
Citation: Lee, S.; Moon, G.; Lee, C.;

Kim, H.; An, D.; Kang, D. Check-QZP:

A Lightweight Checkpoint

Mechanism for Deep Learning

Frameworks. Appl. Sci. 2024, 14, 8848.

https://doi.org/10.3390/app14198848

Academic Editors: Francesco Zirilli

and Andrew Teoh Beng Jin

Received: 28 August 2024

Revised: 20 September 2024

Accepted: 27 September 2024

Published: 1 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Check-QZP: A Lightweight Checkpoint Mechanism for Deep
Learning Frameworks
Sangheon Lee 1, Gyupin Moon 1, Chanyong Lee 1 , Hyunwoo Kim 1, Donghyeok An 2,* and Donghyun Kang 1,*

1 Department of Computer Engineering, College of IT Convergence, Gachon University,
Seongnam-si 13120, Republic of Korea; tkdgjs0213@gachon.ac.kr (S.L.); kurizda@gachon.ac.kr (G.M.);
bb9845@gachon.ac.kr (C.L.); kimh0425@gachon.ac.kr (H.K.)

2 Department of Computer Engineering, Changwon National University,
Changwon-si 51140, Republic of Korea

* Correspondence: donghyeokan@changwon.ac.kr (D.A.); donghyun@gachon.ac.kr (D.K.)

Abstract: In deep learning (DL) frameworks, a checkpoint operation is widely used to store in-
termediate variable values (e.g., weights, biases, and gradients) on storage media. This operation
helps to reduce the recovery time of running a machine learning (ML) model after sudden power
failures or random crashes. However, the checkpoint operation can stall the overall training step
of the running model and waste expensive hardware resources by leaving the GPU in idle sleep
during the checkpoint operation. In addition, the completion time of the checkpoint operation is
unpredictable in cloud server environments (e.g., AWS and Azure) because excessive I/O operations
issued by other running applications interfere with the checkpoint operations in the storage stacks.
To efficiently address the above two problems, we carefully designed Check-QZP, which reduces the
amount of data required for checkpoint operations and parallelizes executions on the CPU and GPU
by understanding the internal behaviors of the training step. For the evaluation, we implemented
Check-QZP and compared it with the traditional approach in real-world multi-tenant scenarios. In
the evaluation, Check-QZP outperformed the baseline in all cases in terms of the overall checkpoint
time and the amount of data generated by the checkpoint operations, reducing them by up to 87.5%
and 99.8%, respectively. In addition, Check-QZP achieved superior training speeds compared to
the baseline.

Keywords: deep learning; checkpoint; quantization; parallelism; compression; performance and
storage capacity

1. Introduction

Today, deep learning (DL) is emphasized even more as its technologies cover a wide
spectrum of applications [1,2]. Many researchers have carried out studies that enable DL
technologies to upgrade legacy services or provide new applications [3–8]. For example,
some researchers have focused on autonomous vehicles or unmanned aerial vehicles
(UAVs), incorporating DL technology to offer more intelligent services to clients [9–13].
Other researchers have enhanced custom-fit video recommendation systems using DL
technology [14–16]. This research trend leads to excessive I/O operations for the learning
and inference processes and an increase in data centers to store the vast amounts of
data generated by applications or various sensors [17–19]. Unfortunately, the resources
(e.g., CPU, GPU, memory, network, and storage devices) in the data centers must be
shared among many applications in multi-tenant cloud environments [20,21]. Therefore,
applications with AI engines have to compete for limited resources in the data centers,
resulting in interference across applications in terms of CPU/GPU preemption, memory
allocation, and storage I/Os.

Meanwhile, most platforms supporting AI engines sometimes write the bulk of their
data to the underlying storage devices (e.g., HDDs or SSDs) while running the learning

Appl. Sci. 2024, 14, 8848. https://doi.org/10.3390/app14198848 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14198848
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0003-6848-5198
https://orcid.org/0000-0001-6703-9311
https://orcid.org/0000-0003-4362-9944
https://doi.org/10.3390/app14198848
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14198848?type=check_update&version=1

Appl. Sci. 2024, 14, 8848 2 of 16

process [22,23]. This is because the AI platforms have to store on-the-fly data that are
generated during the training process to avoid losing the data in the event of a sudden
power failure (i.e., checkpoint operation) [6,7]. In other words, after unexpected system
crashes, the training process can be resumed using the data belonging to the last version
of the checkpoint operation instead of performing the first step again. However, the data
stored in the storage media are never reused unless the system crashes and are unavailable
after running the next training epoch.

In addition, the checkpoint operation to store the data can negatively affect a series of
training processes, as it must wait for the write operations to finish; it may write more than
several GB of data [6,7,24]. Unfortunately, the latency of the write operations can be delayed
when I/O interference unintentionally occurs due to excessive I/O operations from other
running applications; we call this situation a checkpoint delay due to I/O conflict [24,25]. In
recent years, some studies have focused on designing the checkpoint operation to address
this delay in terms of I/O bandwidth and recovery time [6,7,26,27]. For example, the
authors of Check-N-Run [7] adopted a quantization and parallelism mechanism into the
checkpoint operation to deal with storage capacity and write bandwidth. The authors of
CheckFreq [6] proposed a lightweight checkpointing framework for DNN training to speed
up recovery time in the event of a sudden power failure. Unfortunately, previous studies
do not consider the excessive I/O conflicts in cloud environments, where the latency of I/O
operations from the checkpoint operations is limited because of interference from other
running multi-tenant applications.

In this paper, we propose Check-QZP, which efficiently addresses the checkpoint delay
issue by reducing the total amount of checkpointed data under excessive I/O conflict
scenarios. The contributions of this paper can be summarized as follows:

• In order to understand how the training process works, we briefly introduce the
internal procedure of the training process. Then, we describe why a checkpoint delay
occurs and what kinds of problems can arise.

