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Abstract: Aroma essential oils contain ingredients that are beneficial to the human body. A gas
sensor array is required to monitor the concentration of these essential oil components to regu-
late their concentration by air conditioning systems. Therefore, we investigated the discrimination
ability and concentration measurement accuracy of 14 effective components, including four aroma
essential oils (lavender, melissa, tea tree, and eucalyptus), from a single gas sample and mixtures of
two gases using sensor arrays. To obtain our data, we used two sensor arrays comprising com-
mercially available semiconductor sensors and our developed semiconductor sensors. For machine
learning, principal component analysis was used to visualize the dataset obtained from the sensor
signals, and an artificial neural network was used for a detailed analysis. Our developed sensor array,
which included sensors that possessed excellent sensor responses to 14 effective components and
combined different semiconductive sensor principles, showed a better discrimination and prediction
accuracy than the commercially available sensors investigated in this study.

Keywords: semiconductor gas sensor; sensor array; aroma essential oil; machine learning; principal
component analysis; artificial neural network

1. Introduction

Aroma essential oils are made from concentrated plant extracts and have various
benefits. For example, lavender oil can treat migraine headaches [1], improve sleep
quality [2,3], and offer antidepressant effects [4], and melissa oil can improve cognitive
performance [5–7], reduce stress [8], and offer antibacterial activity [9]. In addition, tea tree
oil has anti-inflammatory [10] and antibacterial activities [11], while eucalyptus oil exhibits
anti-inflammatory activity in the bronchi [12,13]. Aroma essential oils are not medicines;
therefore, anyone can easily obtain them, and they can be easily and inexpensively diffused
into living spaces. Owing to the various uses of these oils, the global essential oil market
was expected to be worth approximately 24 billion USD in 2023, and to grow at a compound
annual growth rate of 7.6% through 2030 [14].

Aroma essential oils contain various terpenes, and their primary components differ
depending on their type. The primary components are linalool and linalyl acetate in
lavender oil [15–17]; geranial, neral, and citronellal in melissa oil [15,18,19]; terpinene-4-
ol, γ-terpinene, and α-terpinene in tea tree oil [15,20,21]; and eucalyptol in eucalyptus
oil [15,22,23]. Terpenes are responsible for the efficacy of aroma essential oils. For example,
terpinen-4-ol is responsible for the anti-inflammatory activity of tea tree oil [10]. Although
the efficacy of each component has not been fully clarified, the primary components and
efficacy of each essential oil differ depending on the type. Therefore, it is clear that each
component has a different effect. If the efficiency of each component becomes clear and the
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safety of diffusing a single component into the human body is confirmed, the efficacy of
aroma essential oils will be further enhanced by diffusing the effective components and
adjusting their concentration.

In living spaces, the concentration of essential oils is lower than the expected con-
centration based on the amount of volatilization due to indoor air being replaced by air
conditioning systems for heating and cooling. Therefore, it is desirable to link the gener-
ator of essential oils and terpenes as effective components with an air conditioning and
concentration-monitoring system. This requires the use of gas sensors that can monitor
the concentration of each essential oil component. In principle, semiconductor gas sensor
elements must be heated to temperatures at which the target gases are oxidized. Semicon-
ductor gas sensors benefit from a smaller performance degradation due to the residual
adsorption of target gas molecules compared to sensors that operate at room temperature.
The energy required for heating semiconductor gas sensor elements can be reduced by
miniaturizing them. Various response characteristics have been observed in different semi-
conductor gas sensor materials (containing noble metal-loaded components) [24,25]. In
other words, the response characteristics depend on the semiconductor gas sensor materials.
However, owing to the inherent nature of semiconductor gas sensors, it is challenging to
fabricate a sensor such that it is completely unresponsive to other gases while exhibiting
a strong response to a specific target gas. Therefore, it is necessary to use a sensor array
containing multiple semiconductor gas sensors to monitor the target gases. As each sensor
exhibits a different sensor signal to the same target gas, machine learning and multivariate
analysis can be employed to analyze multiple sensor signals and discriminate among the
different target gases.

