
Citation: Almusawi, A.; Albdairi, M.;

Qadri, S.S.S.M. Integrating

Autonomous Vehicles (AVs) into

Urban Traffic: Simulating Driving and

Signal Control. Appl. Sci. 2024, 14,

8851. https://doi.org/10.3390/

app14198851

Academic Editor: Tomasz Figlus

Received: 5 September 2024

Revised: 26 September 2024

Accepted: 27 September 2024

Published: 1 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Integrating Autonomous Vehicles (AVs) into Urban Traffic:
Simulating Driving and Signal Control
Ali Almusawi 1,* , Mustafa Albdairi 2 and Syed Shah Sultan Mohiuddin Qadri 3

1 Department of Civil Engineering, Çankaya University, Ankara 06790, Türkiye
2 Department of Civil Engineering, AL-Qalam University College, Kirkuk 36001, Iraq;

mustafa.albdairi@alqalam.edu.iq
3 Department of Industrial Engineering, Çankaya University, Ankara 06790, Türkiye;

syedshahsultan@cankaya.edu.tr
* Correspondence: ali.almusawi@cankaya.edu.tr

Abstract: The integration of autonomous vehicles into urban traffic systems offers a significant
opportunity to improve traffic efficiency and safety at signalized intersections. This study provides a
comprehensive evaluation of how different autonomous vehicle driving behaviors—cautious, normal,
aggressive, and platooning—affect key traffic metrics, including queue lengths, travel times, vehicle
delays, emissions, and fuel consumption. A four-leg signalized intersection in Balgat, Ankara, was
modeled and validated using field data, with twenty-one scenarios simulated to assess the effects
of various autonomous vehicle behaviors at penetration rates from 25% to 100%, alongside human-
driven vehicles. The results show that while cautious autonomous vehicles promote smoother traffic
flow, they also result in longer delays and higher emissions due to conservative driving patterns,
especially at higher penetration levels. In contrast, aggressive and platooning autonomous vehicles
significantly improve traffic flow and reduce delays and emissions. Mixed-behavior scenarios reveal
that different driving styles can coexist effectively, balancing safety and efficiency. These findings
emphasize the need for optimized autonomous vehicle algorithms and signal control strategies
to harness the potential benefits of autonomous vehicle integration in urban traffic systems fully,
particularly in terms of improving traffic performance and sustainability.

Keywords: autonomous vehicles; signalized intersection; PTV VISSIM; microscopic simulation;
traffic performance; penetration rate

1. Introduction

In the ever-evolving landscape of urban transportation, the integration of autonomous
vehicles (AVs) stands as a pivotal advancement that holds the promise of reshaping how we
navigate our cities [1,2]. Autonomous driving technology has garnered considerable atten-
tion for its potential to revolutionize traffic dynamics, enhance road safety, and contribute
to sustainable urban living [3,4]. As cities globally explore the possibilities of incorporat-
ing AVs into their traffic ecosystems, a critical point of intersection arises at signalized
intersections essential nodes in urban traffic management [5,6].

Among the various driving behaviors associated with AVs, platooning has emerged
as a particularly promising approach. Vehicle platooning involves a group of AVs traveling
in coordinated formations, maintaining short gaps between one another through real-time
communication and synchronization. The key benefits of platooning include reduced aero-
dynamic drag, which improves fuel efficiency, and more coordinated vehicle movements
that enhance road capacity and traffic flow [7]. By reducing inter-vehicle gaps, platoons
can minimize the stop-and-go behavior common in mixed traffic environments, leading
to smoother traffic flow and reduced congestion, especially at intersections. Additionally,
vehicle platooning contributes to lower emissions due to more efficient driving patterns,
making it a key strategy for promoting sustainable urban mobility.
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AVs are heralded as the vanguard of a transformative era in urban mobility, promising
to revolutionize transportation systems and redefine the relationship between humans and
their vehicles [8]. However, the integration of AVs into existing traffic systems presents
unique challenges, particularly in the context of signalized intersections. Previous studies
have explored various aspects of AV integration, including their impact on traffic flow sta-
bility and throughput on highways [1,2], and the influence of dedicated lanes for connected
and autonomous vehicles [3]. Despite these advancements, there remains a significant gap
in understanding the effects of AV driving behaviors at urban intersections.

Cautious AVs prioritize safety and adherence to traffic rules [7–9]. Mimicking conser-
vative human driving styles, they are expected to exhibit a restrained approach, avoiding
abrupt maneuvers, and ensuring a conservative interaction with the traffic environment.
The risk-averse nature of cautious AVs is expected to lead to increased queue lengths and
travel times, especially under high-penetration scenarios. Normal AVs, representing a
balance between safety and efficiency [10], are anticipated to emulate standard human
driving patterns. Their behavior is expected to closely mirror the traffic dynamics observed
in a conventional, human-driven scenario. At moderate penetration rates, their influence
on key traffic parameters may maintain a neutral impact, aligning closely with the natural
flow of traffic. In contrast, aggressive AVs are engineered to prioritize efficiency [11], often
characterized by dynamic driving and optimized traffic flow. It is anticipated that their as-
sertive maneuvers and quick decision-making may result in decreased queue lengths, travel
times, and delays. However, the potential trade-off could involve an increase in emissions
and fuel consumption. Platoon-forming AVs operate in cohesive groups, synchronized for
optimal traffic flow [12,13]. Through leveraging communication and coordination, these
vehicles aim to reduce gaps between each other, potentially minimizing congestion and
improving overall intersection efficiency.

Despite these advancements, there remains a lack of comprehensive studies that
address how different AV driving behaviors impact the performance of urban intersections
under various traffic signal cycle times. This study aims to fill this gap by investigating
the impact of cautious, normal, aggressive, and platoon-forming AV behaviors on traffic
performance at a four-leg signalized intersection with heavy traffic volume.

Objectives and Contributions of the Study

• Detailed Analysis of AV Behaviors: This research offers a comparative analysis of the
impact of different AV driving behaviors (cautious, normal, aggressive, and platoon-
forming) on intersection performance.

• Signal Timing Optimization: This study explores the optimization of traffic signal
cycle times (60, 80, 100, 120, 140, 160, 180, and 204 s) to enhance intersection efficiency
in the presence of AVs.

• Comprehensive Performance Metrics: This research evaluates multiple performance
metrics, including queue lengths, travel time, vehicle delay, and emissions, providing
a holistic assessment of AV integration.

• Simulation-Based Analysis: Utilizing the PTV VISSIM traffic simulation model, this
study provides insights into the optimal integration of AVs into urban traffic systems.

By addressing these aspects, this study seeks to provide valuable insights into the
optimal strategies for integrating AVs into urban traffic systems, thereby contributing to
the ongoing discourse on sustainable and efficient urban mobility.

2. Literature Review

The integration of AVs into urban traffic systems has garnered considerable attention,
with numerous studies exploring their potential impacts on traffic performance and effi-
ciency. Existing study has predominantly focused on understanding how AVs affect traffic
flow, safety, and congestion at signalized intersections and other critical points in urban
infrastructure (Table 1).
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Table 1. Summary of studies investigating the impact of AV transportation systems.

Reference Year The Study Objective Methodology/Tools Used Key Findings

[14] 2016

Investigate the impact of CAVs
and AVs on traffic flow
stability and throughput;
optimize AHS performance

Microscopic traffic flow
simulation model; developed
control schemes and
simulation frameworks

CAVs and AVs enhance traffic flow
stability and throughput, optimize
AHS capacity, reduce congestion,
and minimize emissions.

[15] 2016
Investigate the effects of AVs
on driver behavior and traffic
performance

Literature survey and
microscopic traffic simulation
using VISSIM

AVs improve average density by
8.09%, travel speed by 8.48%, and
travel time by 9.00% during peak
hours. AVs reduce congestion and
improve safety. CVs near AVs
adopt shorter THW. AVs reduce
situation awareness and may
increase drowsiness.

