaries are ranked based on their degree of severity to set priorities for
the security team. This data-driven process, however, is heavily reliant on the availability
of data and historical patterns associated with critical threats such as APTs [5,15]. Several
research endeavors have presented solutions for detecting APTs [14,26–28]. For instance, a
risk management approach can be used to analyze the system’s expected state [29]. Multi-
label learning has been shown to be effective at categorizing each malicious sample into
different groups to provide extended insight into the data [30]. A dynamic quarantine and
recovery scheme was designed in [6] to minimize the impact of APTs when they are present
in a system. Nonetheless, despite the scarcity of data for effectively combating APTs, there
are not many studies that address this problem. Privacy and security concerns associated
with revealing network data prevent organizations from sharing such data. This paper
tackles this issue by employing FL.

2.2. Federated Learning

FL is a machine learning paradigm that collaboratively trains a global model over
several nodes or edge devices while preserving privacy [18,31,32]. User privacy in FL
is ensured through data decentralization, as each edge device forbids access to the local
data it contains [33–35]. Instead, nodes train a model on their local data and communicate
the locally optimized parameters to an aggregator server. The aggregator receives these
updates from edge devices and aggregates them into a global model [36]. Then, the
parameters of this newly obtained model are sent to the edge devices so that they can
update their local models to reflect the latest state of the global model. As this cycle
continues, edge devices share the knowledge obtained from the data they contain and can
improve their local models based on the information gathered from other nodes through
parameter aggregation.

In the context of CPSs, FL can be used to build a global model to detect intrusions
and cyber-attacks without the need to share private data [37–39]. Each organization or
node of the network that has a local malware detection model can constantly improve its
model based on the information that other nodes have acquired from their data, without
having access to such data. However, employing FL creates an extra communication surface
between the nodes of the network. As a result, if a node in this network becomes rogue,
it can jeopardize the network through different adversaries [19,21,40–42]. This problem,
however, is addressed by employing robust aggregation principles in our network, as
explained in Section 3.

2.3. Case Study

To simulate real-world APTs in computer networks, we considered the data introduced
in [11]. These data were created based on known APTs with publicly available reports. The

Appl. Sci. 2024, 14, 8840 4 of 14

dataset contains 2086 APT samples obtained from 15 different APTs, as listed in Table 1.
A total of 9021 non-APT malware samples are also included in the data. The objective of
this case study is to distinguish between APT and non-APT attacks so that malware triage
can be performed accordingly. Table 1 indicates the population of samples associated with
each APT mechanism. To minimize latency, samples were recorded using static features
that could be extracted with minimal delay. Initially, 4000 features were extracted using the
PEFrame tool. These features consisted of optional headers, MS-DOS headers, file headers,
obfuscated string statistics, Mutex, Packer, buckets, and imported APIs. As investigated in
[12], fewer than 300 of these features carry the required information for the task at hand.
As a result, we selected 264 of the originally extracted features. Feature selection was
performed based on the importance score given by random forest, as explained in [12].

Table 1. APT mechanisms included in the dataset [11]. Class populations are indicated accordingly.

Label Class No. Samples

1 APT28 68
2 APT29 205
3 APT30 101
4 Carbanak 105
5 Desert Falcon 45
6 Hurricane Panda 315
7 Lazarus Group 58
8 Mirage 54
9 Patchwork 559
10 Sandwork 44
11 Shiqiang 31
12 Transparent Tribe 267
13 Violin Panda 23
14 Volatile Cedar 35
15 Winnti Group 176
16 Non-APT Malware 9021

3. Methodology

Figure 1 depicts the overall structure of the APT detection framework. Considering a
set of nodes using a neural network model M in the FL network, each node contains a local
dataset D = {X, Y}, where X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , ym} denote the set of
samples and labels, respectively. We assume that X ∈ Rn and Y ∈ N. Furthermore, the data
are non-i.i.d. across different nodes. In a security context, X denotes the samples recorded
from network traffic, whereas Y denotes the labels specifying the attack mechanisms with
which the recorded samples are associated.

At time step t, a model is trained at node k on Dt
k and optimizes the parameters, which

in our case are the weights of the network Wt
k = {w1, w2, . . . wl}, where l is the number of

layers. Wt
k is then communicated to the aggregation server. The server receives Wt

k for N
nodes and commences the aggregation process. As a common standard, the server can zero
out abnormally large values with a threshold T0 to eliminate the effect of potential data
poisoning attacks. Assuming that wij indicates the j-th element of wi ∈Wt

k, then ∀wij ∈Wt
k,

1 ≤ k ≤ N:

Clip(wij, T0) =

{
wij if |wij| ≤ T0

0 otherwise
(1)

Appl. Sci. 2024, 14, 8840 5 of 14

Client
Update
Client

Update

FedAvg with
Adaptive Clipping

Client
Update
Client

Update

Client
Update
Client

Update

Node N

Node 1

Node 2

Parameters

 𝑀1

𝑀2

𝑀𝑁

𝑊 𝑡+1,𝑇 𝑡+1

Aggregated parameters

Dataset N

Dataset 2

Dataset 1

Algorithm 1

Algorithm 2

Figure 1. Block diagram of the APT detection framework. Algorithms 1 and 2 are used for robust
aggregation and client updates, respectively.