• We propose Check-QZP, which consists of three features—quantization, parallelism,
and compression—to efficiently optimize overall performance and storage space.

• We implement Check-QZP at the framework level and compare it with the default
mechanism in multi-tenant scenarios where the ML model performs training and
inference under high I/O pressure from the excessive FIO [28] benchmark.

The rest of this paper is organized as follows. Section 2 introduces the background
and related works to better understand our work. Section 3 explains how Check-QZP works
and details its benefits. Finally, Section 4 presents our evaluation results, and Section 5
concludes this paper.

2. Background and Related Works

In this section, we briefly explain the training step in the DL framework and then
introduce the issues of checkpoint delay and waste of storage space that can arise in this step.
Finally, we give an overview of related works.

2.1. Training and Checkpoint Mechanism in ML model

In general, a deep learning model comprises training and inference steps [29]. An
inference step generates predictions based on the information transferred from the training
step, which means that the training step is a requirement for making predictions.

Therefore, we briefly explain how the training step works step by step (see Figure 1).
The training step can be categorized into three phases: data loading, forward propagation,
and backward propagation with weight updates [30]. The first phase is data loading,
during which the data stored in the underlying storage media or remote storage devices
are read. This phase includes the overheads from the I/O operations needed to read
data through storage or network paths. After completing the data loading phase, the
intermediate variable values in the neural network model, ranging from the input layer
to the output layer, are calculated, resulting in the calculated training loss; we call this

Appl. Sci. 2024, 14, 8848 3 of 16

forward propagation. Once the forward propagation phase is complete, the backward
propagation phase is triggered to update the network’s weights and biases, which helps
find the correct answer by computing the gradient of the loss. In the traditional approach,
the training step is performed in a serialized manner and is repeated until a pre-defined
threshold is satisfied; the threshold is pre-defined by a user and is calculated based on the
number of epochs and mini-batches [31,32]. Note that the training step can take a long
time to complete, depending on the number of layers and the complexity of the problem
to be solved. Unfortunately, this step does not provide persistence of the data because all
variable values are stored in the host and GPU memory.

Figure 1. Training process of an ML model in multi-tenant cloud environments.

A checkpoint mechanism is adopted to support the persistence of data, storing a set
of variable values on the underlying storage media, such as an HDD or SSD [6,33]. In
an ML model, the checkpoint operation provides a full snapshot of in-memory values,
including the weights, biases, and gradients of each layer. Therefore, the checkpoint in
an ML model helps to quickly recover the last version of the intermediate variable values
generated during the training of the ML model after a random crash or system failure
occurs. Let us consider a simple example where the training step takes at least 7 days, and
a system crash occurs 3 days after the start time of the training. In this example, if the
checkpoint operation is available, we can recover the last version’s data and resume the
next process within a few seconds or minutes after the crash. Therefore, the training step
can be completed after 4 days. Otherwise, after the crash occurs, the entire training step
would need to be restarted, requiring 7 days to complete.

However, the checkpoint mechanism causes two unavoidable problems: checkpoint
delays and waste of storage space [6,7]. First, the checkpoint mechanism can postpone
the training step to wait for the completion of I/O requests from the storage media and
a flush operation for data persistence; we call this a checkpoint delay. Unfortunately, the
checkpoint delay is unpredictable and wastes hardware resources in that it leads to GPU
resources being idle during the checkpoint operation. This is because current servers
in cloud environments cannot guarantee I/O latency since they simultaneously handle
sensitive data among multi-tenant applications by sharing their hardware resources. It
is important to note that the data stored during checkpoint operations are available only

Appl. Sci. 2024, 14, 8848 4 of 16

when system crashes or power failures occur. In other words, the checkpoint mechanism
periodically issues a vast volume of data (e.g., at a granularity of MB or GB) to store values
for the immediate variables on the storage media. Thus it can waste storage space and
reduce the lifetime of storage devices in the case of SSDs.

2.2. Related Works

Nowadays, many researchers focus on designing solutions to optimize storage for
deep learning workloads as the sizes of models and datasets grow [6,7,24–27,33,34]. Some
researchers have proposed checkpoint methods that reduce capacity and overhead during
deep learning workloads [7,34]. Check-N-RUN [7] utilizes quantization algorithms and
compression mechanisms for large-scale deep learning models. SSDC [34] selectively saves
only the differences in important parameters during the training and recovery processes
through an adaptive threshold. CheckFreq [6] maintains overall workload performance
by adjusting checkpoint frequency and parallel processing, ensuring that checkpoints are
performed within user-defined overhead limits. These methods can optimize the overall
workload by creating lightweight traditional serialized checkpoints or processing them in
parallel during training.

Training for large-scale deep learning models is performed in data centers [17]. There-
fore, many researchers have made efforts to optimize storage capacity and data migration
in deep learning workloads besides checkpoints [35–37]. Smart-Infinity [35] quantitatively
measures the data migration cost during the storage offloading process, using computa-
tional SSDs to overcome the GPU memory capacity limitations of large-scale language mod-
els while reducing costs through gradient compression. Hassan N. Noura et al. proposed
a new scheme that benefits from compression to reduce the capacity of high-resolution
image data used for deep learning [36]. The authors of ZeRO-Infinity [37] proposed a
CPU and storage offloading framework to address GPU memory limitation issues during
the training of large-scale models, achieving near-maximum storage bandwidth through
a bandwidth-aware mapping strategy and storage read-write overlapping. One group
of researchers focused on the non-negative matrix factorization model and proposed a
novel approach that adeptly snapshots hierarchical information by integrating a deep
autoencoder and symmetry regularization [38].

Meanwhile, multi-tenant environments still face challenges caused by resource com-
petition [17,39–41]. Some researchers have proposed scheduling to reduce training and
inference latency in deep learning caused by resource competition in multi-tenant envi-
ronments [42,43]. Additionally, UAVs, which are increasingly gaining attention with the
advancement of flight technology, typically store vast amounts of data extracted in real
time by multiple aircraft in data centers. Deep learning techniques, such as object detection
and object tracking, which utilize these data, are also evolving [10–12,14–16,18,19].