[16] 2018
Investigate the impact of CAV
dedicated lanes on traffic flow
throughput

Developed a three-lane
heterogeneous flow model;
analyzed CAV dedicated lane
policy impact on throughput

CAV dedicated lanes achieved
higher flow rates. Overall traffic
flow throughput increased with
higher CAV penetration rates. The
optimal strategy is one
CAV-dedicated lane above 40%
penetration, and two lanes above
60%. Individual CAV performance
is crucial for lane effectiveness.

[17] 2018

Investigate how AVs
technology can enhance
operations and increase
capacity of weaving sections

Developed a multiclass hybrid
model; calibrated and
validated using empirical data
from a weaving section;
applied in a simulation-based
optimization framework

Higher penetration of AVs
increases weaving section capacity.
Non-linear capacity increase
observed. Optimal lane change
distributions can prevent capacity
reduction. Potential capacity
increase of up to 15%.

[18] 2019 Investigate the potential effects
of AVs on road transportation

Literature review of existing
studies on AV impacts

AVs can improve traffic flow,
pedestrian mobility, travel
demand, safety, and reduce
emissions. Uncertainties exist
regarding long-term effects on
energy, emissions, pedestrian
interaction, and safety.

[19] 2019

Explore the role of CAVs and
AVs in enhancing
transportation systems’
efficiency, safety, and
sustainability; assess urban
infrastructure’s impact on
transportation networks and
the benefits of integrating
CAVs; provide
recommendations for
policymakers and urban
planners

PTV Vissim simulation, data
collection points, vehicle travel
time, queue counters;
statistical analysis and
visualization tools; literature
review and expert
consultations

CAVs improve traffic flow
efficiency, reduce queue delays
and travel times. The study
highlighted the importance of
urban infrastructure in supporting
CAV integration, providing
recommendations for effective
transportation planning with
CAVs.

[20] 2020
Analyze the impact of CAV
clustering strategies on mixed
traffic flow characteristics

Analysis of vehicle trajectory
data; compared ad hoc and
local coordination strategies
for CACC

Local coordination outperforms ad
hoc in network throughput.
Improved network performance
and safety. Hard braking events
for HVs change significantly under
local coordination.

[21] 2020
Investigate how AVs influence
road capacity in urban traffic
networks

Simulations using SUMO
software; analyzed grid and
real-world networks with
varying AV penetration levels

AVs increase road network
capacity. Maximum traffic flows
with 100% AVs were 16–23%
higher than with only conventional
vehicles. Significant capacity
improvements were observed
around 40–50% AVs penetration.
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Table 1. Cont.

Reference Year The Study Objective Methodology/Tools Used Key Findings

[22] 2021
Review of car-following
models for human and
autonomous driving behaviors

Literature review of
car-following models;
comparison of traditional cars
with human drivers to AVs;
discussion on AV-ready tools
in micro-simulation platforms

Provides an overview of various
car-following models for both
human-driven and AVs.
Highlights the importance of
AV-ready tools in micro-simulation
platforms for accurate modeling of
vehicle dynamics and
environments.

[23] 2021
Identify the impacts of shared
AVs on urban parking and
space management.

Formulated an estimation
method; conducted a case
study in a 673,220 m2 area
using real data and previous
studies; analyzed parking
demand, vehicle ownership,
and space reallocation

Shared AVs can significantly
reduce parking space demand,
allowing reallocation for other
uses such as bike-sharing spots,
bike lanes, additional traffic lanes,
or parklets. Positive implications
for urban space management and
city planning.

[24] 2022

Analyze the impacts of AV
driving logics on traffic
performance; assess
AV-readiness of infrastructures
and changes in driving
behaviors

Microscopic traffic simulation
using PTV Vissim; various
scenarios and simulations to
evaluate effects of AVs

AV driving logics and physical
interventions improve traffic
performance. AV-readiness of
infrastructures and change in
driving behaviors should be
assessed for better performance.

[25] 2023

Evaluate the impact of AV
driving logics on traffic
performance at a four-leg
signalized intersection in a
Swedish urban context

Microscopic traffic simulation
using PTV Vissim; literature
review; developed a model of
a four-leg intersection in
Norrköping; simulated AV
behaviors: cautious, normal,
and all-knowing with different
penetration rates

AVs improve traffic performance.
All-knowing AVs are most efficient.
Cautious AVs negatively impact
performance. A 50% penetration
rate of all-knowing Avs is
necessary for significant
improvements.

For instance, Peng et al. [14] investigated the influence of CAVs and AVs on traffic
flow stability and throughput, highlighting the enhanced performance of automated high-
way systems (AHS) using control schemes and simulation frameworks [14]. Similarly,
a study examined the effects of AVs on driver behavior and traffic performance using
VISSIM, finding improvements in average density, travel speed, and travel time during
peak hours [15].

Research has focused on the impact of dedicated lanes for CAVs and AVs, demon-
strating that higher flow rates and overall traffic throughput are achievable with increased
AV penetration rates [16]. Another study explored how AVs technology can enhance the
capacity of freeway weaving sections, showing potential capacity increases of up to 15%
with higher AV penetration [17].

Recent studies have also delved into the broader implications of AV integration.
One literature review conducted on the potential effects of AVs on road transportation
emphasized improvements in traffic flow, pedestrian mobility, travel demand, safety, and
emissions reduction, while also noting uncertainties regarding long-term impacts [18].
Another study explored the role of CAVs and AVs in enhancing transportation systems’
efficiency and sustainability, using PTV Vissim simulation and other tools to provide
recommendations for urban planners and policymakers [19].

Zhong et al. [20] analyzed the impact of CAV clustering strategies on mixed traffic flow,
comparing local coordination with ad hoc strategies. While this study focused on vehicle
coordination strategies, our research addresses how different AV behaviors, including
platoon-forming, impact performance at intersections, which presents a unique intersection
of traffic signal optimization and driving behavior.

Lu et al. [21] simulated how AVs influence road capacity in urban networks, finding
that AVs increase road network capacity by 16–23% at full penetration. However, our
research builds upon this by investigating the role of AV penetration rates in mixed-traffic
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environments and their impact on intersection-specific metrics like delays, emissions, and
fuel consumption.

Ahmed et al. [22] provided a review of car-following models for AVs and human-
driven vehicles, highlighting the importance of AV-ready tools in simulation platforms. Our
study similarly leverages advanced traffic simulation tools (PTV VISSIM) but applies them
to specific intersection performance metrics, offering practical insights into AV behavior’s
effect on urban traffic.

Silva et al. [23] examined the impact of shared AVs on urban parking and space
management, showing that shared AVs can reduce parking space demand. Although
this study is centered on urban space management, our research is focused on traffic
performance and how different AV driving logics affect key metrics at intersections.

Finally, Ahmed et al. [24] and Desta [25] explored AV driving logics and their im-
pacts on traffic performance. Ahmed et al. [24] analyzed various scenarios using PTV
VISSIM, highlighting the importance of assessing AV-readiness in infrastructure. Similarly,
Desta [25] focused on traffic performance at a four-leg intersection in Sweden, finding
that cautious AVs negatively impact performance. Our study aligns with these insights
by evaluating how different AV behaviors, including cautious and aggressive behaviors,
influence intersection performance, but we also explore the effects of platooning and signal
timing optimization, adding a unique dimension to the analysis.

Despite the extensive research on AVs, there remains a gap in understanding the
nuanced effects of different AV driving behaviors—cautious, normal, aggressive, and
platoon—at signalized intersections. This study aims to fill this gap by evaluating the
impact of these behaviors on traffic performance, including queue lengths, travel times,
delays, emissions, and fuel consumption, at a four-leg signalized intersection with heavy
traffic volume and different cycle time optimizations. By incorporating these diverse AV
behaviors and varying penetration rates, this research provides a comprehensive analysis
that enhances the existing body of knowledge and offers practical insights for urban traffic
management and AV integration strategies.