If a client becomes rogue and acts maliciously, they can disrupt the global model
by communicating a set of poisoned parameters. While such attacks may vary in their
objectives, the adversarial task of a malicious client is generally to maximize the loss of the
global model as follows:

max
ξk
L(W̄t

k, ξk), (2)

where L is a loss function that returns the global model error given poisoned updates
obtained by perturbation ξk. Depending on the attack mechanism (e.g., model poisoning,
data poisoning), ξk can be applied to the local data as Dt

k + ξk or directly to the resulting
gradients as Wt

k + ξk.
The server then uses the clipped weights to aggregate the updates. Given N nodes in

the network, Federated Averaging (FedAvg) [18] is defined as follows:

FedAvg
(
{Wk}N

k=1

)
=

1
N

N

∑
k=1

Wt
k (3)

The server continuously receives Wt
k from nodes and computes Clip(Wt

k, Tt
0) to obtain the

clipped weights ∆̂t
k. ∆̂t

k is then passed as FedAvg({∆̂t
k}

N
k=1) to update the weights of the

global model W̄t+1 for the next iteration t + 1 (see line 10 in Algorithm 1).
Nonetheless, finding a fixed threshold for T0 that optimally works for all nodes and

datasets is not feasible in most cases. As a solution, one can dynamically adjust the threshold
T. We follow the adaptive clipping approach proposed in [43] and employ an adaptive
update rule. T is adjusted to find an approximate value at a specified quantile of the update
norm distribution. Assuming that γ ∈ [0, 1] is the targeted quantile, for any T, the Clip(·, ·)
function can be reformulated to the loss function J with the following definition:

J(X, T) =

{
(1− γ)(T − X) if X ≤ T
γ(X− T) otherwise

(4)

The targeted quantile is selected based on the expected risk of adversaries in the system.
Similar to most anomaly detection-based defense mechanisms in federated learning, ad-
justing this parameter involves a trade-off between security and performance. For large
values of γ, gradients are aggressively clipped, which results in highly secure aggregation.
Conversely, choosing small values of γ results in a more accurate model with a higher risk
of being compromised.

Appl. Sci. 2024, 14, 8840 6 of 14

Algorithm 1: FedAvg with Adaptive Clipping

Input: Local weights Wt
k, local thresholds Tt

k
Output: Aggregated weights W̄t+1, averaged threshold T̄t+1

1 for each time step t do
2 for each node k, 1 ≤ k ≤ N do
3 ∆t

k, Tt
k ← ClientUpdate(W̄t, T̄t)

4 end for
5 T̄t+1 = 1

N ∑N
k=1 Tt

k
6 for ∀Wt

k, 1 ≤ k ≤ N do
7 ∆̂t

k = Clip(∆t
k, T̄t+1)

8 end for
9 ∆̄t = FedAvg({∆̂t

k}
N
k=1)

10 W̄t+1 = W̄t + ηa∆̄t

11 end for

Algorithm 2: Client Update

Input: Global weights W̄t, global threshold T̄t, dataset Dt
k, learning rate η,

threshold learning rate ηT
Output: Local weights Wt

k, local threshold Tt
k

1 Wt
k ← W̄t

2 Tt
k = T̄t

3 for batch b ∈ X do
4 Wt

k ←Wt
k − η∇J(Wt

k, b)
5 end for
6 ∆t

k ←Wt
k − W̄t

7 ∆′tk ← ∆t
k ·min

(
1, Tt

k
||∆||

)
8 Calculate Tt+1

k using Tt
k, ηT , and (7)

9 return ∆′k and Tt+1
k

Aiming to find an update rule that leads to the optimal T for a specified value of γ, we
treat the above formulation as an optimization problem. To do so, the average derivative of
J for timestep t is calculated as follows:

J̄′(X, Tt) =
1
m

m

∑
i=1

{
(1− γ) if xi ≤ Tt

γ if xi > Tt

=
1
m

(
(1− γ)

m

∑
i=1

Ixi≤Tt − γ
m

∑
i=1

Ixi>Tt

)
≜

1
m

m

∑
i=1

Ixi≤Tt − γ

(5)

The update rule for estimating Tt+1 can be obtained as follows:

Tt+1 ← Tt − ηT

(
1
m

m

∑
i=1

Ixi≤Tt − γ

)
, (6)

where ηT is the learning rate used for the threshold estimation. Equation (5) enhances the
model’s performance and robustness by dynamically adapting the threshold to changes in
the update distribution.

In the obtained update rule in (6), the value of T linearly changes with a maximum of
ηT in each iteration. This can be problematic when the desired T is significantly larger or

Appl. Sci. 2024, 14, 8840 7 of 14

smaller than the current value. To address this problem, a geometric form of this update
rule is employed to speed up and improve the convergence of the function, as follows:

Tt+1 ← Tt. exp

(
−ηT

(1
m

m

∑
i=1

Ixi≤Tt − γ
))

(7)

Each node communicates both Wt
k and Tt

k to the server. FedAvg with adaptive clipping
is defined in Algorithm 1, which details the aggregation operation on the server side. Client-
side operations are defined in Algorithm 2 based on the aforementioned formulations.

4. Experimental Results

Figure 2 depicts the flow of experiments performed under centralized and decentral-
ized settings, which are described as follows:

• Centralized training: Initially, an algorithm was selected to train ten different models
on different subsets of training data. Each model was then evaluated on the test
dataset to analyze its performance in a centralized setting.