Unfortunately, while multi-tenant environments and deep learning are becoming
increasingly intertwined with technological advancements, the issue of storage contention
caused by deep learning workloads in multi-tenant environments has not been sufficiently
addressed. We believe that our efforts contribute to solving this problem.

3. Design and Implementation

To address the issues of the checkpoint mechanism in ML models, we carefully revis-
ited the processes of training and checkpoint operations. We identified several processes
that could be enhanced for optimization in terms of storage and performance. Based on
these observations, we propose two novel design principles to mitigate the overhead caused
by ML models.

Parallel Step: We first argue whether it is necessary to process all steps in ML in
a sequential manner. The checkpoint step in the ML model spends time performing
I/O requests, which may stall other steps in multi-tenant environments because running
applications share I/O interfaces simultaneously. Therefore, we inject parallelism into the

Appl. Sci. 2024, 14, 8848 5 of 16

basic rules of the traditional checkpoint operation to overlap the time for I/O requests with
the learning process; we call this the Check-P operation.

Data Reliability: We also argue that the data stored by the checkpoint operations
are rarely reused. In other words, the stored data are valuable in just two cases: (1) The
data are required after a crash during the training step to recover the last parameters of
an ML model. (2) The data become accessible to run transfer learning or deploy a model
to other systems. In general, data loss may be tolerated in ML models because the data
can be recovered using fine-tuning mechanisms [44–46]. Therefore, we design Check-Q
and Check-Z operations that reduce the amount of data by adopting quantization and
compression mechanisms. Note that the Check-Q and Check-Z operations require extra
CPU cycles to run, but these cycles can be hidden because of the benefits of the Check-P
operation. As a result, they will not affect the overall performance of ML steps.

Basically, Check-QZP follows the basic rules of the traditional steps in ML models.
Algorithm 1 describes how Check-QZP works in terms of the checkpoint operation. First,
when the checkpoint operation is triggered, Check-QZP creates a new thread to overlap
the checkpoint operation with the training process. In order to make a snapshot, the
Check-P operation first copies the model parameters from the memory on the GPU to
the host memory. This snapshot is then transferred to the Check-Q operation to perform
quantization; we describe this in more detail in the following section. Finally, Check-QZP
compresses the data delivered from the Check-Q operation and stores the compressed data
on the underlying storage device.

Algorithm 1 Actions in Check-QZP.

Input: parameters: model parameters

1: if triggered a checkpoint in main script
2: create_subprocess(Check-P)

Function Check-P():
3: snapshot← Copy_parameters()
4: quantized_parameters← Check-Q(snapshot)
5: Check-QZ← Compression(quantized_parameters)
6: Write_storage(Check-QZ)
7: return true

Function Check-Q(snapshot):
8: for parameters in snapshot:
9: xmin ←Min_update(parameters)

10: xmax ←Max_update(parameters)
11: // N means quantization bit-width
12: scale← xmax−xmin

2N−1
13: for parameters in snapshot:
14: for parameter in parameters:
15: xq ← Round

(
parameter−xmin

scale

)
16: Store xq in quantized_parameters
17: return a set of quantized_parameters

3.1. Quantization and Compression for Low Storage Costs

Figure 2 shows the overall training process of Check-QZP. For the checkpoint opera-
tion, Check-QZP first performs a snapshot that copies in-memory values on the GPU (e.g.,
weights, biases, and gradients) to the host memory (denoted by 1). After completing the
snapshot operation, it triggers a series of operations to optimize the storage costs for data
persistence. In general, quantization is used to store data at lower bit widths by converting
floating-point values (e.g., FP32) to integer values without decimal points (e.g., INT8).

Appl. Sci. 2024, 14, 8848 6 of 16

Since the arithmetic of floating-point values is more complex than that of integer values,
quantization helps save computing costs for the processor, reduce power consumption, and
minimize memory usage. Therefore, we applied the quantization approach to the check-
point operations to benefit the ML model; we call it the Check-Q operation in this paper
(denoted by 2). This approach can reduce the amount of data issued to the storage media
during each checkpoint operation, resulting in saved time and resources for storage I/O
operations, and it can help avoid the I/O conflicts on the storage stacks. For quantization,
we utilized the following formula:

scale =
xmax − xmin

2N − 1
(1)

Figure 2. An overview of Check-QZP.

In Equation (1), scale calculates the quantization range based on the quantization target
x. xmax and xmin are quantization targets (i.e., maximum and minimum values of model
parameters). scale is quantized to the size of N bits. xq is a quantized model parameter.
It becomes an element normalized to the scale range for the quantization target x. It is
expressed in Equation (2):

xq = round
(

x− xmin
scale

)
(2)

Fortunately, the quantized data offer an opportunity to reduce the amount of data
by an order of magnitude through data compression. In other words, after performing
Check-Q operations, the data are generally encoded as integers in the form of bits without
decimal points; thus, there is a high possibility of duplicated neighbors in the quantized
data. The compression rate and performance highly rely on the duplication of the data.
Therefore, to further reduce the amount of data, Check-QZP compresses the quantized data
via the Check-Q operation once again; we call this operation Check-Z in this paper (denoted
by 3). To implement the Check-Q operation, we utilized the gzip [47] library, which is
widely used for the compression and decompression of data.

Appl. Sci. 2024, 14, 8848 7 of 16

In summary, Check-QZP improves the overall performance of the training step by
performing Check-Q and Check-Z operations and prevents the waste of storage space. Of
course, these operations have the side effect of CPU costs for performing the above formula
and compression, as well as potentially negatively affecting accuracy. Fortunately, any
degradation in accuracy can be recovered by using fine-tuning approaches [44–46]. We
also believe that the operations of Check-QZP can reduce the cost of I/O operations passing
through the storage stack and increase the available storage space. This has a significant
impact on I/O performance in multi-tenant cloud environments. Thankfully, the impact
of the Check-Q and Check-Z operations is almost zero during normal execution because
system crashes and power failures rarely occur in real-world ML scenarios.