Many studies have monitored natural odors such as aroma essential oils using sensor
arrays [26,27]; however, the technology to monitor each effective component contained in
the oils still needs to be developed. We selected 14 effective components from 4 types of
oils and used sensor arrays to discriminate between the components and measure their
concentrations. To obtain multiple effects for the human body, not only one effective
component but multiple components would need to be diffused. Therefore, we decided
to investigate single components and mixtures of two gases, in which two of the effective
components were diffused at the same time. Furthermore, the reproducibility of the sensor
response was confirmed by acquiring multiple data points over a certain period from
the time at which the target gas was introduced and when the sensor responded. For
multivariate analysis and machine learning, principal component analysis (PCA) [28–31]
was used to visualize the dataset, and an artificial neural network (ANN) [30,32] was
used for detailed analysis. To obtain accurate results, it was necessary to improve the
performance of the input data from the sensor arrays, because the 14 effective components
were terpenes or their derivatives with similar molecular structures. Hence, to enhance the
differences among the sensor signals, we evaluated the performance of the sensor array,
comprising sensors that employed different detection principles. As a benchmark, we
used a sensor array consisting of commercially available sensors with the same detection
principle; this choice was also made considering the fact that the study results could be
easily accessible if commercially available sensors were used.

2. Experimental
2.1. Sensor Arrays

All the commercially available sensors were manufactured by Figaro Engineering
(Minoh, Osaka, Japan). Information on the target components of the sensors was provided
by the manufacturer and is listed in Table 1. The voltage applied to the sensors was set to
5 V according to the manufacturer’s instructions. The commercially available sensor array
is termed as “sensor array C”.
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Table 1. Commercially available sensors included in “sensor array C”.

Sensor Name Target Components

TGS 2600 Air pollutions (cigarettes and cooking smells)
TGS 2602 Odor components (volatile organic compounds, ammonia, H2S, etc.)
TGS 2603 Malodorous components (amines, sulfides, etc.)
TGS 2610 Liquefied petroleum (LP) gas
TGS 2611 Methane
TGS 2612 Methane and LP gas
TGS 2620 Alcohol and solvent vapors
TGS 2444 Ammonia

Table 2 shows the combinations of the eight sensor elements on the two sensors and
details of the sensor materials and catalysts. SnO2- and 10% Zr-doped CeO2 (CeZr10)-
series sensors were prepared as previously described [33,34]. The ZnO-series sensors were
prepared using commercially available ZnO powder (CIK NanoTec, Tokyo, Japan). ZnO-
and LaFeO3-series sensors were fabricated using a method similar to that for SnO2- and
CeZr10-series sensors. Colloidal suspensions of Pt, Pd, and Au (particle size: 2–4 nm;
Tanaka Kikinzoku Kogyo, Tokyo, Japan) were added to the semiconductor powders as
catalysts. The powder was then mixed with an organic dispersant to form a paste. The
film thickness of the semiconductor sensors was controlled by the dispensing volumes
of the pastes. A 4 × 4 × 0.3 mm3 alumina substrate was used to fabricate four sensor
elements. Because the substrates of the sensors were extremely small, it was difficult to
break them and observe the cross-section with a scanning electron microscope to determine
their film thickness, as in our previous tests. In this study, pastes for all sensor materials
were prepared based on sensor-thick film-manufacturing conditions of approximately
3 µm, which was suitable for nonanal sensing by 1 wt% Pt, 1 wt% Pd, and 1 wt% Au-loaded
SnO2 [33]. Table 2 lists the working temperature, which is defined as the temperature at the
center of the substrate. The temperatures of sensor types 1 and 2 were controlled to 420
and 300 ◦C, respectively, via applied power to a Pt heater pattern on the backside of the
substrate. The sensor array prepared by our laboratory is termed “sensor array L”.

Table 2. Sensors prepared by our laboratory included in “sensor array L”.