• Decentralized training: In a decentralized setting, the designed framework was used
to collaboratively train a model using ten different nodes that contained the same
training subsets. Once the training was completed, the global state of the model,
which was accessible by all nodes, was evaluated on the test dataset.

Each experiment was repeated ten times to ensure statistical reliability; consequently,
the results were averaged to report the overall performance.

Client
Update
Client

Update

APT Data

Filtered Data

Test Data

Dataset 1

Dataset 2

Dataset 10

Malware
Data

Feature
Selection

...

Split to
Train and

Test

Evaluate
Scenario 1

Evaluate
Scenario 2

Evaluate
Scenario 10

Evaluate
Global State

FedAvg with
Adaptive Clipping

Client
Update
Client

Update

Client
Update
Client

Update

Train Data

Node 10

Node 1

Node 2

Centralized Decentralized

Parameters

20%

80%

 𝑀1

𝑀2

𝑀10

𝑀1

𝑀2

𝑀10

𝑊 𝑡+1,𝑇 𝑡+1

Aggregated
parameters

Figure 2. Block diagram of the experimental flow. Centralized and decentralized experiments are
shown on the left and right sides of the diagram, respectively. The experimental dataset, consisting of
APT and non-APT samples, was divided into training and test subsets to ensure that both centralized
and decentralized experiments used the same datasets.

4.1. Experimental Settings

Three neural network models—the One-Dimensional Convolutional Neural Net-
work (1D CNN) [44], Denoising Autoencoder (DAE) [45], and Multi-Layer Perceptron
(MLP)—were used as the base learners. All models used the Adam optimizer [46]. These
techniques and the proposed FL framework were implemented in TensorFlow using Python
3.10.14 The FL framework was executed for 100 training rounds. The learning rate for
adaptive clipping was empirically set to ηT = 0.2. The parameter settings for the local
models are reported in Table 2.

Appl. Sci. 2024, 14, 8840 8 of 14

To create non-i.i.d. datasets for different nodes of the FL network, ten datasets were
considered, as shown in Table 3. All datasets contained non-APT malware along with five
other APT classes that were randomly selected, with the condition that each APT class was
included in at least one of the datasets. A test subset was created by selecting 20 percent of
the samples from each class, as shown in Figure 2. The training datasets listed in Table 3
were drawn from the remaining 80 percent.

Table 2. Parameter settings used for edge local models.

Parameter 1D CNN DAE MLP

Epochs 500 100 10
Batch size 64 256 32
No. hidden layers 2 2 1
No. neurons 64, 64 128, 256 128, 64
Learning rate 0.001 0.001 0.002
Noise factor - 0.5 -

Table 3. Scenarios used to create training datasets for each experiment. Each FL node uses only one
of these datasets.

Dataset Classes No. Samples

Dataset 1 Malware, Transparent Tribe, Winnti Group, Carbanak, Desert
Falcon, Violin Panda

7710

Dataset 2 Malware, APT29, Lazarus Group, Mirage, Sandwork, Violin Panda 7523

Dataset 3 Malware, Patchwork, Transparent Tribe, Carbanak, APT28,
Volatile Cedar

8043

Dataset 4 Malware, Carbanak, APT28, Mirage, Shiqiang, Violin Panda 7441

Dataset 5 Malware, Winnti Group, Carbanak, APT30, Volatile Cedar,
Violin Panda

7569

Dataset 6 Malware, Patchwork, Winnti Group, Lazarus Group, Mirage,
Volatile Cedar

7921

Dataset 7 Malware, Hurricane Panda, Transparent Tribe, APT29,
APT30, Shiqiang

7952

Dataset 8 Malware, Patchwork, Transparent Tribe, APT29, APT28,
Lazarus Group

8141

Dataset 9 Malware, Transparent Tribe, Winnti Group, Mirage, Shiqiang,
Violin Panda

7658

Dataset 10 Malware, Carbanak, APT30, Lazarus Group, Mirage, Desert Falcon 7506

4.2. Results

In order to study the effect of FL on constructing an accurate global model for APT
detection, we first analyzed the results for the MLP, CNN, and 1D CNN in ten different
scenarios. In each scenario, a model was trained on only one of the datasets listed in Table 3.
The trained model was then evaluated on the test subset, which contained 20 percent of the
samples from each class.

Figure 3 shows the obtained results using a heatmap for each algorithm. The datasets
used for training the model in each experiment are indicated on the vertical axis, whereas
the APT classes are specified along the horizontal axis. The color spectrum on the right side
of each box indicates the range of colors used to differentiate between smaller and larger
values. Figure 3a illustrates that the MLP was not able to detect APT classes with acceptable
accuracy when trained on a subset of data with only a few APT classes included. Given that
the majority of samples were non-APT malware, the model exhibited better performance in
detecting malware. Among the datasets used for training, datasets six to eight resulted in
better overall performance across all classes. Comparing the spectrum of colors in Figure 3b
with the other panels in this figure, it can be concluded that the 1D CNN generally outper-
formed the MLP and DAE when trained on partial data. Nevertheless, this model seemed
to exhibit poorer performance in detecting samples of the APT28 class than its competitors.