3.2. Parallelism for High Performance

The Check-Q and Check-Z operations can lead to additional delays in calculating
the above formula and compressing the quantized data on the fly. Unfortunately, these
operations stall the unintended training step on the GPU because of the serialized order
of operations: data loading, forward propagation, backward propagation, and checkpoint
operations. To efficiently address this delay, we adopted a parallelism mechanism in
Check-QZP that helps to simultaneously run the training process on the GPU, denoted by
the blue box with a line, and the checkpoint process on the CPU, denoted by the red box
with a dotted line in Figure 2. We call this the Check-P operation in this paper. In general,
the training process requires a longer duration compared to the checkpoint process; thus,
Check-QZP efficiently hides its processing time by overlapping the two processes. Despite
this timing behavior, if the training process finishes earlier than the checkpoint operations,
we delay running the next training process until the last checkpoint operation is completed;
synchronization between the Check-P operation and the training process is ensured using
the lock mechanism. In this case, a delay exists to avoid incorrect updating of weight
values, but it rarely occurs, as mentioned before.

Finally, for implementing the Check-P operation, we utilized a Python library called
spawn, which is easy to implement and supports parallelism [48]. Meanwhile, a snapshot
for the checkpoint operation must be completed before triggering parallel operations to
prevent the partial update of variable values. Therefore, we implemented the Check-P
operation to wait until the snapshot operation is complete.

4. Evaluation

In this section, we introduce our experimental setup and workloads. Then, we compare
Check-QZP with the traditional checkpoint approach to confirm the benefits and limitations
of each checkpoint operation. In particular, we aim to answer the following two questions:

• How much can Check-QZP improve the overall performance of the ML model?
• How much storage space does Check-QZP save compared to other methods?

4.1. Experimental Setup

We built environments based on a machine (see Table 1) and implemented Check-QZP
using the PyTorch framework [22]. Specifically, we implemented the Check-Q, Check-Z,
and Check-P operations to isolate the benefits of the compression and parallelism features;
some notations were reused together to represent merged operations (e.g., Check-QZP).
In the Check-Z operation, we used the gzip library to compress or decompress the data
generated from the checkpoint operations [47]. We also implemented the multi-object
detection (MOD) and multi-object tracking (MOT) models based on Faster-RCNN, which
includes the ResNet152 and ResNet50 backbones [49–52].

Appl. Sci. 2024, 14, 8848 8 of 16

Table 1. Hardware and software environment.

Description

CPU Intel® Xeon™ Gold 5215
GPU NVIDIA Tesla ™ T4
Memory 64 GB
Storage Samsung® SSD 980 PRO (1 TB)
OS Ubuntu 20.04.6 LTS (64-bit)
PyTorch version 2.0.0
CUDA version 11.7

We employed Check-QZP on a UAV dataset, (e.g., VisDrone) [53] with the FIO bench-
mark [28] to emulate the workload in multi-tenant environments [5,21,41]. Tables 2 and 3
list the detailed information about the dataset.

Table 2. Description of dataset.

Dataset Number of Images Resolution Volume

VisDrone Subset1 4561 1904 × 1071 1.14 GB
VisDrone Subset2 1858 1344 × 756 315 MB
VisDrone Subset3 377 2688 × 1512 237 MB

Table 3. FIO options.

FIO Options

Ioengine Libaio
File size 1 GiB

Block size 4 KiB
Direct False

Numjobs 64
Operation Random read/write

In this evaluation, we simultaneously performed the FIO benchmark, which includes
a 1 GiB file, 4 KiB I/O requests for random read/write, and 64 numjobs. Finally, we carried
out experiments by switching checkpoint operations, with each experiment taking more
than 14 h to perform model training. Note that the checkpoint operation was triggered in
each epoch operation while running the model.

4.2. The Effectiveness of Checkpoint Operations

We first present the effect of Check-QZP on checkpoint operations and describe how
it works in a multi-tenant environment. Figure 3 shows the normalized elapsed times
of the checkpoint operations. Check-QZP achieved a performance improvement of 87%
over the baseline. Check-QZP incorporating parallelism operations exhibited lower delay
times compared to compression methods. This is because the delays caused by checkpoint
operations can be hidden by overlapping some operations in the training process. In
contrast, other methods incorporating compression added delays while waiting for the
completion of each checkpoint operation (see Figure 3). In particular, the delay was
significantly affected by the I/O intensity. Meanwhile, the compression methods involve
a trade-off between the compression rate (i.e., data reduction) and the time required for
compression. This trade-off may affect overall performance in multi-tenant environments
because multiple applications are performed concurrently and may compete for resources
(e.g., CPU and memory). Figure 3 depicts the delays for Check-Z and Check-QZ caused by
compression operations.

Appl. Sci. 2024, 14, 8848 9 of 16

(a)

(b)

Figure 3. Total checkpoint times for checkpoint methods. (a) Total checkpoint time for MOD model;
(b) Total checkpoint time for MOT model.

4.3. Analysis of Compression Rate

Now, we analyze how much storage space is saved when applying compression
methods (e.g., compression and quantization) to checkpoint operations. As shown in the
previous section, the compression rate is one of the crucial metrics because it determines
how much CPU and I/O resources can be saved during checkpoint operations. Figure 4
shows the compression rates of Check-Q, Check-Z, and Check-QZ. As shown in Figure 4,
Check-QZ achieved the best compression rate compared to the baseline, Check-Q, and
Check-Z; it can reduce the amount of data by up to 99% on average. This outcome can
be attributed to the combination of quantization, which represents parameter values with
lower bit widths, and gzip, which exhibits the property that the higher the number of
repetitive patterns, the greater the compression achieved. Meanwhile, Check-Z, which

Appl. Sci. 2024, 14, 8848 10 of 16

uses only gzip, achieved a low compression rate because it is difficult to find repetitive
patterns in FP32. It may incur high overhead due to requiring high CPU utilization to
identify and compress the patterns. In contrast, Check-Q and Check-QZ, which utilize
quantization technology, demonstrated significant impacts on the compression rate. As
shown in Figure 4, Check-Q achieved a compression rate close to 75% by transforming the
bit width from 32 bits to 8 bits. It also provides another opportunity to make compression
with gzip more effective by reducing the bit range for parameters.