This study distinguishes itself from previous research by focusing not only on the
individual effects of AV driving behaviors (cautious, normal, aggressive, and platooning)
but also on their interaction with signal control optimization at a heavily trafficked urban
intersection. This work specifically examines the impact of these behaviors across varying
AV penetration rates and cycle times, with a particular emphasis on the role of signal
control optimization. By evaluating performance metrics such as queue lengths, delays,
emissions, and fuel consumption under these diverse conditions, this research offers a
comprehensive perspective on how optimizing signal timing can influence the integration
of AVs in urban traffic systems.

3. Methodology
3.1. Study Location

This study was conducted at a signalized traffic intersection located in Balgat, Ankara,
Turkey, specifically at the intersection of Kızılırmak, Ufuk Ünv. Cd No:18, 06520
Çankaya/Ankara, as shown in Figure 1. This intersection was chosen based on its repre-
sentation of typical urban traffic conditions and its suitability for evaluating the impact
of AVs on traffic dynamics. The specific location details, including traffic volume, signal
timings, and geometric characteristics, were considered to ensure the simulation’s accuracy
and relevance to real-world scenarios.
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Figure 1. Geographical depiction of the signalized traffic intersection in Balgat, Ankara. Source: PTV
VISSIM model.

3.2. Research Methodology Overview

Figure 2 presents a comprehensive overview of the research methodology. The data
collection phase involves gathering various traffic metrics, including average travel time,
queue lengths, speed observations, and traffic volume with signal timing. The meth-
ods section outlines the use of the PTV VISSIM model, focusing on car-following and
lane-changing behavior. Model calibration includes adjustments for lane changes and
intersection links, followed by validation to ensure accuracy. The validated model is then
used for traffic metrics analysis, signal control optimization, and safety assessments. The
results are compared before and after optimization to draw conclusions.

Figure 2. Flowchart of research methodology. Source: processed by authors.
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3.3. Data Collection

The traffic volume data were extracted from video analysis conducted during peak
morning hours from 7:00 to 8:00 AM, as presented in Table 2. A total of 5386 vehicles were
recorded during this period. The 7:00 to 8:00 AM timeframe was chosen as it represents
the peak traffic period, capturing the highest levels of commuter traffic and providing a
thorough overview of traffic flow and congestion levels, and the cycle time of 204 s as
shown in Figure 3.

Table 2. Traffic volume data at the studied signalized intersection.

Bound Vehicles (Veh/h)
Movement (Veh/h)

Right Straight Left

North 1793 225 679 889
East 1033 814 157 62

South 1508 244 1228 36
West 1052 28 132 892

Figure 3. Traffic signal setup of the signalized intersection in Balgat, Ankara. Source: PTV
VISSIM model.

The total traffic volume consists of different vehicle types, including buses, passenger
vehicles, and trucks. The number of buses has been factored by multiplying 2.25 by the
total number of buses, while the total number of trucks has been factored by multiplying
by 1.75, according to the guidelines provided in “Arahan Teknik (Jalan) 8/86” by JKR.

3.4. Speed Observation

Speed observations were conducted to analyze the travel behavior of vehicles at the
studied intersection. A sample of 20 vehicles was observed for each direction (north and
south) during green signal phases. The observations were conducted over a fixed distance
of 150 m, and the speed of each vehicle was measured using a stopwatch. The recorded
speeds were compiled in Table 3. The analysis revealed that 40% of the observed vehicles
traveled within the speed range of 20 km/h to 27 km/h. Additionally, 42.50% of vehicles
were observed to be traveling at speeds ranging from 28 km/h to 36 km/h, while 17.5%
were traveling between 36 km/h and 39 km/h, as shown in Figure 4.
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Table 3. Speed observations during green signal phases.

Vehicle
No.

Distance
(m)

North-Bound South-Bound

Time (s) Speed (km/h) Time (s) Speed (km/h)

1 150 18.68 28.91 27.69 19.50
2 150 15.61 34.59 22.22 24.30
3 150 25.12 21.49 19.92 27.11
4 150 26.47 20.40 17.31 31.19
5 150 14.52 37.19 23.47 23.01
6 150 19.08 28.30 20.93 25.80
7 150 22.78 23.71 26.08 20.71
8 150 16.82 32.10 18.88 28.60
9 150 20.15 26.78 16.41 32.91

10 150 14.17 38.11 18.18 29.70
11 150 24.00 22.5 17.82 30.30
12 150 16.98 31.80 16.16 33.42
13 150 13.95 38.71 14.28 37.82
14 150 24.43 22.10 20.07 26.91
15 150 16.02 33.71 15.38 35.11
16 150 19.08 28.30 24.32 22.20
17 150 17.71 30.49 15.65 34.50
18 150 14.67 36.81 25.00 21.60
19 150 10.47 51.58 21.51 25.10
20 150 21.42 25.21 17.14 31.51

Figure 4. Desired speed distribution of human passenger vehicles. Source: field data collected by
authors.

The speed characteristics of AVs were investigated through simulations, considering
the full penetration of each autonomous behavior and their interaction with human-driven
passenger vehicles. The optimal speed was determined by observing how AVs interacted
with human-driven vehicles under different traffic conditions, particularly in a congested
environment. Although a desired speed was set in the simulation, the model naturally
adjusted the actual speeds of AVs based on the surrounding traffic, considering factors like
vehicle acceleration, deceleration, and lane-changing possibilities. This approach allowed
us to identify the effective operating speed of AVs in real-world-like traffic scenarios. The
analysis revealed that the speed of AVs, both in isolated scenarios and when mixed with
human traffic, is within the range of 27 to 31 km/h. These results are depicted in Figure 5.
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Figure 5. Desired speed distribution of AVs. Source: simulated data processed by authors.

3.5. Car Following Models and Lane Change Models

In the Wiedemann model, human driving behavior is recognized as naturally varying,
considering that each driver possesses unique abilities in terms of perception, reaction,
and assessing traffic flow [20,25]. The model delineates four driving states: free flow,
approaching, following, and critical situation, as illustrated in Figure 6. These states are
defined by specific thresholds: ABX and SDX (absolute braking threshold and safe distance
threshold in meters) represent the minimum and maximum gap distances during following,
respectively; CLDV (closing distance in meters per second) indicates the point at which
the driver becomes aware of the narrowing gap; and SDV (sensitive distance in meters) is
the critical point when the driver recognizes their proximity to the vehicle ahead. OPDV
(opening distance in meters per second) marks the point when the driver realizes they are
traveling slower than the vehicle in front.

Figure 6. Wiedemann car-following model. Source: [26].

PTV VISSIM incorporates two versions of the Wiedemann car-following model: Wiede-
mann 1999 and Wiedemann 1974 [22,27,28]. The main distinction between these versions
lies in their level of customization, with Wiedemann 1999 offering a greater number of
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adjustable parameters, making it more suitable for urban and congested traffic scenarios.
In contrast, Wiedemann 1974, which was originally designed for freeway conditions, uti-
lizes more rigid, hard-coded parameters [29]. As this study aims to assess the impact of
aggressive autonomous vehicles (AVs) at urban signalized intersections, the Wiedemann
1999 car-following model is utilized. The driving behavior parameters (CC) in Wiedemann
1999 are calibrated using threshold values corresponding to different driving regimes. The
PTV Group (2018) outlines the definitions and default values of these CC parameters for
human-driven vehicles in Table 4. Users have the flexibility to adjust these parameters
based on observed vehicle behaviors, including variables such as look-ahead distance,
average standstill distance, and desired safety distance components [30].

Table 4. Parameters influencing driving behavior in car following models within PTV VISSIM [25].