Appl. Sci. 2024, 14, 8840 9 of 14

Interestingly, the 1D CNN’s performance was more consistent across different experiments
and scenarios. On the other hand, the DAE exhibited poorer detection performance than
the MLP and 1D CNN, as the color spectrum shown in Figure 3c is generally darker than
those in Figure 3a,b. Regardless, the achieved results showed less variance than those of the
MLP. Although using a more advanced structure with more hidden layers could probably
boost the performance of the MLP, 1D CNN, and DAE, we relied on simple structures to
study the effect of using FL on boosting detection performance.

M
al
w
ar

e

C
ar

ba
na

k

H
ur

ric
an

e
Pan

da

Pat
ch

w
or

k

Tra
ns

pa
re

nt
 T

rib
e

W
in
nt

i G
ro

up

San
dw

or
k

APT29

Vio
lin

 P
an

da

Vol
at

ile
 C

ed
ar

Shi
qi
an

g

La
za

ru
s
G
ro

up

APT28

D
es

er
t F

al
co

n

APT30

M
ira

ge

(a)

Dataset 1

Dataset 2

Dataset 3

Dataset 4

Dataset 5

Dataset 6

Dataset 7

Dataset 8

Dataset 9

Dataset 10

MLP

0.67

0.85

0.52

0.9

0.77

0.68

0.7

0.53

0.86

0.73

0.71

0.51

0.8

0.78

0.78

0.69

0.52

0.79

0.66

0.88

0.87

0.8

0.5

0.92

0.77

0.81

0.74

0.79

0.62

0.72

0.67

0.79

0.78

0.74

0.91

0.55

0.61

0.53

0.95

0.66

0.84

0.68

0.71

0.78

0.64

0.61

0.76

0.69

0.58

0.72

0.54

0.61

0.64

0.65

0.76

0.58

0.5

0.8

0.7

0.9

0.9

0.8

0.9

0.67

0.66

0.54

0.89

0.57

0.8

0.56

0.57

0.7

0.58

0.78

0.72

0.78

0.58

0.6

0.67

0.53

0.8

0.68

0.78

0.58

0.75

0.66

0.56

0.87

0.74

0.81

0.56

0.73

0.79

0.8

0.76

0.8

0.59

0.71

0.59

0.69

0.76

0.8

0.59

0.73

0.52

0.76

0.65

0.75

0.6

0.43

0.19

0.24

0.35

0.21

0.37

0.39

0.17

0.24

0.45

0.37

0.42

0.17

0.28

0.49

0.4

0.43

0.1

0.46

0.34

0.32

0.27

0.45

0.43

0.2

0.4

0.4

0.37

0.37

0.39

0.27

0.28

0.33

0.3

0.31

0.36

0.42

0.42

0.42

0.2

0.19

0.46

0.3

0.45

0.22

0.2

0.33

0.48

0.24

0.25

0.29

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
al
w
ar

e

C
ar

ba
na

k

H
ur

ric
an

e
Pan

da

Pat
ch

w
or

k

Tra
ns

pa
re

nt
 T

rib
e

W
in
nt

i G
ro

up

San
dw

or
k

APT29

Vio
lin

 P
an

da

Vol
at

ile
 C

ed
ar

Shi
qi
an

g

La
za

ru
s
G
ro

up

APT28

D
es

er
t F

al
co

n

APT30

M
ira

ge

(b)

Dataset 1

Dataset 2

Dataset 3

Dataset 4

Dataset 5

Dataset 6

Dataset 7

Dataset 8

Dataset 9

Dataset 10

1D-CNN

0.89

0.75

0.91

0.87

0.66

0.64

0.71

0.76

0.72

0.69

0.73

0.83

0.9

0.8

0.75

0.91

0.71

0.88

0.72

0.79

0.63

0.79

0.69

0.83

0.77

0.94

0.87

0.75

0.92

0.68

0.77

0.81

0.7

0.88

0.87

0.93

0.77

0.93

0.86

0.6

0.7

0.9

0.87

0.68

0.65

0.82

0.69

0.6

0.7

0.87

0.62

0.7

0.8

0.85

0.6

0.61

0.82

0.89

0.79

0.58

0.84

0.86

0.77

0.92

0.82

0.63

0.66

0.8

0.87

0.74

0.73

0.65

0.94

0.7

0.59

0.65

0.92

0.72

0.87

0.65

0.66

0.62

0.77

0.85

0.65

0.61

0.68

0.8

0.92

0.67

0.59

0.72

0.95

0.72

0.84

0.85

0.63

0.7

0.81

0.83

0.67

0.89

0.77

0.7

0.78

0.65

0.63

0.66

0.62

0.92

0.65

0.73

0.78

0.66

0.79

0.82

0.87

0.83

0.68

0.6

0.81

0.77

0.78

0.86

0.81

0.74

0.79

0.88

0.8

0.86

0.88

0.74

0.88

0.77

0.72

0.76

0.89

0.78

0.73

0.87

0.72

0.83

0.92

0.69

0.92

0.65

0.69

0.7

0.89

0.94

0.69

0.87

0.94

0.15

0.36

0.28

0.23

0.39

0.35

0.13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
al
w
ar

e

C
ar

ba
na

k

H
ur

ric
an

e
Pan

da

Pat
ch

w
or

k

Tra
ns

pa
re

nt
 T

rib
e

W
in
nt

i G
ro

up

San
dw

or
k

APT29

Vio
lin

 P
an

da

Vol
at

ile
 C

ed
ar

Shi
qi
an

g

La
za

ru
s
G
ro

up

APT28

D
es

er
t F

al
co

n

APT30

M
ira

ge

(c)