(a)

(b)

Figure 4. Compression rates for quantization and gzip. (a) Compression rate for MOD model;
(b) Compression rate for MOT model.

To clearly understand the checkpoint delay, we also measured the composition of the
checkpoint delay. Figure 5 shows the composition of the checkpoint delay by snapshot,
quantization, and gzip compression. The gzip component includes the compression per-
formed by the gzip algorithm and the storage of compressed data on the underlying storage
device. As shown in Figure 5b, gzip compression accounted for the majority of Check-
QZ delays. This increase would not compete for bandwidth, since it has no additional
write operations beyond the checkpoint operation. The gzip compression delay varied
depending on the model structure. As the model became more complex, the checkpoint
operation involved more character arrays for mapping parameters. Therefore, the gzip
algorithm resulted in an increase in the table size and search time. In contrast, quantization
was proportional to the model size since it required only converting time for parameters.

Appl. Sci. 2024, 14, 8848 11 of 16

Additionally, as shown in Figure 5a,b, the snapshot component remained at a low rate. As
mentioned in Section 3.2, the latency incurred for maintaining consistency in snapshots
was expected to have a minimal impact.

(a)

(b)

Figure 5. Overheads of Check-QZ. (a) Overhead of Check-QZ for MOD model; (b) Overhead of
Check-QZ for MOT model.

4.4. Overall Training Time

Finally, we measured the overall training time while running the models. Figure 6
shows our evaluation results. As expected, Check-QZP exhibited good performance com-
pared to the baseline. However, the performance gap between the baseline and Check-QZP
was significantly reduced compared with the results shown in Figure 3; it only improved
the training time by up to 1.5%. These results are reasonable given that the operation time of
the checkpoint occupies a very small proportion of the entire training time. This is because
the checkpoint operation is triggered after finishing an epoch of the training step, and this

Appl. Sci. 2024, 14, 8848 12 of 16

time is very short compared with the training time. In addition, as the training phase runs
longer, the proportion decreases in terms of the total training time. In our evaluation, the
checkpoint time was responsible for only 1% or 3% of the total training time. We think
that these results are a meaningful sign, indicating that Check-QZP can reduce not only
overhead but also the amount of data to be stored on the storage device. We also believe
that Check-QZP can be applied to a wide range of other models with ease of extension.

(a)

(b)

Figure 6. Total training times for checkpoint methods. (a) Total training time for MOD model;
(b) Total training time for MOT model.

5. Conclusions

As applications increasingly depend on cloud architectures and services, there are
negative costs associated with handling excessive I/O operations. These costs are especially
harmful to ML-based applications, where a series of training steps can be stalled because of
busy I/O scheduling across the storage stacks.

Appl. Sci. 2024, 14, 8848 13 of 16

In this paper, we propose a checkpoint mechanism for ML-based applications called
Check-QZP, which is designed to provide a strong incentive by adopting three key ideas:
quantization, compression, and parallelism. It should be noted that Check-QZP follows
the basic rules for the model deployment and maintenance phases of traditional ML pro-
cesses; thus, it can be easily reused or managed for other models or systems. In addition,
Check-QZP can improve the lifetime of NAND-based storage devices by reducing the
number of writes to the devices. For our evaluation, we implemented the prototype of
Check-QZP using the PyTorch framework, which is commonly used to realize ML technolo-
gies. Our evaluation results clearly confirmed that Check-QZP outperformed the baseline
in terms of the elapsed time for checkpoint operations. The reason is that Check-QZP can
improve the compression rate through quantization and simultaneously utilize resources
on both CPUs and GPUs through parallelism.

Finally, we believe that our efforts are valuable and can be applied to various environ-
ments based on ML frameworks because checkpoints are necessary for running the training
step. In particular, we suggest that Check-QZP can have a positive impact on low-end or
heterogeneous systems because they commonly suffer from poor I/O performance [54,55].
Therefore, in the future, we will delve into the performance issues in checkpoint operations
and discover additional opportunities for Check-QZP across diverse ML frameworks (i.e.,
TensorFlow) by analyzing the features of these frameworks. We leave further optimization
and detailed studies of Check-QZP’s effects on other frameworks for future work.

Author Contributions: Conceptualization, S.L. and D.K.; methodology, S.L.; software, S.L.; validation,
S.L. and D.K.; formal analysis, S.L. and D.K.; investigation, S.L. and D.K.; resources, S.L., C.L., H.K.
and D.K.; data curation, S.L.; writing—original draft preparation, S.L. and D.K.; writing—review
and editing, D.A. and D.K.; visualization, S.L., G.M. and D.K.; supervision, D.A. and D.K.; project
administration, D.K.; funding acquisition, D.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the Gachon University research fund of 2023 (GCU-202400530001)
and the National Research Foundation of Korea (NRF) grant funded by the Korean government
(MSIT) (RS-2023-00251730).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicle
MOD Multi-Object Detection
MOT Multi-Object Tracking
SSD Solid State Disk
HDD Hard Disk Drive
AI Artificial Intelligence
DL Deep Learning
ML Machine Learning
DNN Deep Neural Network
Check-Q Checkpoint Quantization
Check-Z Checkpoint Zip
Check-P Checkpoint Parallelism

Appl. Sci. 2024, 14, 8848 14 of 16

References
1. Pouyanfar, S.; Sadiq, S.; Yan, Y.; Tian, H.; Tao, Y.; Reyes, M.P.; Shyu, M.L.; Chen, S.C.; Iyengar, S.S. A Survey on Deep Learning:

Algorithms, Techniques, and Applications. ACM Comput. Surv. 2018, 51, 92. [CrossRef]
2. Zou, Z.; Chen, K.; Shi, Z.; Guo, Y.; Ye, J. Object Detection in 20 Years: A Survey. Proc. IEEE 2023, 111, 1–20. [CrossRef]
3. Gwak, M.; Cha, J.; Yoon, H.; Kang, D.; An, D. Lightweight Transformer Model for Mobile Application Classification. Sensors 2024,

24, 564. [CrossRef] [PubMed]
4. Kwon, C.; Kang, D. Overlay-ML: Unioning Memory and Storage Space for On-Device AI on Mobile Devices. Appl. Sci. 2024,

14, 3022. [CrossRef]
5. Ebrahim, M.A.; Ebrahim, G.A.; Mohamed, H.K.; Abdellatif, S.O. A Deep Learning Approach for Task Offloading in Multi-UAV

Aided Mobile Edge Computing. IEEE Access 2022, 10, 101716–101731. [CrossRef]
6. Mohan, J.; Phanishayee, A.; Chidambaram, V. CheckFreq: Frequent, Fine-Grained DNN Checkpointing. In Proceedings of the

19th USENIX Conference on File and Storage Technologies (FAST 21), Online, 23–25 February 2021; pp. 203–216.
7. Eisenman, A.; Matam, K.K.; Ingram, S.; Mudigere, D.; Krishnamoorthi, R.; Nair, K.; Smelyanskiy, M.; Annavaram, M. Check-

N-Run: A Checkpointing System for Training Deep Learning Recommendation Models. In Proceedings of the 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22), Renton, WA, USA, 4–6 April 2022; pp. 929–943.

8. Kennedy, J.; Sharma, V.; Varghese, B.; Reaño, C. Multi-Tier GPU Virtualization for Deep Learning in Cloud-Edge Systems. IEEE
Trans. Parallel Distrib. Syst. 2023, 34, 2107–2123. [CrossRef]

9. Kang, D. Delay-D: Research on the Lifespan and Performance of Storage Devices in Unmanned Aerial Vehicles. Aerospace 2024,
11, 47. [CrossRef]

10. Hassan, S.A.; Rahim, T.; Shin, S.Y. Real-time UAV Detection based on Deep Learning Network. In Proceedings of the 2019
International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 16–18
October 2019; pp. 630–632. [CrossRef]

11. Hu, B.; Wang, J. Deep Learning Based Hand Gesture Recognition and UAV Flight Controls. Int. J. Autom. Comput. 2020, 17, 17–29.
[CrossRef]

12. Bachute, M.R.; Subhedar, J.M. Autonomous Driving Architectures: Insights of Machine Learning and Deep Learning Algorithms.
Mach. Learn. Appl. 2021, 6, 1–25. [CrossRef]

13. Gupta, A.; Anpalagan, A.; Guan, L.; Khwaja, A.S. Deep learning for object detection and scene perception in self-driving cars:
Survey, challenges, and open issues. Array 2021, 10, 1–20. [CrossRef]

14. Shin, J.; Piran, M.J.; Song, H.K.; Moon, H. UAV-assisted and deep learning-driven object detection and tracking for autonomous
driving. In Proceedings of the 5th International ACM Mobicom Workshop on Drone Assisted Wireless Communications for 5G
and Beyond, Sydney, Australia, 17 October 2022; pp. 7–12. [CrossRef]

15. Zhang, S.; Zhuo, L.; Zhang, H.; Li, J. Object Tracking in Unmanned Aerial Vehicle Videos via Multifeature Discrimination and
Instance-Aware Attention Network. Remote Sens. 2020, 12, 2646. [CrossRef]

16. Wu, H.H.; Zhou, Z.; Feng, M.; Yan, Y.; Xu, H.; Qian, L. Real-Time Single Object Detection on The UAV. In Proceedings of the 2019
International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 11–14 June 2019; pp. 1013–1022. [CrossRef]

17. Masanet, E.; Shehabi, A.; Lei, N.; Smith, S.; Koomey, J. Recalibrating global data center energy-use estimates. Science 2020,
367, 984–986. [CrossRef]

18. Liu, J.; Tong, P.; Wang, X.; Bai, B.; Dai, H. UAV-Aided Data Collection for Information Freshness in Wireless Sensor Networks.
IEEE Trans. Wirel. Commun. 2021, 20, 2368–2382. [CrossRef]

19. Gong, J.; Chang, T.H.; Shen, C.; Chen, X. Flight Time Minimization of UAV for Data Collection Over Wireless Sensor Networks.
IEEE J. Sel. Areas Commun. 2018, 36, 1942–1954. [CrossRef]

20. Jeon, M.; Venkataraman, S.; Qian, J.; Phanishayee, A.; Xiao, W.; Yang, F. Multi-tenant GPU Clusters for Deep Learning
Workloads: Analysis and Implications. Technical Report, Microsoft Research, 2018. pp. 1–14. Available online: https:
//www.microsoft.com/en-us/research/uploads/prod/2018/05/gpu_sched_tr.pdf (accessed on 13 September 2024).

21. Zobaed, S.; Mokhtari, A.; Champati, J.P.; Kourouma, M.; Salehi, M.A. Edge-multiAI: Multi-tenancy of latency-sensitive deep
learning applications on edge. In Proceedings of the 2022 IEEE/ACM 15th International Conference on Utility and Cloud
Computing (UCC), Vancouver, WA, USA, 6–9 December 2022; pp. 11–20.