Wiedemann 1999 Following Model
Parameters

AV
Cautious

AV
Normal

AV
Aggressive

AV
Platoon Human

CC0 Standstill distance (m) 1.50 1.50 1.00 1.00 1.50

CC1 Gap time distribution (s) 1.5 0.9 0.6 0.5 0.9

CC2 “Following” distance oscillation (m) 0.00 0.00 0.00 0.00 4.00

CC3 Threshold for entering “Following” (s) –10.00 –8.00 –6.00 –6.00 –8.00

CC4 Negative speed difference (m/s) –0.10 –0.10 –0.10 –0.10 –0.35

CC5 Positive speed difference (m/s) 0.10 0.10 0.10 0.10 0.35

CC6 Distance dependency of oscillation
(10−4 rad/s) 0.00 0.00 0.00 0.00 11.44

CC7 Oscillation acceleration (m/s2) 0.10 0.10 0.10 0.10 0.25

CC8 Acceleration from standstill (m/s2) 3.00 3.50 4.00 4.00 3.50

CC9 Acceleration at 80 km/h (m/s2) 1.20 1.50 2.00 2.00 1.50

The Wiedemann 1999 model is designed for capture and includes more parameters of
driving behaviors:

• CC0: Standstill distance (the desired gap between two stationary vehicles in meters).
• CC1: Following distance (the time-based component of the desired safety distance,

dependent on speed in seconds).
• CC2: Longitudinal oscillation (the distance a driver allows before closing in on the

vehicle ahead in meters).
• CC3: Perception threshold for following (the point at which the driver initiates decel-

eration in seconds).
• CC4 and CC5: Negative and positive speed differences (sensitivity to the acceleration

or deceleration of the vehicle in front in meters per second).
• CC6: Speed influence on oscillation (how distance affects speed fluctuations during

following in 10−4 rad/s).
• CC7: Oscillation acceleration (the minimum acceleration or deceleration applied when

following another vehicle in m/s2).
• CC8 and CC9: Desired acceleration from a standstill and at 80 km/h. in m/s2

The Wiedemann 1999 model determines the acceleration of the following vehicle
(

a f

)
by considering its speed relative to and the distance from the leading vehicle. This model
functions across various driving regimes: free driving, where the vehicle accelerates to
reach its desired speed when it is far from the vehicle ahead; approaching, where it modifies
its speed to prevent a collision; following, where it keeps a safe distance; and braking,
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where it slows down to avoid a crash. A central aspect of the model is the desired safety
distance

(
s f

)
, which is defined by Equation (1).

s f = s0 + v f ·Tf +
v f ·∆v f

2
√

ab·b
(1)

Here, s0 denotes the minimum standstill distance (CC0), v f represents the speed
of the following vehicle, and Tf indicates the safe time headway (CC1). The term ∆v f
refers to the difference in speed between the following and leading vehicles, ab is the
maximum acceleration capability of the following vehicle, and b represents the comfortable
deceleration rate.

Equation (2) outlines how the acceleration of the following vehicle in (m/s2)
(

a f ollower

)
is determined by evaluating the current gap between vehicles relative to the desired safety
distance, as well as the speed difference between the vehicles [31].

a f ollower = a·
(

1 −
(v f

v0

)δ

−
( s f

s

)2
)

(2)

In this context, a stands for the maximum acceleration in (m/s2), v f refers to the
current speed of the following vehicle in (m/s), and v0 indicates the desired speed in (m/s).
The exponent δ, usually set to 4 (unitless), is applied in the calculation. The desired safety
distance is denoted by s f in (m), while s represents the current gap to the vehicle ahead (m).

Table 4 outlines the parameters related to car following model’s parameters used in
the PTV VISSIM model.

The decision to execute a lane change is determined by the gap acceptance criterion,
where a vehicle i assesses the available space g in the target lane to determine if it is
adequate for a safe maneuver. This evaluation includes checking the front gap, g f in (m)
(Equation (3)), and the rear gap, gr in (m) (Equation (4)):

g f = xlead − xi − li, (3)

gr = xi − x f ollower − l f ollower, (4)

where xlead represents the position of the leading vehicle in the target lane in (m), while
xi denotes the position of the subject vehicle in (m). The length of the subject vehicle is
indicated by li in (m). Additionally, x f ollower refers to the position of the following vehicle
in the target lane in (m), and l f ollower is the length of the following vehicle in (m). A
vehicle will change lanes if both the front gap (g f ) and the rear gap (gr) are greater than
the respective minimum acceptable gaps (g f ,min and gr,min). The minimum acceptable gap
g f ,min is influenced by safety distance, relative speeds, and deceleration.

During the lane change, the deceleration d accepted by the subject vehicle and the
trailing vehicle in the target lane can be expressed in Equation (5):

di =
(vlead − vi)

2

2·
(

g f − s0

) , (5)

d f ollower =

(
vi − v f ollower

)2

2·(gr − s0)
. (6)

In this context, vlead refers to the speed of the leading vehicle in the target lane in
(m/s), while v f ollower is the speed of the following vehicle in the target lane in (m/s). A
lane change is carried out if both di and d f ollower fall within acceptable limits in (m/s2),
indicating the vehicles’ willingness to decelerate. Table 5 provides an overview of the lane
change parameters utilized in the PTV VISSIM model.
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Table 5. Parameters governing lane change behavior in PTV VISSIM [25].

Parameter’s AV
Cautious

AV
Normal

AV
Aggressive

AV
Platoon Human

Advanced merging on on on on on
Cooperative lane change on on on on off
Safety distance reduction factor 1.00 0.60 0.75 0.75 0.60
Min clearance (front/rear) in (m) 1.00 0.50 0.50 0.50 0.50
Maximum deceleration for cooperative
braking in (m/s2) –2.50 –3.00 –6.00 –6.00 –3.00

3.6. Signal Control Optimization

To enhance the performance of the studied intersection, a signal control optimization
was conducted using the PTV VISSIM traffic simulation model. The primary goal of this
optimization was to evaluate the impact of different cycle times (60, 80, 100, 120, 140, 160,
180, and 204 s) on intersection performance, as shown in Figure 7a–g. This approach aimed
to improve the efficiency of traffic flow by adjusting the signal timings and phasing plans
to achieve a more balanced and effective distribution of green times across all approaches.
Signal control optimization plays a crucial role in managing traffic flow at intersections by
adjusting signal timings and phase sequences. This process aims to reduce delays, minimize
congestion, and improve the overall efficiency and safety of urban traffic networks [32–34].
The optimization was performed using VISSIM’s stage-based signal controller along with
priority rules [35]. Additionally, manual signal timing calculations were conducted using
Webster’s method to identify suitable traffic signal timings. The study initially considered
the original signal timings and subsequently investigated the effects of the optimized signal
control for each cycle time to assess its impact on intersection performance. The results
from the manual calculations were compared with those obtained through the optimization
conducted in VISSIM, illustrating the comparative outcomes of these optimizations.

Gathering the required input data for the timing model involves both detection and
prediction processes. These data are subsequently fed into the VISSIM simulation software,
which is managed using Python. Throughout the optimization process, VISSIM provides
critical evaluation metrics, such as delay time and queue length, to the model [36].

In traffic signal control, time delay is a critical element that impacts the evaluation of
current traffic flow and is frequently used as a key metric for assessing traffic efficiency.
The widely recognized Webster signal cross delay formula, illustrated below, is commonly
used to calculate this delay:

Di =
c(1 − gi)

2

2·(1 − yi)
+

(y i)
2

2qigi(8 − yi)
. (7)

In this formula, c represents the cycle time in (sec), gi denotes the green signal ratio
(unitless), qi is the traffic flow rate for phase in (veh/s), i and yi (unitless) indicates the
saturation level for phase i.

However, because the previous equation is only applicable when saturation is low,
Cheng et al. [37] enhanced it by introducing the following equation:

Di =
cqi(x − yi)

2

2x2(1 − yi)
+

x2

2(1 − x)
, (8)

where x represents the saturation level of the intersection (unitless).
To create an appropriate criterion for the timing scheme, the average vehicle delay

time for the cycle is utilized as the primary evaluation metric for optimizing signal timing.
The goal of the optimization process is to minimize the following formula [36]:

minD =
1
n∑n

i=1
Di
Ni

. (9)
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In this formula, n represents the number of lanes, Di denotes the cycle delay time in
(sec) for the ith lane, Ni indicates the cycle flow for each lane, and D is the average vehicle
delay time for the entire cycle.

Figure 7. Signal program optimization for the studied intersection at various cycle times: (a) 60 s
cycle time; (b) 80 s cycle time; (c) 100 s cycle time; (d) 120 s cycle time; (e) 140 s cycle time; (f) 160 s
cycle time; (g) 180 s cycle time. Source: PTV VISSIM model.