Dataset 1

Dataset 2

Dataset 3

Dataset 4

Dataset 5

Dataset 6

Dataset 7

Dataset 8

Dataset 9

Dataset 10

DAE

0.7

0.62

0.75

0.72

0.58

0.62

0.7

0.74

0.62

0.63

0.65

0.63

0.63

0.65

0.63

0.65

0.52

0.63

0.64

0.63

0.87

0.6

0.71

0.78

0.66

0.61

0.54

0.6

0.68

0.56

0.61

0.57

0.64

0.64

0.64

0.62

0.6

0.67

0.53

0.65

0.67

0.62

0.51

0.65

0.55

0.6

0.68

0.51

0.67

0.62

0.62

0.63

0.62

0.66

0.66

0.65

0.45

0.41

0.3

0.41

0.31

0.32

0.43

0.41

0.3

0.3

0.32

0.41

0.32

0.33

0.41

0.43

0.34

0.33

0.33

0.42

0.32

0.32

0.41

0.4

0.33

0.31

0.33

0.41

0.33

0.31

0.4

0.42

0.31

0.31

0.43

0.48

0.36

0.39

0.49

0.36

0.31

0.46

0.32

0.37

0.47

0.48

0.34

0.31

0.41

0.32

0.31

0.41

0.44

0.31

0.3

0.31

0.46

0.32

0.37

0.47

0.35

0.3

0.44

0.31

0.33

0.49

0.45

0.4

0.34

0.3

0.44

0.32

0.35

0.44

0.44

0.35

0.42

0.36

0.48

0.41

0.32

0.42

0.3

0.33

0.43

0.4

0.31

0.3

0.36

0.43

0.32

0.36

0.45

0.42

0.33

0.32

0.33

0.44

0.32

0.35

0.44

0.42

0.35

0.34

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3. Success rates of detecting different APT classes without using FL. In each experiment, the
indicated model is trained on only one dataset and evaluated on the test subset. (a–c) show the results
of MLP, 1D-CNN, and DAE, respectively.

Appl. Sci. 2024, 14, 8840 10 of 14

By integrating the selected classifiers into the designed FL structure, different nodes
of the network can collaboratively train a global detection model to detect APT samples.
Here, the FL network used ten nodes, where each node trained a local model on only one
of the datasets listed in Table 3. Moreover, all of these nodes used a common network
structure. Figure 4 depicts the cross-entropy loss of the global model through the iterations
of the collaborative training. As nodes shared their parameters and updated their local
weights in each round, the global loss decreased on the training data. This ensured that
the global model was a perfect fit that successfully captured the APT distributions of
each node. Furthermore, the global model converged rapidly and reached the optimal
loss in fewer than 50 rounds of training. This implies the practicality of using FL in the
collaborative training of a global APT detection model in CPSs. This application is vital to
more data-sensitive CPSs, such as power systems and industrial control systems, where
sensitive operational parameters and communication protocols can be targeted by APTs.

The obtained results shown in Figure 5 indicate a significant improvement in the
detection performance of both the APT classes and malware. Regardless of the choice of
model architecture at the edge of the network, the proposed FL framework outperformed
the stand-alone models. While all three models exhibited outstanding results in detecting
the APT classes, the 1D CNN outperformed the DAE and MLP combinations with the
designed framework, as depicted in Figure 5b. The only class whose detection accuracy fell
below 90 percent was Sandwork. Nevertheless, this pattern can also be seen for both the
MLP and DAE in Figure 5a,c.

The observed improvements in the previous analysis indicate the significance of FL
application across different CPSs. To begin with, accurate APT detection can prevent signif-
icant operational disruptions in industrial control systems. Another notable application of
FL is in smart grids, which rely on distributed communication and control. These systems
are often vulnerable to malicious activities and can benefit from the timely and accurate
identification of adversaries.

5 10 15 20 25 30 35 40 45 50

Iterations

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

L
o

s
s

FL with Adaptive Clipping

FL+MLP

FL+1D-CNN

FL+DAE

Figure 4. Cross-entropy loss of training a global model using FL with adaptive clipping. Ten nodes
participate in the FL training process.

Appl. Sci. 2024, 14, 8840 11 of 14

MLP

Malware

Carbanak

Hurric
ane Panda

Patchwork

Transparent T
rib

e

Winnti G
roup

Sandwork
APT29

Violin
 Panda

Volatile
 C

edar

Shiqiang

Lazarus G
roup

APT28

Desert F
alcon

APT30

Mira
ge

(a)

0

0.2

0.4

0.6

0.8

1

A
c
c
u
ra

c
y

MLP FL+MLP

1D-CNN

Malware

Carbanak

Hurric
ane Panda

Patchwork

Transparent T
rib

e

Winnti G
roup

Sandwork
APT29

Violin
 Panda

Volatile
 C

edar

Shiqiang

Lazarus G
roup

APT28

Desert F
alcon

APT30

Mira
ge

(b)

0

0.2

0.4

0.6

0.8

1

A
c
c
u
ra

c
y

1D-CNN FL+1D-CNN

DAE

Malware

Carbanak

Hurric
ane Panda

Patchwork

Transparent T
rib

e

Winnti G
roup

Sandwork
APT29

Violin
 Panda

Volatile
 C

edar

Shiqiang

Lazarus G
roup

APT28

Desert F
alcon

APT30

Mira
ge

(c)

0

0.2

0.4

0.6

0.8

1

A
c
c
u
ra

c
y

DAE FL+DAE

Figure 5. Detection performance under centralized and decentralized settings. (a–c) show the results
of MLP, 1D-CNN, and DAE, respectively.