Sensor Name Details

[Sensor type 1] working temperature: 420 ◦C
ZnO n-type semiconductor
ZnO + M n-type semiconductor; 1 wt%Pt, 1 wt%Pd, and 1 wt%Au-loaded ZnO
CeZr10 n-type semiconductor (bulk-resistive type); 10%Zr-doped CeO2
CeZr10 + M n-type semiconductor (bulk-resistive type); 3 wt%Pt-loaded CeZr10

[Sensor type 2] working temperature: 300 ◦C
SnO2 + M_A * n-type semiconductor; 1 wt%Pt, 1 wt%Pd, and 1 wt%Au-loaded SnO2
SnO2 + M_B * n-type semiconductor; 1 wt%Pt, 1 wt%Pd, and 1 wt%Au-loaded SnO2
LaFeO3 p-type semiconductor
LaFeO3 + M p-type semiconductor; 1 wt%Pt, 1 wt%Pd, and 1 wt%Au-loaded LaFeO3

* The same material was mounted in anticipation that slight differences in heat distribution, due to the substrate
location, would affect the sensor response.

2.2. Preparation of Target Gases

The molecular structures of the 14 effective components are shown in Figure 1. Neral
and geranial are cis-trans isomers mixed in one reagent, citral. Therefore, 13 reagents were
used as the target gases and are denoted as numbers 1–13 in Figure 1.
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Figure 1. Structural formulae of the effective components as target gases: (1) terpinen-4-ol, (2) α-
terpinene, (3) γ-terpinene, (4) α-terpineol, (5) eucalyptol, (6) d-limonene, (7) α-pinene, (8) β-pinene,
(9) p-cymene, (10) linalool, (11) linalyl acetate, (12) citronellal, and (13) citral (mixture of cis [neral]-
trans [geranial] isomers).

All the target gases were generated from their solvents using a Gastec Permeator PD-1B
gas generator (Ayase, Kanagawa, Japan), which can be exclusively used with diffusion ves-
sels (D-tubes; D-02, D-03, D-04, and D-05), as shown in Figure S1 (Supplementary Materials).
Table 3 lists the combinations of D-tubes (Levels 1–4) and their diffusion concentrations
in the target gases. The concentration of the target gas depends on the type of D-tube, the
temperature of the chamber in which the D-tube is placed, and the flow rate of the total
flow. The temperature in PD-1b and the total flow rate were always 35 ◦C and 500 mL/min
in this study. Therefore, the concentration of the target gas was controlled by the type of
D-tube. The target gases were prepared in this manner because it was assumed that all
the components would diffuse under the same gas generator in future applications. Single
target gases and two types of mixed target gases (denoted as double gases) were analyzed.
For a single gas, four concentrations of each reagent were prepared; therefore, 52 types of
single gases (13 target gases × 4 concentrations) were used. For double gases, combinations
of the two concentration levels (1 and 3) were prepared (13 target gases × 2 concentrations)
and two reagents were selected (26C2). However, 13 pairs were excluded because they were
a combination of levels 1 and 3 of the same gas; accordingly, 312 types of double gases
(26C2–13) were used.

Table 3. Concentrations of target gas prepared by the gas generator using four types of D-tubes.

Gas No. *1

Concentration [ppm]

Lv. 1
(D-02)

Lv. 2
(D-03)

Lv. 3
(D-04)

Lv. 4
(D-05)

1 0.092 0.26 0.53 0.77
2 0.34 0.78 1.4 2.7
3 0.50 0.92 1.7 2.3
4 0.064 0.088 0.16 0.26
5 0.41 0.89 1.5 2.5
6 0.37 0.78 1.3 2.2
7 0.95 2.2 3.8 6.6
8 0.62 1.3 2.5 4.6
9 0.277 *2 0.58 1.26 2.4
10 0.12 0.18 0.36 0.74
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Table 3. Cont.

Gas No. *1

Concentration [ppm]

Lv. 1
(D-02)

Lv. 2
(D-03)

Lv. 3
(D-04)

Lv. 4
(D-05)

11 0.091 0.14 0.28 0.58
12 0.067 0.16 0.283 *2 0.43
13 0.033 0.039 0.076 0.14

*1 See Figure 1. *2 Up to three significant digits were used to rank concentrations of two components in two types
of mixed gases.