3.7. Simulation Scenarios

To examine the intricate dynamics between human-driven vehicles and AVs in the
intersections comprehensively, this study implemented a meticulously crafted set of
21 scenarios (shown in Table 6), each uniquely designed. These scenarios encompassed a
variety of AV behaviors, including aggressive, normal, and cautious behaviors, along with
diverse combinations of these behaviors, including AV platoon scenarios.
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Table 6. Overview of scenarios with different AV penetration rates and approaches.

Scenarios
AV Penetration Rates

Human
AV Cautious AV Normal AV Aggressive AV Platoon

No. 1 0.00% 0.00% 0.00% 0.00% 100.00%
No. 2 25.00% 0.00% 0.00% 0.00% 75.00%
No. 3 0.00% 25.00% 0.00% 0.00% 75.00%
No. 4 0.00% 0.00% 25.00% 0.00% 75.00%
No. 5 0.00% 0.00% 0.00% 25.00% 75.00%
No. 6 6.25% 6.25% 6.25% 6.25% 75.00%
No. 7 50.00% 0.00% 0.00% 0.00% 50.00%
No. 8 0.00% 50.00% 0.00% 0.00% 50.00%
No. 9 0.00% 0.00% 50.00% 0.00% 50.00%
No. 10 0.00% 0.00% 0.00% 50.00% 50.00%
No. 11 12.50% 12.50% 12.50% 12.50% 50.00%
No. 12 75.00% 0.00% 0.00% 0.00% 25.00%
No. 13 0.00% 75.00% 0.00% 0.00% 25.00%
No. 14 0.00% 0.00% 75.00% 0.00% 25.00%
No. 15 0.00% 0.00% 0.00% 75.00% 25.00%
No. 16 18.75% 18.75% 18.75% 18.75% 25.00%
No. 17 100.00% 0.00% 0.00% 0.00% 0.00%
No. 18 0.00% 100.00% 0.00% 0.00% 0.00%
No. 19 0.00% 0.00% 100.00% 0.00% 0.00%
No. 20 0.00% 0.00% 0.00% 100.00% 0.00%
No. 21 25.00% 25.00% 25.00% 25.00% 0.00%

3.8. Model Calibrations and Validation

During the calibration of the intersection links, modifications were required for the
east- and west-bound directions due to high traffic volumes. Although the original design
included two lanes for each direction, observations indicated that vehicles were queuing
as though there were three lanes per link in both the east and west-bound directions, as
shown in Figure 8.

Figure 8. Real-world vehicle queuing scenario in east and west-bound lanes. Source: from video
records processed by authors.

Since VISSIM allows for only one vehicle per lane, a decision was made to configure
both the east- and west-bound directions as having three lanes for each link illustrated in
Figure 9. This modification aligns the simulation model more accurately with the observed
traffic behavior, ensuring a realistic representation of the flow dynamics at the intersection.
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Figure 9. Treating the east-bound and west-bound directions as three-lane roads. Source: PTV VISSIM
model.

Additionally, another calibration point was identified, indicating that lane changes
should not occur except at exit links. Therefore, it was decided to design each lane as a
separate link for each direction, as shown in Figure 10. This decision was influenced by the
observation that drivers were selecting their destination lanes early, resulting in no lane
changes due to the substantial traffic volume.

Figure 10. Intersection design calibrated for no lane changes: each lane as a separate link. Source:
PTV VISSIM model.

3.8.1. Average Queue Length Validation

To validate the accuracy of the simulated average queue in this study, real-world data
were collected during the red signal phase at different cycle times. Queue measurements
were taken simultaneously across all lanes for each direction. The average queue length
was calculated by summing the total number of vehicles across the three lanes, multiplying
by the standard vehicle length of 4.481 m, and dividing by 3 to account for the three lanes,
as presented in Tables 7–10.

The calculated estimated average queue length was then compared with the simulated
average queue from the PTV VISSIM microsimulation platform, as shown in Figure 11.
This validation process ensured that the simulation accurately represented real-world
conditions, enhancing the reliability of the study’s findings and the subsequent analysis of
the impact of AVs on traffic dynamics at the signalized intersection. The accuracy difference
was calculated using the following formula:

Accuracy Di f f erence(%) =

(
Simulated Average Queue − Estimated Average Queue

Estimated Average Queue

)
× 100. (10)

The accuracy difference for the north-bound direction was around 6.30%. For the
east-bound direction, the simulated average queue had an accuracy difference of 10.24%. In
the south-bound direction, the accuracy difference was about 3.60%, while the west-bound
direction showed an accuracy difference of 3.54%.
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Table 7. North-bound average queue length real-world data.

Bound Num. of
Lane

Num. of Vehicles
at First Lane

Num. of Vehicles
at Second Lane

Num. of Vehicles
at Third Lane

Estimated Average
Queue (m)

North 3 12 11 8 46.303
North 3 11 14 7 47.797
North 3 13 12 6 46.303
North 3 10 11 8 43.316
North 3 16 12 6 50.784
North 3 11 14 9 50.784
North 3 13 13 6 47.797
North 3 11 12 3 38.835
North 3 17 14 4 52.278
North 3 16 11 7 50.784
North 3 13 12 6 46.303
North 3 17 14 2 49.291
North 3 12 11 5 41.822
North 3 16 9 8 49.291
North 3 17 13 4 50.784
North 3 13 11 6 44.81
North 3 13 13 7 49.291
North 3 11 11 4 38.835
North 3 12 11 9 47.797

47.011

Table 8. East-bound average queue length real-world data.

Bound Num. of
Lane

Num. of Vehicles
at First Lane

Num. of Vehicles
at Second Lane

Num. of Vehicles
at Third Lane

Estimated Average
Queue (m)

East 3 5 6 2 19.417
East 3 6 4 1 16.430
East 3 5 4 2 16.430
East 3 6 5 1 17.924
East 3 4 4 1 13.443
East 3 6 5 0 16.430
East 3 5 4 1 14.936
East 3 4 3 1 11.949
East 3 6 5 0 16.430
East 3 5 4 2 16.430
East 3 5 5 1 16.430
East 3 6 2 2 14.936
East 3 4 6 2 17.924
East 3 5 4 1 14.936
East 3 5 4 1 14.936
East 3 5 3 1 13.443
East 3 4 5 0 13.443
East 3 5 4 2 16.430
East 3 6 7 1 20.911

15.958

Table 9. South-bound average queue length real-world data.

Bound Num. of
Lane

Num. of Vehicles
at First Lane

Num. of Vehicles
at Second Lane

Num. of Vehicles
at Third Lane

Estimated Average
Queue (m)

South 3 14 12 6 47.797
South 3 14 12 9 52.278
South 3 11 14 7 47.797
South 3 18 14 4 53.772
South 3 14 13 6 49.291
South 3 16 12 7 52.278
South 3 14 14 5 49.291
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Table 9. Cont.

Bound Num. of
Lane

Num. of Vehicles
at First Lane

Num. of Vehicles
at Second Lane

Num. of Vehicles
at Third Lane

Estimated Average
Queue (m)

South 3 13 13 7 49.291
South 3 15 11 8 50.784
South 3 11 14 9 50.784
South 3 17 14 4 52.278
South 3 13 11 9 49.291
South 3 14 12 7 49.291
South 3 13 14 7 50.784
South 3 14 11 8 49.291
South 3 11 15 7 49.291
South 3 17 14 6 55.265
South 3 14 11 9 50.784
South 3 16 15 3 50.784

50.548

Table 10. West-bound average queue length real-world data.