5. Conclusions

Aiming to mitigate APT attacks in CPSs, this work designed a framework for the
collaborative training of detection models used for the task of malware triage. Moreover,
the proposed method tackles the issue of data scarcity for the task at hand by replacing data
sharing with parameter sharing, thereby eliminating the privacy and security concerns
associated with sharing private data between organizations. While the proposed method
is based on FL, it also employs adaptive norm clipping to mitigate potential adversaries
that may target the federated network during the collaborative training session. This
adds an extra layer of security to the FL structure and safeguards the system against
a wide range of adversaries. The proposed method was evaluated on real-world data
for APT triage through several scenarios. Finally, the obtained results showed that the
designed framework effectively builds a global model that successfully detects all 15 APT
classes and the non-APT malware considered in this work. For future work, extending
the design to employ privacy-preserving mechanisms can further enhance the model’s
robustness. In addition, more APT variants can be considered in the simulations to evaluate
the framework’s adaptability and generalization to new threats.

Appl. Sci. 2024, 14, 8840 12 of 14

Author Contributions: Conceptualization, E.H. and R.R.-F.; methodology, E.H. and R.R.-F.; software,
E.H.; validation, E.H.; formal analysis, E.H.; investigation, E.H.; resources, R.R.-F. and M.S.; data
curation, E.H.; writing—original draft preparation, E.H.; writing—review and editing, R.R.-F. and
M.S.; visualization, E.H.; supervision, R.R.-F. and M.S.; project administration, R.R.-F. and M.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC) under funding reference numbers CGSD3-569341-2022 and RGPIN-2021-02968.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://github.com/GiuseppeLaurenza/I_F_Identifier/blob/master/dataset.tar.gz
(accessed on 26 September 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Kim, S.; Park, K.J.; Lu, C. A Survey on Network Security for Cyber–Physical Systems: From Threats to Resilient Design. IEEE

Commun. Surv. Tutor. 2022, 24, 1534–1573. [CrossRef]
2. Ahmed Jamal, A.; Mustafa Majid, A.A.; Konev, A.; Kosachenko, T.; Shelupanov, A. A review on security analysis of cyber physical

systems using Machine learning. Mater. Today Proc. 2023, 80, 2302–2306. [CrossRef]
3. Humayed, A.; Lin, J.; Li, F.; Luo, B. Cyber-Physical Systems Security—A Survey. IEEE Internet Things J. 2017, 4, 1802–1831.

[CrossRef]
4. Huang, L.; Zhu, Q. A dynamic games approach to proactive defense strategies against Advanced Persistent Threats in cyber-

physical systems. Comput. Secur. 2020, 89, 101660. [CrossRef]
5. Rahman, Z.; Yi, X.; Khalil, I. Blockchain-Based AI-Enabled Industry 4.0 CPS Protection Against Advanced Persistent Threat. IEEE

Internet Things J. 2023, 10, 6769–6778. [CrossRef]
6. Yang, L.X.; Li, P.; Yang, X.; Xiang, Y.; Jiang, F.; Zhou, W. Effective Quarantine and Recovery Scheme Against Advanced Persistent

Threat. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 5977–5991. [CrossRef]
7. Alshamrani, A.; Myneni, S.; Chowdhary, A.; Huang, D. A Survey on Advanced Persistent Threats: Techniques, Solutions,

Challenges, and Research Opportunities. IEEE Commun. Surv. Tutor. 2019, 21, 1851–1877. [CrossRef]
8. Langner, R. Stuxnet: Dissecting a Cyberwarfare Weapon. IEEE Secur. Priv. 2011, 9, 49–51. [CrossRef]
9. Jia, Z.; Xiong, Y.; Nan, Y.; Zhang, Y.; Zhao, J.; Wen, M. MAGIC: Detecting Advanced Persistent Threats via Masked Graph

Representation Learning. In Proceedings of the 33rd USENIX Security Symposium (USENIX Security 24), Philadelphia, PA, USA,
14–16 August 2024; pp. 5197–5214.

10. Dong, F.; Wang, L.; Nie, X.; Shao, F.; Wang, H.; Li, D.; Luo, X.; Xiao, X. DISTDET: A Cost-Effective Distributed Cyber Threat
Detection System. In Proceedings of the 32nd USENIX Security Symposium (USENIX Security 23), Anaheim, CA, USA,
9–11 August 2023; pp. 6575–6592.

11. Laurenza, G.; Aniello, L.; Lazzeretti, R.; Baldoni, R. Malware Triage Based on Static Features and Public APT Reports. In
Proceedings of the Cyber Security Cryptography and Machine Learning, Cham, Switzerland, 29–30 June 2017; pp. 288–305.