2.3. Sensor Response Measurement

The sensor responses were measured using a flow apparatus and sensor system. Both
sensor arrays C and L were equipped with sensor systems (Figure S2). The sensor systems
controlled the applied voltage to the sensors (5 V: sensor array C) or working temperature
(420 and 300 ◦C: sensor array L), and transferred sensor signals, i.e., resistances, to PCs
via Bluetooth. The target gases were mixed with the carrier gas to maintain the specified
concentrations. The total flow rate, N2/O2 ratio, humidity, and aspiration of gases from the
sensor systems were maintained at 500 mL/min, 4, 60%, and 200 mL/min, respectively.

Figure 2 shows a model of the sensor responses to the target gas and the location of the
data used for data analysis. The sensor response value, r, was collected 13 times after the
introduction of each target gas for 20 min. The sensor response is defined in Equation (1):

rsk = Rask/Rgsk, (1)

where s and k are the sensor and data numbers, respectively. Moreover, rsk, Rask, and Rgsk
are the sensor response, resistance immediately before introducing the target gas, and
resistance upon introducing the target gas on sensor s and data number k, respectively.
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As shown in the model in Figure 2, the resistances of the gas sensors significantly
fluctuated just after the introduction of the target gas; however, slight fluctuations were
also observed thereafter. In this study, two types of sensor response collection methods
were employed: 13 Rg values were obtained every 1 min for 12 min, denoted as “12 min
data”, or every 5 s for 1 min, denoted as “1 min data”, just before the end of the target gas
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introduction. The fluctuations in resistance during 1 min were extremely small compared
to those during 12 min. A total of 676 data points (52 × 13 sensor responses r from Rg)
from single gases and 4056 data points (312 × 13 sensor responses r from Rg) from double
gases were collected for each type of sensor response collection method.

2.4. Data Analysis
2.4.1. Machine Learning

Machine learning was performed using Scikit-learn version 1.0.2 and TensorFlow
version 2.4.0 in Python version 3.7.6. Sensor responses r in all data points were converted
to their standardized values for machine learning,

xsk = (rsk − rs)/σs, (2)

where xsk is a standardization value of data number k on sensor number s, and rs and σs
are the mean and standard deviation of r on sensor s, respectively.

A PCA was performed to investigate the characteristics of the datasets obtained
from the two sensor arrays. The PCA was performed only on single gases because the
inclusion of double gases resulted in too many classes and made classification difficult
(with 676 data points). The PCA was performed according to Equations (S1)–(S6) in the
Supplementary Materials.

The ANN model is shown in Figure 3. The concentrations of target gases were
predicted using the ANN. The structure of the neural network comprised an input layer
with eight nodes (x1–x8) for the standardization values of sensor responses from eight
sensors as explanatory variables; two hidden layers with 64 nodes (b1–b64 and b′1–b′64) with
rectified linear units (ReLU; z1–z64 and z′1–z′64); and an output layer with 13 nodes (y1–y13)
for the concentrations of the 13 target gases as objective variables. The ANN performed
using 5-fold cross validation. All data points (676 + 4056 = 4732) were randomly divided
into five parts, one of which was used as test data (946 or 947 data points) and the rest as
training data (3786 or 3785 data points). First, all coefficients for moving data to the next
layer in the ANN model (corresponding to the black arrows in Figure 3) were optimized
using training data. Subsequently, all data points of the test data were substituted into
the input layer for collecting the predicted concentrations of the 13 target gases from the
output layer. By repeating the ANN five times with 5-fold cross-validation, each data point
was the test data only once. Among the hyperparameters, the batch size was set to 32, and
the number of epochs was the value at which the average loss function of the test data in
the 5-fold cross-validation was minimized.
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2.4.2. Evaluating the Sensor Array Performance

Because the concentrations of the target gases in the test data were known, the predic-
tion accuracy was evaluated by comparing the predicted concentrations with the correct
concentrations. Based on the prediction accuracy, the performances of the two types of
sensor arrays and two types of sensor response collection methods were evaluated. For
single gases, the correct answer rates were determined based on whether the correct target
gas was predicted at the highest concentration. Similarly, for double gases, the correct
answer rates were determined based on whether the highest and second highest correct
target gases were predicted at the highest and second highest concentrations, respectively.
Moreover, the relationship between the correct and predicted concentrations for each target
gas was shown, as well as the calculated slope (a) of approximate linear function, R-squared
(R2) value, mean absolute error (MAE), and mean squared error (MSE).