Bound Num. of
Lane

Num. of Vehicles
at First Lane

Num. of Vehicles
at Second Lane

Num. of Vehicles
at Third Lane

Estimated Average
Queue (m)

West 3 14 13 11 56.759
West 3 13 12 12 55.265
West 3 15 12 9 53.772
West 3 13 15 6 50.784
West 3 12 13 11 53.772
West 3 14 15 8 55.265
West 3 17 13 6 53.772
West 3 15 14 8 55.265
West 3 14 13 9 53.772
West 3 13 11 12 53.772
West 3 12 13 9 50.784
West 3 14 15 6 52.278
West 3 13 12 12 55.265
West 3 14 13 11 56.759
West 3 13 11 9 49.291
West 3 12 13 13 56.759
West 3 11 10 9 44.81
West 3 13 11 8 47.797
West 3 12 11 13 53.772

53.143

Figure 11. Comparison of estimated and simulated average queue length for all directions. Source:
processed by authors.
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3.8.2. Average Travel Time Validation

To validate the accuracy of simulated travel times, a sample of 20 vehicles was ran-
domly selected for each direction, considering different signal phases. Unlike the queue
validation, these vehicles were chosen randomly during various signal times to capture a
more diverse set of traffic scenarios. The travel time for each vehicle was estimated using
a stopwatch between two fixed points spaced 150 m apart. The comparison between the
estimated and simulated travel times is presented in Table 11 and illustrated in Figure 12.

Table 11. Validation of all directions simulated average travel time against real-world data at different
signal phases.

Vehicle No.
Estimated Travel Time (sec)

North-Bound East-Bound South-Bound West-Bound

No.1 57.23 79.23 67.23 63.23
No.2 51.37 82.43 55.37 58.37
No.3 47.84 83.81 57.84 62.84
No.4 46.43 74.32 56.43 56.43
No.5 48.22 69.43 68.22 72.54
No.6 51.43 72.54 61.43 64.83
No.7 53.21 71.24 59.21 53.21
No.8 44.83 79.54 64.83 57.45
No.9 53.21 81.43 63.21 47.83

No.10 52.92 84.32 59.92 59.42
No.11 51.29 85.34 51.29 48.82
No.12 48.42 77.32 54.42 47.34
No.13 48.82 69.34 58.82 55.21
No.14 48.82 65.43 59.34 61.21
No.15 49.26 61.43 49.45 49.21
No.16 46.18 68.23 68.45 53.34
No.17 47.34 81.34 57.36 56.33
No.18 43.56 84.39 58.84 62.43
No.19 42.92 67.34 59.54 58.75
No.20 48.07 64.32 68.07 54.92

Estimated Average Travel Time 49.068 75.138 59.963 57.185

The north- and west-bound directions exhibited accuracy differences of approximately
3.87% and 2.84%, respectively, indicating a relatively close alignment between the estimated
and simulated travel times. Similarly, the east- and south-bound directions displayed
accuracy differences of approximately 4.96% and 4.86%, respectively, as shown in Figure 12.
These findings signify the effectiveness of the simulation in replicating real-world travel
time dynamics, demonstrating its capability to provide accurate representations of traffic
behavior under varying signal conditions.

The contradiction between longer queues and shorter travel times can be explained by
differences between real-world human driving and the simulated model. In the simulation,
longer queues may form due to conservative driving behaviors, with larger gaps or slower
reactions at intersections. However, once vehicles start moving, they tend to accelerate
more efficiently in the simulation, leading to smoother traffic flow and shorter travel times.
This explains why, despite longer queues, vehicles clear the intersection faster in the model
compared to real-world conditions.
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Figure 12. Comparison of estimated and simulated average travel time for all directions. Source:
processed by authors.

3.9. Emission Modeling in VISSIM

In assessing the environmental impact of autonomous vehicles (AVs) at urban intersec-
tions, accurately quantifying emissions across different traffic conditions is essential. This
study employs the emission modeling features of PTV VISSIM, utilizing the Handbook
Emission Factors for Road Transport (HBEFA) to simulate and evaluate pollutant emissions
such as CO, NOx, and particulate matter (PM). VISSIM calculates emissions using a poly-
nomial function that takes vehicle speed into account, allowing for detailed analysis of the
pollutants generated under varying driving behaviors and traffic scenarios.

E = ∑n
i=1

(
a + b·vi + c·vi

2 + d·vi
3
)
·∆t (11)

The total emissions (E) of a specific pollutant (in grams) are calculated using a polyno-
mial function, where vi represents the speed of vehicle i (in kilometers per hour), and a, b, c,
and d are empirical coefficients (unitless) specific to vehicle types and driving conditions.
The simulation time step ∆t (in seconds) is used to account for emissions generated over
time during the simulation. This allows for an accurate estimation of emissions based on
real-time vehicle behavior within the VISSIM model.

The coefficients a, b, c, and d are derived from the HBEFA model and are specifically
tailored to represent the emission characteristics of different vehicle categories, including
both autonomous and human-driven vehicles. These coefficients play a crucial role in mod-
eling the effects of various driving behaviors and traffic conditions on emission levels. They
differ based on vehicle type, engine properties, and driving patterns, enabling a realistic
evaluation of emissions across different traffic scenarios. The following is a breakdown of
these coefficients.

Coefficient a represents the baseline emissions produced when vehicles are idling
or moving at low speeds. It tends to be lower for efficient or less aggressive driving
behaviors, such as AV platooning, which minimizes idle time and low-speed operations.
Coefficient b establishes a linear relationship between speed and emissions, with higher
values typically associated with more aggressive driving styles, like AV aggressive, where
emissions increase at higher speeds. Coefficients c and d account for the nonlinear effects
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of speed on emissions, highlighting the significant impact of rapid speed fluctuations, such
as during aggressive acceleration or deceleration. These coefficients reflect how dynamic
driving behaviors influence overall emissions output.

4. Results
4.1. Average Queue Length Results

Figure 13 presents the average queue lengths across different cycle times (60 to 204 s)
for various AV driving behaviors and penetration rates, along with human-driven vehicles.
Queue lengths increase with longer cycle times for all scenarios.

Figure 13. Influence of AV behaviors on average queue lengths at various traffic signal cycle times.
Source: processed by authors.

Cautious AVs consistently show the highest queue lengths across all cycle times and
penetration rates, reflecting inefficiencies due to their conservative driving behavior, which
leads to underutilization of road capacity. Human-driven vehicles also exhibit high queue
lengths, though they perform slightly better than cautious AVs.

Aggressive AVs, across all penetration rates, demonstrate the best overall performance,
achieving the lowest queue lengths. While queue lengths increase at higher cycle times,
aggressive AVs maintain better performance compared to other behaviors. Their ability to
exploit smaller gaps and maintain faster acceleration helps keep queue lengths lower than
cautious and normal driving behaviors at all penetration rates.

Platooning AVs also show highly efficient queue length reduction due to their coor-
dinated driving, with performance nearly identical to aggressive AVs at full penetration.
The difference between the two is minimal, with aggressive AVs showing only a slight
improvement in queue lengths.

Normal AVs exhibit moderate increases in queue lengths, striking a balance between
cautious and aggressive behaviors. In mixed AV environments, queue lengths are more
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stable, falling between the extremes of cautious and aggressive behaviors, promoting
balanced traffic flow.

4.2. Average Travel Time Results

Figure 14 presents the average travel times across different cycle times (60 to 204 s) for
various AV driving behaviors and penetration rates, along with human-driven vehicles.
Travel times generally increase with longer cycle times for all scenarios.

Figure 14. Influence of AV behaviors on average travel time at various traffic signal cycle times.
Source: processed by authors.

Cautious AVs consistently show the highest travel times across all cycle times and
penetration rates, due to their conservative driving behavior, which underutilizes road
capacity and leads to inefficiencies. Human-driven vehicles also exhibit high travel times
but perform slightly better than cautious AVs, particularly at higher cycle times.

Platooning AVs with 100% penetration demonstrate the best overall performance,
achieving the lowest travel times. Their coordinated driving minimizes stop-and-go waves,
resulting in highly efficient traffic flow. Aggressive AVs, while showing slightly higher
travel times than platooning AVs, still perform well with lower travel times across all
penetration rates. The differences between aggressive AVs and platooning AVs are slight,
particularly at lower cycle times.