12. Laurenza, G.; Lazzeretti, R.; Mazzotti, L. Malware Triage for Early Identification of Advanced Persistent Threat Activities. Digit.
Threat. 2020, 1, 16. [CrossRef]

13. Sharma, A.; Gupta, B.B.; Singh, A.K.; Saraswat, V.K. Advanced Persistent Threats (APT): evolution, anatomy, attribution and
countermeasures. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 9355–9381. [CrossRef]

14. Abu Talib, M.; Nasir, Q.; Bou Nassif, A.; Mokhamed, T.; Ahmed, N.; Mahfood, B. APT beaconing detection: A systematic review.
Comput. Secur. 2022, 122, 102875. [CrossRef]

15. Akbar, K.A.; Wang, Y.; Ayoade, G.; Gao, Y.; Singhal, A.; Khan, L.; Thuraisingham, B.; Jee, K. Advanced Persistent Threat Detection
Using Data Provenance and Metric Learning. IEEE Trans. Dependable Secur. Comput. 2023, 20, 3957–3969. [CrossRef]

16. Thomas, C.; Balakrishnan, N. Improvement in minority attack detection with skewness in network traffic. In Proceedings of the
Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security, Orlando, FL, USA, 17–18 March 2008;
Volume 6973, pp. 226–237.

17. Chen, P.; Desmet, L.; Huygens, C. A Study on Advanced Persistent Threats. In Proceedings of the Communications and
Multimedia Security, Aveiro, Portugal, 25–26 September 2014; pp. 63–72.

18. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A.y. Communication-Efficient Learning of Deep Networks from
Decentralized Data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Ft. Lauderdale,
FL, USA, 20–22 April 2017; Volume 54, pp. 1273–1282.

https://github.com/GiuseppeLaurenza/I_F_Identifier/blob/master/dataset.tar.gz
http://doi.org/10.1109/COMST.2022.3187531
http://dx.doi.org/10.1016/j.matpr.2021.06.320
http://dx.doi.org/10.1109/JIOT.2017.2703172
http://dx.doi.org/10.1016/j.cose.2019.101660
http://dx.doi.org/10.1109/JIOT.2022.3147186
http://dx.doi.org/10.1109/TSMC.2019.2956860
http://dx.doi.org/10.1109/COMST.2019.2891891
http://dx.doi.org/10.1109/MSP.2011.67
http://dx.doi.org/10.1145/3386581
http://dx.doi.org/10.1007/s12652-023-04603-y
http://dx.doi.org/10.1016/j.cose.2022.102875
http://dx.doi.org/10.1109/TDSC.2022.3221789

Appl. Sci. 2024, 14, 8840 13 of 14

19. Hallaji, E.; Razavi-Far, R.; Saif, M.; Wang, B.; Yang, Q. Decentralized Federated Learning: A Survey on Security and Privacy. IEEE
Trans. Big Data 2024, 10, 194–213. [CrossRef]

20. Bhagoji, A.N.; Chakraborty, S.; Mittal, P.; Calo, S. Analyzing Federated Learning through an Adversarial Lens. In Proceedings of
the 36th International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; Volume 97, pp. 634–643.

21. Hallaji, E.; Razavi-Far, R.; Saif, M. Federated and Transfer Learning: A Survey on Adversaries and Defense Mechanisms; Springer: Berlin,
Germany, 2022; pp. 29–55.

22. Han, S.; Xie, M.; Chen, H.H.; Ling, Y. Intrusion Detection in Cyber-Physical Systems: Techniques and Challenges. IEEE Syst. J.
2014, 8, 1052–1062.

23. Farajzadeh-Zanjani, M.; Hallaji, E.; Razavi-Far, R.; Saif, M. Generative-Adversarial Class-Imbalance Learning for Classifying
Cyber-Attacks and Faults—A Cyber-Physical Power System. IEEE Trans. Dependable Secur. Comput. 2022, 19, 4068–4081.
[CrossRef]

24. Zhu, T.; Ye, D.; Cheng, Z.; Zhou, W.; Yu, P.S. Learning Games for Defending Advanced Persistent Threats in Cyber Systems. IEEE
Trans. Syst. Man Cybern. Syst. 2023, 53, 2410–2422. [CrossRef]

25. Kayan, H.; Nunes, M.; Rana, O.; Burnap, P.; Perera, C. Cybersecurity of Industrial Cyber-Physical Systems: A Review. ACM
Comput. Surv. 2022, 54, 1–35. [CrossRef]

26. Zhu, T.; Yu, J.; Xiong, C.; Cheng, W.; Yuan, Q.; Ying, J.; Chen, T.; Zhang, J.; Lv, M.; Chen, Y.; et al. APTSHIELD: A Stable, Efficient
and Real-Time APT Detection System for Linux Hosts. IEEE Trans. Dependable Secur. Comput. 2023, 20, 5247–5264. [CrossRef]

27. Liang, H.; Li, C.; Li, X.; Jiang, S. APT Malware Classification Method Based on Feature Fusion. In Proceedings of the International
Conference on Computer Information Science and Artificial Intelligence (CISAI), Kunming, China, 17–19 September 2021;
pp. 456–462.