3. Results and Discussion
3.1. Resistance Change as a Sensor Response

Figure 4 shows the dynamic resistance response of all sensors to single gases of citronellal
(No. 12) and d-limonene (No. 6) and double gases of α-terpinene (No. 2) and d-limonene
(No. 6), as examples. All the sensors in sensor array C were n-type semiconductor gas sensors
that decreased in resistance in response to the target gases, whereas the two sensors in sensor
array L were p-type semiconductor gas sensors that increased in resistance in response to
the target gases. Figure 4a–d show the measurements acquired while decreasing the single
gas concentration from levels 4 to 1. Because all responses were for the same target gas,
the change in the resistance of each gas sensor decreased as the target gas concentration
decreased.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 14 
 

gas was predicted at the highest concentration. Similarly, for double gases, the correct 

answer rates were determined based on whether the highest and second highest correct 

target gases were predicted at the highest and second highest concentrations, respectively. 

Moreover, the relationship between the correct and predicted concentrations for each tar-

get gas was shown, as well as the calculated slope (a) of approximate linear function, R-

squared (R2) value, mean absolute error (MAE), and mean squared error (MSE). 

3. Results and Discussion 

3.1. Resistance Change as a Sensor Response 

Figure 4 shows the dynamic resistance response of all sensors to single gases of cit-

ronellal (No. 12) and d-limonene (No. 6) and double gases of α-terpinene (No. 2) and d-

limonene (No. 6), as examples. All the sensors in sensor array C were n-type semiconduc-

tor gas sensors that decreased in resistance in response to the target gases, whereas the 

two sensors in sensor array L were p-type semiconductor gas sensors that increased in 

resistance in response to the target gases. Figure 4a–d show the measurements acquired 

while decreasing the single gas concentration from levels 4 to 1. Because all responses 

were for the same target gas, the change in the resistance of each gas sensor decreased as 

the target gas concentration decreased. 

 

Figure 4. Dynamic resistance responses: sensor array and target gas are (a) C and single gas No. 12, 

(b) L and single gas No. 12, (c) C and single gas No. 6, (d) L and single gas No. 6, (e) C and double 

gases Nos. 2 + 6, and (f) L and double gases Nos. 2 + 6, respectively. Concentration levels of the 

target gases are, in order, (a–d) Lvs. 4, 3, 2, and 1; (e,f) Lvs. 3 + 3, 3 + 1, 1 + 1, and 1 + 3. 

In sensor array C, for TGS2602 and TGS2603, which have particularly large resistance 

changes as sensor responses, the value of resistance change decreased as the target gas 

concentration decreased. The other sensors in sensor array C exhibited minimal responses. 

The sensors included in sensor array C were manufactured for various purposes, as listed 

in Table 1. Sensors used to monitor fuel systems, such as liquified petroleum gas and me-

thane, showed particularly low responses. Furthermore, TGS2602 and TGS2603 showed 

greater responses to number 6 than to number 12. The concentration ranges of the target 

gas numbers 1, 4, 10, 11, 12, and 13 were approximately one order of magnitude lower 

than those of the other target gases, as shown in Table 3. Because they are all polar mole-

cules with alcohol, ester, or aldehyde functional groups, their volatility is reduced by in-

termolecular forces. Empirically, semiconductor sensors show a high response to gas 

Figure 4. Dynamic resistance responses: sensor array and target gas are (a) C and single gas No. 12,
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gases Nos. 2 + 6, and (f) L and double gases Nos. 2 + 6, respectively. Concentration levels of the
target gases are, in order, (a–d) Lvs. 4, 3, 2, and 1; (e,f) Lvs. 3 + 3, 3 + 1, 1 + 1, and 1 + 3.

In sensor array C, for TGS2602 and TGS2603, which have particularly large resistance
changes as sensor responses, the value of resistance change decreased as the target gas
concentration decreased. The other sensors in sensor array C exhibited minimal responses.
The sensors included in sensor array C were manufactured for various purposes, as listed
in Table 1. Sensors used to monitor fuel systems, such as liquified petroleum gas and
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methane, showed particularly low responses. Furthermore, TGS2602 and TGS2603 showed
greater responses to number 6 than to number 12. The concentration ranges of the target
gas numbers 1, 4, 10, 11, 12, and 13 were approximately one order of magnitude lower than
those of the other target gases, as shown in Table 3. Because they are all polar molecules with
alcohol, ester, or aldehyde functional groups, their volatility is reduced by intermolecular
forces. Empirically, semiconductor sensors show a high response to gas species that have
oxidizable functional groups, but this response is offset by the difference in concentration.