Normal AVs exhibit moderate increases in travel times, offering a balanced perfor-
mance between cautious and aggressive behaviors. In mixed AV environments, travel
times are more stable, falling between the extremes of cautious and aggressive behaviors,
providing smoother and more predictable traffic flow.
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4.3. Average Vehicles Delay Results

Figure 15 presents the vehicle delays across different cycle times (60 to 204 s) for
various AV driving behaviors and penetration rates, along with human-driven vehicles.
Vehicle delays increase with longer cycle times for all scenarios.

Figure 15. Influence of AV behaviors on average vehicle delay at various traffic signal cycle times.
Source: processed by authors.

Cautious AVs consistently show the highest delays across all cycle times and penetra-
tion rates due to their conservative driving behavior, which underutilizes available road
capacity. Human-driven vehicles also exhibit high delays, though they perform slightly
better than Cautious AVs at longer cycle times.

Aggressive AVs and platooning AVs with 100% penetration demonstrate the best over-
all performance, achieving the lowest delays. Aggressive AVs reduce delays by exploiting
smaller gaps and accelerating quickly, although delays increase slightly at higher cycle
times due to traffic instability. Platooning AVs, with their coordinated driving, also achieve
low delays, showing a similar performance to aggressive AVs, with only slight differences.

Normal AVs show a moderate and steady increase in delays with longer cycle times,
providing a balanced performance between cautious and aggressive behaviors. In mixed
AV environments, vehicle delays are more stable, falling between the extremes of cautious
and aggressive behaviors, leading to more-consistent and predictable traffic flow.

4.4. Average Vehicle Gas Emissions and Fuel Consumption Results

Figures 16–19 present the impact of different autonomous vehicle (AV) behaviors and
penetration rates on carbon monoxide emissions (CO), nitrogen oxides emissions (NOx),
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volatile organic compounds emissions (VOC), and fuel consumption across various traffic
signal cycle times (60 to 204 s). Emissions and fuel consumption generally decrease with
shorter cycle times across all driving behaviors and AV penetration rates.

Figure 16. Influence of AV behaviors on average CO emissions at various traffic signal cycle times.
Source: processed by authors.

Figure 17. Influence of AV behaviors on average NOx emissions at various traffic signal cycle times.
Source: processed by authors.
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Figure 18. Influence of AV behaviors on average VOC emissions at various traffic signal cycle times.
Source: processed by authors.

Figure 19. Influence of AV behaviors on average fuel consumption at various traffic signal cycle times.
Source: processed by authors.
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Cautious AVs consistently exhibit the worst performance, with the highest emissions
and fuel consumption across all cycle times. Although emissions and fuel consumption
for cautious AVs start to decrease as cycle times increase, they remain the least efficient
scenario compared to other AV behaviors.

Aggressive AVs, especially at 100% penetration, demonstrate the lowest emissions
and fuel consumption. While other AV behaviors show slight increases in emissions and
fuel consumption at higher cycle times, aggressive AVs with 100% penetration achieve the
best results by maintaining lower emissions and fuel consumption throughout all cycle
times.

Normal AVs with high penetration show improved emissions and fuel consumption
compared to human-driven vehicles, particularly at shorter cycle times. However, as cycle
times increase, emissions and fuel consumption for normal AVs begin to rise.

Platooning AVs consistently exhibit low emissions and fuel consumption, with per-
formance almost as efficient as aggressive AVs, particularly at higher penetration rates. In
mixed AV environments, emissions and fuel consumption levels remain stable, balancing
the various driving behaviors and leading to more efficient and predictable traffic flow.

5. Discussion

The integration of autonomous vehicles (AVs) into urban traffic systems has been a
focal point in recent transportation research, primarily due to the potential benefits AVs can
offer in improving traffic efficiency, reducing congestion, and minimizing environmental
impacts. This study evaluates the impact of different AV driving behaviors (cautious,
normal, aggressive, and platooning) on traffic performance at a signalized intersection. The
discussion below provides a detailed comparison of our findings with previous research,
highlights the implications of the results.

5.1. Traffic Efficiency and Flow

The findings from this study support the growing body of literature indicating that
AVs can enhance traffic flow efficiency, particularly under specific driving behaviors and
penetration rates. Aggressive and platooning AVs significantly reduced queue lengths,
travel times, and delays compared to human-driven vehicles. For instance, at a 60 s cycle
time, aggressive AVs reduced queue lengths by up to 56.62%, travel times by up to 21.15%,
and vehicle delays by up to 27.59%. Similarly, platooning AVs at 100% penetration achieved
comparable reductions, highlighting their efficiency in streamlining traffic flow.

However, the aggressive AV behavior introduced instability at higher signal cycle
times, leading to increased vehicle oscillations and traffic disturbances, particularly at a 204
s cycle time where the reductions in queue lengths and travel times dropped to about 23.14%
and 6.63%, respectively. This phenomenon aligns with the findings of [11], who highlighted
trade-offs between aggressive AV driving patterns and traffic flow stability, especially in
dense urban settings. To mitigate these issues, adaptive traffic signal control systems that
dynamically adjust to real-time traffic conditions and AV behaviors could be implemented.
Moreover, integrating cooperative AV algorithms that enable vehicle-to-vehicle and vehicle-
to-infrastructure communications could further reduce traffic oscillations.

On the contrary, cautious AVs, while enhancing safety and promoting smoother traffic
flow, resulted in longer queue lengths and higher delays, particularly at higher penetration
rates. At 100% penetration and a 60 s cycle time, cautious AVs increased queue lengths
by up to 82.30% and delays by up to 59.03%. This supports research by [4,15,38], which
suggests that risk-averse AVs may induce traffic inefficiencies due to larger gaps and slower
acceleration rates, especially in interactions with human drivers.

Normal AVs provided a more balanced performance, mitigating extremes in traffic
behavior by reducing queue lengths by up to 33.91% and delays by up to 15.26% at 60 s.
This balance suggests that normal AVs may offer an optimal compromise between efficiency
and safety in mixed-traffic environments as they navigate between the conservative and
aggressive extremes.
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In mixed AV environments, vehicle delays and queue lengths were more stable,
generally falling between the extremes presented by cautious and aggressive behaviors.
This mixed strategy led to reductions ranging from about 14.34% to 38.82% in queue lengths
and from 0.85% to 16.98% in vehicle delays at 60 s. This demonstrates that a diversified
approach to AV behavior can provide smoother and more predictable traffic flow, ensuring
broader benefits across different traffic scenarios.

5.2. Environmental Impacts: Emissions and Fuel Consumption

The results demonstrated that platooning AVs can significantly reduce emissions
(CO, NOx, VOC) and fuel consumption, particularly at shorter cycle times. For example,
platooning AVs showed a reduction in CO emissions by up to 22.9% at 60 s and decreased
fuel consumption by up to 22.85% at the same cycle time. This aligns with reductions in
NOx and VOC emissions, which further underscore the efficiency of platooning AVs in
optimizing traffic flow and reducing environmental impacts.

While the reduction in emissions and fuel consumption is notable, it is essential to
assess whether these environmental benefits justify the cost of implementing platooning
technology. Studies show that over time, the savings from reduced fuel consumption and
lower emissions, especially in high-traffic urban areas, can offset the initial investment in
AV technology [39]. Furthermore, as the technology matures and adoption rates increase,
the cost of implementation is expected to decrease, making it a more viable option for
sustainable urban transportation systems.

However, aggressive AVs consistently showed the best performance across all cycle
times, achieving the lowest emissions and fuel consumption compared to human-driven
vehicles and other AV behaviors. For instance, aggressive AVs at 100% penetration demon-
strated a reduction in CO emissions by 23.3% at 60 s, and fuel consumption decreased by
up to 23.31% at the same cycle time. These results highlight the potential of aggressive
driving algorithms to maximize efficiency and minimize environmental impacts effectively.
Although a 100% AV scenario may seem distant, evaluating it provides crucial insights into
the maximum potential of AVs to reduce emissions and fuel consumption. These bench-
marks serve as a guide for optimizing future AV driving algorithms and traffic systems. As
the vehicle fleet evolves potentially incorporating more electric or hybrid AVs this method-
ology can adapt, making the findings valuable for long-term urban transportation planning.
This study helps cities prepare for increasing AV penetration and develop strategies to
maximize environmental and operational efficiencies.