22. PyTorch. Available online: https://pytorch.org/ (accessed on 20 July 2021).
23. Tensorflow. Available online: https://www.tensorflow.org/?hl=en (accessed on 20 July 2021).
24. Chien, S.D.; Markidis, S.; Sishtla, C.; Santos, L.; Herman, P.; Narasimhamurthy, S.; Laure, E. Characterizing Deep-Learning I/O

Workloads in TensorFlow. In Proceedings of the 2018 IEEE/ACM 3rd International Workshop on Parallel Data Storage & Data
Intensive Scalable Computing Systems (PDSW-DISCS), Dallas, TX, USA, 12 November 2018; pp. 54–63. [CrossRef]

25. Park, S.; Bahn, H. Performance Analysis of Container Effect in Deep Learning Workloads and Implications. Appl. Sci. 2023,
13, 11654. [CrossRef]

26. Dey, T.; Sato, K.; Nicolae, B.; Guo, J.; Domke, J.; Yu, W.; Cappello, F.; Mohror, K. Optimizing Asynchronous Multi-Level
Checkpoint/Restart Configurations with Machine Learning. In Proceedings of the 2020 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), New Orleans, LA, USA, 18–22 May 2020; pp. 1036–1043. [CrossRef]

http://doi.org/10.1145/3234150
http://dx.doi.org/10.1109/JPROC.2023.3238524
http://dx.doi.org/10.3390/s24020564
http://www.ncbi.nlm.nih.gov/pubmed/38257657
http://dx.doi.org/10.3390/app14073022
http://dx.doi.org/10.1109/ACCESS.2022.3208584
http://dx.doi.org/10.1109/TPDS.2023.3274957
http://dx.doi.org/10.3390/aerospace11010047
http://dx.doi.org/10.1109/ICTC46691.2019.8939564
http://dx.doi.org/10.1007/s11633-019-1194-7
http://dx.doi.org/10.1016/j.mlwa.2021.100164
http://dx.doi.org/10.1016/j.array.2021.100057
http://dx.doi.org/10.1145/3555661.3560856
http://dx.doi.org/10.3390/rs12162646
http://dx.doi.org/10.1109/ICUAS.2019.8797866
http://dx.doi.org/10.1126/science.aba3758
http://dx.doi.org/10.1109/TWC.2020.3041750
http://dx.doi.org/10.1109/JSAC.2018.2864420
https://www.microsoft.com/en-us/research/uploads/prod/2018/05/gpu_sched_tr.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2018/05/gpu_sched_tr.pdf
https://pytorch.org/
https://www.tensorflow.org/?hl=en
http://dx.doi.org/10.1109/PDSW-DISCS.2018.00011
http://dx.doi.org/10.3390/app132111654
http://dx.doi.org/10.1109/IPDPSW50202.2020.00174

Appl. Sci. 2024, 14, 8848 15 of 16

27. Nicolae, B.; Li, J.; Wozniak, J.M.; Bosilca, G.; Dorier, M.; Cappello, F. DeepFreeze: Towards Scalable Asynchronous Checkpointing
of Deep Learning Models. In Proceedings of the 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing (CCGRID), Melbourne, Australia, 11–14 May 2020; pp. 172–181. [CrossRef]

28. Axboe, J. Flexible I/O Tester (FIO). 2024. Available online: https://github.com/axboe/fio (accessed on 13 September 2024).
29. Choi, J.; Kang, D. Overlapped Data Processing Scheme for Accelerating Training and Validation in Machine Learning. IEEE

Access 2022, 10, 72015–72023. [CrossRef]
30. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
31. Goh, A. Back-propagation neural networks for modeling complex systems. Artif. Intell. Eng. 1995, 9, 143–151. [CrossRef]
32. Li, M.; Zhang, T.; Chen, Y.; Smola, A.J. Efficient mini-batch training for stochastic optimization. In Proceedings of the 20th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014;
pp. 661–670. [CrossRef]

33. Gupta, T.; Krishnan, S.; Kumar, R.; Vijeev, A.; Gulavani, B.; Kwatra, N.; Ramjee, R.; Sivathanu, M. Just-In-Time Checkpointing:
Low Cost Error Recovery from Deep Learning Training Failures. In Proceedings of the Nineteenth European Conference on
Computer Systems, Athens, Greece, 22–25 April 2024; pp. 1110–1125. [CrossRef]

34. Xiang, L.; Lu, X.; Zhang, R.; Hu, Z. SSDC: A Scalable Sparse Differential Checkpoint for Large-scale Deep Recommendation
Models. In Proceedings of the 2024 IEEE International Symposium on Circuits and Systems (ISCAS), Singapore, 19–22 May 2024;
pp. 1–5. [CrossRef]

35. Jang, H.; Song, J.; Jung, J.; Park, J.; Kim, Y.; Lee, J. Smart-Infinity: Fast Large Language Model Training using Near-Storage
Processing on a Real System. In Proceedings of the 2024 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), Edinburgh, UK, 2–6 March 2024; pp. 345–360. [CrossRef]

36. Noura, H.N.; Azar, J.; Salman, O.; Couturier, R.; Mazouzi, K. A deep learning scheme for efficient multimedia IoT data
compression. Ad Hoc Netw. 2023, 138, 102998. [CrossRef]

37. Rajbhandari, S.; Ruwase, O.; Rasley, J.; Smith, S.; He, Y. ZeRO-infinity: Breaking the GPU memory wall for extreme scale deep
learning. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis,
St. Louis, MO, USA, 14–19 November 2021; pp. 1–14. [CrossRef]

38. Zhang, W.; Yu, S.; Wang, L.; Guo, W.; Leung, M.F. Constrained Symmetric Non-Negative Matrix Factorization with Deep
Autoencoders for Community Detection. Mathematics 2024, 12, 1554. [CrossRef]

39. Lv, C.; Yang, L.; Zhang, X.; Li, X.; Wang, P.; Du, Z. Unmanned Aerial Vehicle-Based Compressed Data Acquisition for
Environmental Monitoring in WSNs. Sensors 2023, 23, 8546. [CrossRef] [PubMed]

40. Ebrahimi, D.; Sharafeddine, S.; Ho, P.H.; Assi, C. UAV-aided projection-based compressive data gathering in wireless sensor
networks. IEEE Internet Things J. 2018, 6, 1893–1905. [CrossRef]