28. Pitolli, G.; Laurenza, G.; Aniello, L.; Querzoni, L.; Baldoni, R. MalFamAware: Automatic family identification and malware
classification through online clustering. Int. J. Inf. Secur. 2021, 20, 371–386. [CrossRef]

29. Yang, L.X.; Li, P.; Yang, X.; Tang, Y.Y. A Risk Management Approach to Defending Against the Advanced Persistent Threat. IEEE
Trans. Dependable Secur. Comput. 2020, 17, 1163–1172. [CrossRef]

30. Hallaji, E.; Razavi-Far, R.; Saif, M. Expanding analytical capabilities in intrusion detection through ensemble-based multi-label
classification. Comput. Secur. 2024, 139, 103730. [CrossRef]

31. Razavi-Far, R.; Wang, B.; Taylor, M.E.; Yang, Q. An Introduction to Federated and Transfer Learning. In Federated and Transfer
Learning; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–6.

32. Zhang, C.; Xie, Y.; Bai, H.; Yu, B.; Li, W.; Gao, Y. A survey on federated learning. Knowl.-Based Syst. 2021, 216, 106775. [CrossRef]
33. Preuveneers, D.; Rimmer, V.; Tsingenopoulos, I.; Spooren, J.; Joosen, W.; Ilie-Zudor, E. Chained Anomaly Detection Models for

Federated Learning: An Intrusion Detection Case Study. Appl. Sci. 2018, 8, 2663. [CrossRef]
34. Asad, M.; Moustafa, A.; Ito, T. FedOpt: Towards Communication Efficiency and Privacy Preservation in Federated Learning.

Appl. Sci. 2020, 10, 2864. [CrossRef]
35. Mothukuri, V.; Parizi, R.M.; Pouriyeh, S.; Huang, Y.; Dehghantanha, A.; Srivastava, G. A survey on security and privacy of

federated learning. Future Gener. Comput. Syst. 2021, 115, 619–640. [CrossRef]
36. Qi, P.; Chiaro, D.; Guzzo, A.; Ianni, M.; Fortino, G.; Piccialli, F. Model aggregation techniques in federated learning: A comprehen-

sive survey. Future Gener. Comput. Syst. 2024, 150, 272–293. [CrossRef]
37. Agrawal, S.; Sarkar, S.; Aouedi, O.; Yenduri, G.; Piamrat, K.; Alazab, M.; Bhattacharya, S.; Maddikunta, P.K.R.; Gadekallu,

T.R. Federated Learning for intrusion detection system: Concepts, challenges and future directions. Comput. Commun. 2022,
195, 346–361. [CrossRef]

38. Hallaji, E.; Razavi-Far, R.; Saif, M.; Herrera-Viedma, E. Label noise analysis meets adversarial training: A defense against label
poisoning in federated learning. Knowl.-Based Syst. 2023, 266, 110384. [CrossRef]

39. Rahman, S.A.; Tout, H.; Talhi, C.; Mourad, A. Internet of Things Intrusion Detection: Centralized, On-Device, or Federated
Learning? IEEE Netw. 2020, 34, 310–317. [CrossRef]

40. Blanchard, P.; El Mhamdi, E.M.; Guerraoui, R.; Stainer, J. Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent.
In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30.

41. Fang, M.; Cao, X.; Jia, J.; Gong, N. Local Model Poisoning Attacks to Byzantine-Robust Federated Learning. In Proceedings of the
29th USENIX Security Symposium. USENIX Association, Berkeley, CA, USA, 12–14 August 2020; pp. 1605–1622.

42. Reisizadeh, A.; Farnia, F.; Pedarsani, R.; Jadbabaie, A. Robust Federated Learning: The Case of Affine Distribution Shifts. In
Proceedings of the Advances in Neural Information Processing Systems, Online, 6–12 December 2020; Curran Associates, Inc.:
New York, NY, USA, 2020; Volume 33, pp. 21554–21565.

43. Andrew, G.; Thakkar, O.; McMahan, B.; Ramaswamy, S. Differentially Private Learning with Adaptive Clipping. In Proceedings of
the International Conference on Neural Information Processing Systems, Online, 6–14 December 2021; Volume 34, pp. 17455–17466.

44. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

http://dx.doi.org/10.1109/TBDATA.2024.3362191
http://dx.doi.org/10.1109/TDSC.2021.3118636
http://dx.doi.org/10.1109/TSMC.2022.3211866
http://dx.doi.org/10.1145/3510410
http://dx.doi.org/10.1109/TDSC.2023.3243667
http://dx.doi.org/10.1007/s10207-020-00509-4
http://dx.doi.org/10.1109/TDSC.2018.2858786
http://dx.doi.org/10.1016/j.cose.2024.103730
http://dx.doi.org/10.1016/j.knosys.2021.106775
http://dx.doi.org/10.3390/app8122663
http://dx.doi.org/10.3390/app10082864
http://dx.doi.org/10.1016/j.future.2020.10.007
http://dx.doi.org/10.1016/j.future.2023.09.008
http://dx.doi.org/10.1016/j.comcom.2022.09.012
http://dx.doi.org/10.1016/j.knosys.2023.110384
http://dx.doi.org/10.1109/MNET.011.2000286
http://dx.doi.org/10.1109/5.726791

Appl. Sci. 2024, 14, 8840 14 of 14

45. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.A. Extracting and composing robust features with denoising autoencoders. In
Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 1096–1103.

46. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Background
	Advanced Persistent Threats
	Federated Learning
	Case Study

	Methodology
	Experimental Results
	Experimental Settings
	Results

	Conclusions
	References