However, the results also revealed that cautious AVs, despite their smoother driving
patterns, can paradoxically increase emissions and fuel consumption in scenarios with
longer cycle times. This occurs because their conservative driving behaviors lead to
underutilization of road capacity, resulting in more idling and slower speeds, as noted in
the work of [18,40]. For example, cautious AVs at 100% penetration increased CO emissions
by 220.6% at 60 s and fuel consumption by 220.53% at the same cycle time. This finding
highlights a critical challenge for AV deployment: ensuring that overly cautious driving
algorithms do not negate the environmental benefits of AV integration, particularly in
high-traffic urban environments.

These insights provide a comprehensive view of the impact of different AV behaviors
on environmental and operational efficiencies, underlining the importance of balanced
algorithm development to harness the full potential of autonomous vehicle technologies.

5.3. Optimization of Traffic Signal Control

One of the key contributions of this study is the exploration of signal timing opti-
mization in conjunction with AV penetration rates. Our results show that optimized traffic
signal control, particularly at cycle times between 60 and 100 s, can substantially improve
both traffic flow and environmental outcomes. This observation is in line with the work
of [5], who demonstrated that coupling AV technology with signal control optimization
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can enhance traffic performance by reducing vehicle delays and improving throughput at
intersections.

This study used Webster’s method and PTV VISSIM simulation software to optimize
signal timings, and the results suggest that coordinated AV movements, particularly un-
der platooning conditions, can further enhance the benefits of optimized signal control
strategies. These findings complement the research of [26], who found that integrating AV
control algorithms with signal optimization can minimize delays, CO emissions, and fuel
consumption in urban traffic networks.

Despite these benefits, our findings also suggest that traffic signal optimization alone
may not be sufficient to mitigate the inefficiencies introduced by cautious AVs, particularly
at high penetration rates. This underscores the importance of developing more adaptive
and flexible signal control strategies that can dynamically adjust to different AV behaviors
and penetration levels, as noted by [37] in their study of adaptive signal control systems.

5.4. Mixed Environments: The Role of AV–Human Interactions

The mixed-traffic scenarios simulated in this study, where different AV behaviors
coexist with human-driven vehicles, produced interesting insights into the interactions
between human and autonomous drivers. In particular, the balanced driving patterns
of normal AVs and the coordinated movements of platooning AVs helped mitigate the
traffic inefficiencies introduced by aggressive and cautious driving styles. This is consistent
with the findings of [27,29,38,40–44], who noted that mixed-traffic environments with
diverse AV behaviors can stabilize traffic flow by balancing the extremes of cautious and
aggressive driving.

5.5. Infrastructure and Policy Implications

The integration of AVs into urban traffic systems will likely require significant modifi-
cations to existing infrastructure, particularly at intersections. Studies by [21,23,45] have
emphasized the need for AV-ready infrastructure, such as enhanced traffic signal systems,
dedicated AV lanes, and communication networks to support the efficient coordination
of AVs. Our study’s findings further highlight the importance of infrastructure readiness,
particularly in supporting platooning AVs, which showed the greatest benefits in terms of
traffic efficiency and environmental outcomes.

From a policy perspective, the results of this study underscore the need for regulatory
frameworks that can guide the integration of AVs into urban traffic systems. This includes
the development of safety standards for AV driving behaviors, as well as guidelines
for optimizing traffic signal control in AV environments. Research by [8] has similarly
highlighted the importance of developing policies that balance the trade-offs between safety
and efficiency in AV deployment, particularly as AV technology becomes more widespread.

6. Conclusions

This study provides a comprehensive analysis of the impact of different autonomous
vehicle (AV) driving behaviors on urban traffic performance at a signalized intersection. The
simulation results demonstrate that AV behaviors have varying effects on traffic efficiency,
emissions, and fuel consumption. Cautious AVs, despite promoting smoother traffic flow,
led to significant increases in queue lengths and delays, particularly at higher penetration
rates. For instance, at 100% penetration and a 60 s cycle time, cautious AVs increased queue
lengths by up to 82.30% and delays by 59.03%. Additionally, emissions and fuel consump-
tion saw dramatic rises, with CO emissions and fuel consumption increasing by 220.6% and
220.53%, respectively, at shorter cycle times. This indicates that overly conservative driving
behaviors can hinder road capacity utilization, leading to negative environmental impacts.
In contrast, aggressive AVs showcased significant benefits, particularly at 100% penetration.
Aggressive AVs reduced queue lengths by up to 56.62%, travel times by 21.15%, and vehicle
delays by 27.59% at a 60 s cycle time. They also decreased CO emissions by 23.3% and
fuel consumption by 23.31%. However, at longer cycle times, such as 204 s, the benefits
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diminished due to increased traffic oscillations, reducing queue length savings to 23.14%
and travel time improvements to 6.63%. Platooning AVs exhibited strong performance,
especially at shorter cycle times, where CO emissions were reduced by up to 22.9% and
fuel consumption by 22.85%. Their coordinated driving behavior effectively optimized
road usage, minimizing inter-vehicle gaps and enhancing overall traffic flow. Normal AVs
provided a balanced performance, reducing queue lengths by up to 33.91% and delays by
up to 15.26%, offering an optimal compromise between aggressive and cautious driving
behaviors. Mixed AV environments, featuring a blend of AV behaviors, demonstrated
stable performance, with reductions in queue lengths ranging from 14.34% to 38.82% and
vehicle delays decreasing by 0.85% to 16.98%. This approach mitigated the extremes of
individual AV behaviors, resulting in smoother and more predictable traffic flow.

These findings underscore the transformative potential of AVs to improve traffic
efficiency and environmental sustainability. However, they also highlight the importance
of optimizing AV algorithms and traffic signal control strategies to realize the benefits of
AV integration in urban traffic systems fully. Balancing aggressive and cautious behaviors
while leveraging platooning technology could be key to maximizing the operational and
environmental advantages of AVs.

For future research, it is recommended to undertake the following:

• Investigate the long-term impacts of mixed driving scenarios on traffic patterns and
urban mobility.

• Explore necessary infrastructure modifications to support AV integration.
• Study the behavioral nuances of platooning at higher penetration rates.
• Focus on designing energy-efficient AV systems to minimize environmental impacts.
• Develop comprehensive policy and regulatory frameworks for AV deployment.
• Conduct real-world pilot studies to validate simulation results and gather empirical

data.
• Examine the potential for extrapolating and modeling various performance metrics

(queue lengths, travel times, delays, emissions, and fuel consumption) to enhance
understanding of AV impacts.
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List of Abbreviations

AVs Autonomous Vehicles
CAVs Connected Autonomous Vehicles
AHS Automated Highway Systems
CV Conventional Vehicle
THW Time Headway
CACC Cooperative Adaptive Cruise Control
ABX Absolute Braking Threshold
SDX Safe Distance Threshold
CLDV Closing Distance
SDV Sensitive Distance
OPDV Opening Distance
CO Carbon Monoxide
NOx Nitrogen Oxides
VOC Volatile Organic Compounds

List of Symbols (Nomenclature)
Symbol Description Unit
gf Front gap between the subject vehicle and the leading vehicle m
gr Rear gap between the subject vehicle and the following vehicle m
Xlead Position of the leading vehicle in the target lane m
xi Position of the subject vehicle m
li Length of the subject vehicle m
xfollower Position of the following vehicle in the target lane m
lfollower Length of the following vehicle m
vlead Speed of the leading vehicle m/s
vfollower Speed of the following vehicle m/s
di Deceleration of the subject vehicle m/s2

dfollower Deceleration of the following vehicle m/s2

af Acceleration of the following vehicle m/s2

sf Desired safety distance m
s0 Minimum standstill distance m
Tf Safe time headway s
ab Maximum acceleration capability m/s2

b Comfortable deceleration rate m/s2

E Total emissions of a pollutant g
vi Speed of vehicle i km/h
a, b, c, d Empirical coefficients for emission calculation —
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