41. Ebrahimi, D.; Sharafeddine, S.; Ho, P.H.; Assi, C. Data Collection in Wireless Sensor Networks Using UAV and Compressive
Data Gathering. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab
Emirates, 9–13 December 2018; pp. 1–7. [CrossRef]

42. Zheng, W.; Song, Y.; Guo, Z.; Cui, Y.; Gu, S.; Mao, Y.; Cheng, L. Target-based Resource Allocation for Deep Learning Applications
in a Multi-tenancy System. In Proceedings of the 2019 IEEE High Performance Extreme Computing Conference (HPEC), Waltham,
MA, USA, 24–26 September 2019; pp. 1–7. [CrossRef]

43. Nikolaidis, S.; Venieris, S.I.; Venieris, I.S. MultiTASC: A Multi-Tenancy-Aware Scheduler for Cascaded DNN Inference at the
Consumer Edge. In Proceedings of the 2023 IEEE Symposium on Computers and Communications (ISCC), Gammarth, Tunisia,
9–12 July 2023; pp. 411–416. [CrossRef]

44. Rasch, M.J.; Mackin, C.; Gallo, M.L.; Chen, A.; Fasoli, A.; Odermatt, F.; Li, N.; Nandakumar, S.R.; Narayanan, P.; Tsai, H.; et al.
Hardware-aware training for large-scale and diverse deep learning inference workloads using in-memory computing-based
accelerators. Nat. Commun. 2023, 14, 5282. [CrossRef]

45. Dettmers, T.; Pagnoni, A.; Holtzman, A.; Zettlemoyer, L. Qlora: Efficient finetuning of quantized llms. Adv. Neural Inf. Process.
Syst. 2024, 36, 1–28.

46. Guo, M.; Dong, Z.; Keutzer, K. SANA: Sensitivity-Aware Neural Architecture Adaptation for Uniform Quantization. Appl. Sci.
2023, 13, 10329. [CrossRef]

47. Gzip. Available online: https://www.gzip.org/ (accessed on 20 July 2021).
48. Multiprocessing. Available online: https://docs.python.org/ko/3/library/multiprocessing.html (accessed on 20 July 2023).
49. Pal, S.K.; Pramanik, A.; Maiti, J.; Mitra, P. Deep learning in multi-object detection and tracking: State of the art. Appl. Intell. 2021,

51, 6400–6429. [CrossRef]
50. Dai, Y.; Hu, Z.; Zhang, S.; Liu, L. A survey of detection-based video multi-object tracking. Displays 2022, 75, 1–17. [CrossRef]
51. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE

Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]
52. Zeng, F.; Dong, B.; Zhang, Y.; Wang, T.; Zhang, X.; Wei, Y. MOTR: End-to-End Multiple-Object Tracking with TRansformer. In

Proceedings of the European Conference on Computer Vision (ECCV), Tel Aviv, Israel, 23–27 October 2022, pp. 659–675.
53. Du, D.; Zhu, P.; Wen, L.; Bian, X.; Lin, H.; Hu, Q.; Peng, T.; Zheng, J.; Wang, X.; Zhang, Y.; et al. VisDrone-DET2019: The

Vision Meets Drone Object Detection in Image Challenge Results. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV) Workshops, Seoul, Republic of Korea, 27–28 October 2019; pp. 1–14.

http://dx.doi.org/10.1109/CCGrid49817.2020.00-76
https://github.com/axboe/fio
http://dx.doi.org/10.1109/ACCESS.2022.3189373
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1016/0954-1810(94)00011-S
http://dx.doi.org/10.1145/2623330.2623612
http://dx.doi.org/10.1145/3627703.3650085
http://dx.doi.org/10.1109/ISCAS58744.2024.10557880
http://dx.doi.org/10.1109/HPCA57654.2024.00034
http://dx.doi.org/10.1016/j.adhoc.2022.102998
http://dx.doi.org/10.1145/3458817.3476205
http://dx.doi.org/10.3390/math12101554
http://dx.doi.org/10.3390/s23208546
http://www.ncbi.nlm.nih.gov/pubmed/37896638
http://dx.doi.org/10.1109/JIOT.2018.2878834
http://dx.doi.org/10.1109/GLOCOM.2018.8647924
http://dx.doi.org/10.1109/HPEC.2019.8916403
http://dx.doi.org/10.1109/ISCC58397.2023.10217872
http://dx.doi.org/10.1038/s41467-023-40770-4
http://dx.doi.org/10.3390/app131810329
https://www.gzip.org/
https://docs.python.org/ko/3/library/multiprocessing.html
http://dx.doi.org/10.1007/s10489-021-02293-7
http://dx.doi.org/10.1016/j.displa.2022.102317
http://dx.doi.org/10.1109/TPAMI.2016.2577031

Appl. Sci. 2024, 14, 8848 16 of 16

54. Mokhtari, A.; Hossen, M.A.; Jamshidi, P.; Salehi, M.A. Felare: Fair scheduling of machine learning tasks on heterogeneous edge
systems. In Proceedings of the 2022 IEEE 15th International Conference on Cloud Computing (CLOUD), Barcelona, Spain, 10–16
July 2022; pp. 459–468.

55. Filho, C.P.; Marques Jr, E.; Chang, V.; Dos Santos, L.; Bernardini, F.; Pires, P.F.; Ochi, L.; Delicato, F.C. A systematic literature
review on distributed machine learning in edge computing. Sensors 2022, 22, 2665. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/s22072665

	Introduction
	Background and Related Works
	Training and Checkpoint Mechanism in ML model
	Related Works

	Design and Implementation
	Quantization and Compression for Low Storage Costs
	Parallelism for High Performance

	Evaluation
	Experimental Setup
	The Effectiveness of Checkpoint Operations
	Analysis of Compression Rate
	Overall Training Time

	Conclusions
	References