In sensor array L, because the two LaFeO3-based sensors were p-type semiconductors,
the resistance changed as the sensor response increased when the target gas was introduced.
Responses to number 12 from all sensors in sensor array L were better than those from
TGS2602 and TS2603. These sensors were designed by considering conditions such as
film thickness, which were optimized in past research. For the ZnO-based sensors, the
response to number 12 was better than that of number 6. The other sensors appeared to
have approximately the same response to numbers 6 and 12. Therefore, in sensor array L,
the influence of the functional groups was greater than that of their concentration.

Figure 4e,f show the change in the resistance of each sensor against double gases,
including numbers 2 and 6. The concentration combinations were levels 3 + 3, 3 + 1, 1 + 1,
and 1 + 3, in the order shown in Figure 4e,f. Levels 3 + 1 and 1 + 3 had approximately the
same level of resistance change, but the resistance change varied depending on the sensor.
These results indicate that the relationship between the magnitude of the response of each
sensor to the gas type and concentration was different.

3.2. Variation of Dataset in PCA

As described above, PCA is an effective method to easily check trends in a dataset as
the scores can be graphically illustrated. Although a PCA cannot be performed to predict
answers in classification and regression, the variance and reproducibility of the data can
be easily checked from the graphs. Figure 5 shows the PCA scores and eigenvectors from
the sensor responses for a single gas on sensor arrays C and L. The cumulative variance
of the first and second principal components (PC1 and PC2) of all panels in Figure 5 was
greater than 80%. The first two PCs are normally sufficient to retain the originality of the
data [28]. Focusing on the eigenvectors, although the eigenvectors of TGS2600, TGS2610,
and TGS2620, and CeZr10 + M and ZnO + M tend to overlap, the eigenvectors of the other
sensors did not overlap in their respective directions. Therefore, each sensor generally had
unique response characteristics for each target gas.

The data in Figure 5a,b were from the 1 min data. The PCA scores for each target gas
tended to converge in the direction of (0, –2) coordinates as the concentration decreased.
Figure 5b, which shows the PCA score of sensor array L, indicates that the scores are
generally independent at any concentration level for any target gas. However, in Figure 5a,
which presents the PCA score of sensor array C, there are variations in the plot in the PC2
axis direction. For example, numbers 4, 10, 11, 12, and 13, which have alcohol, ester, and
aldehyde functional groups, have overlapping plot areas and are difficult to discriminate.
This is because the sensor responses of TGS2612 and TGS2444, whose eigenvectors strongly
influenced the PC2 axis direction, were small and affected by variations in the noise level.

The data in Figure 5c,d were obtained from the 12 min data. In Figure 5c, which
shows the PCA score of sensor array C, the scatter in the plots is even greater than that in
Figure 5a, and the areas and overlap of the plots of the different gas species have expanded.
Figure 5d, which shows the PCA score of sensor array L, displays that some plots varied in
a direction parallel to the ZnO eigenvector. As shown in Figure 4b,d, particularly for ZnO,
the resistance drifted during the introduction of the target gas. Thus, the influence of drift
appeared when the interval was expanded to obtain the sensor response values.
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3.3. Variation of Dataset in ANN

Unlike PCA, an ANN cannot visually confirm trends in the data contained in a dataset;
however, it can obtain predictive results with high accuracy. The confusion matrices present
the number of correct/wrong answers for each target gas type in the visualization, as shown
in Figures S3–S6. In the confusion matrices, the results are organized into the number of
correct answers from the single gas, the highest concentration of the double gas, and the
second highest concentration of the double gas. Table 4 lists the correct answer rates for the
14 effective components in the ANN. A correct answer rate of over 90% was obtained under
all conditions, but the correct answer rate was higher for sensor array L than for sensor
array C. However, even for sensor array C, the plot areas overlapped in the PCA (Figure 5),
but all single gases were correct in the ANN. Therefore, an ANN is an excellent analysis
method for discriminating odors in gas sensors. The correct answer rates for double gases
were lower than those for single gases in all datasets. Furthermore, the correct answer rate
for the second concentration component was lower than the first concentration component.
The presence of coexisting components and an increase in the concentration of them could
have a greater influence on the correct answer rate.
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Table 4. Correct answer rate of effective components in ANN.

Correct Answer Rate

Sensor Array C Sensor Array L

1 min
dataset

Single gas
[676 data] 1 1

Double gases
[4056 data]

The first concentration
component 0.984 0.993

The second concentration
component 0.971 0.988

12 min
dataset

Single gas
[676 data] 0.988 0.997

Double gases
[4056 data]

The first concentration
component 0.967 0.986

The second concentration
component 0.927 0.978

Figures 6 and 7 show the relationship between the true and predicted concentrations
for numbers 12 and 6, respectively. The results for all the target gases are shown in
Figures S7–S10. The difference between Figure 6a,c or Figure 6b,d is the interval used
to obtain the sensor response values for the datasets. In both cases, the 1 min dataset,
which has a narrower data range and less drift influence, had smaller plot variations, and
the values listed in the panels were also better. The difference between Figure 6a,b or
Figure 6c,d is the sensor array. In both cases, sensor array L had smaller plot variations, and
the values listed in the panel were also better. Furthermore, in both panels, the variation in
the predicted concentration plots for a single gas (black) was lower than that for double
gases (blue, green, and red). These results show the same tendencies as the correct answer
rates shown in Table 4. Figure 7 shows number 6, which had a larger concentration range
than number 12 in Figure 6. As shown in Figure 6, the differences in the range of the data
acquired by the dataset and in the sensor arrays showed the same trend. In addition, the
results in Figure 7 are better than those in Figure 6, indicating that higher gas concentrations
afforded more accurate results.
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3.4. Importance of Gas Sensor Selection

Sensor array L exhibited better results than sensor array C as the benchmark array. All
14 components of the target gas were terpenes or similar. The responses of semiconductor
sensors can be categorized into gas groups [35]. Therefore, the discrimination of terpene
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gases was expected to be more difficult than that of gases from other groups. Sensor array
C included all general n-type semiconductor sensors, whereas sensor array L included
not only general semiconductor sensors, such as n-type [33,36] and p-type [37–39], but
also cerium oxide bulk-response sensors [34]. The resistance change mechanism in a
traditional n-type semiconductor sensor involves a change in the electron density at the
grain boundaries of n-type semiconductor particles by the oxidation of the target gases
on the surface of the grains. In contrast, the resistance change mechanism in a p-type
semiconductor sensor involves a change in the hole density at the grain boundaries of
n-type semiconductor particles. The resistance change mechanism in the bulk-responsive
sensor is that the odor molecules consume the lattice oxygen in the cerium oxide particles
to undergo oxidation and generate oxygen vacancies, which diffuse throughout the bulk
without accumulating on the particle surface [34]. In addition, sensor array L was not
superior in terms of resistance change to number 6 (Figure 4d) compared to number 12
(Figure 4b). However, the relationship between the actual and predicted concentrations in
the ANN between numbers 12 (Figure 6b,d) and 6 (Figure 7b,d) were both excellent. Based
on these results, the combination of sensors with different response principles results in
improved accuracy for the discrimination of effective components. To obtain high accuracy,
it is important to determine the differences in the sensor response for each gas condition
(not necessarily the magnitude of the sensor response).

Even with such an excellent sensor array, the results showed large variations when
the data acquisition time intervals were different. For future applications, it is desirable to
maintain a constant measurement time within the range permitted by operational conditions.

4. Conclusions

We discriminated between and measured the concentrations of 14 effective compo-
nents of aroma essential oils from single and double gases using sensor arrays C and
L. Datasets were obtained from sensor signals in response to each target gas. We also
considered the time interval for data acquisition. The sensors in sensor array L generally
exhibited stronger responses than those in sensor array C. The PCA revealed that the
plots from sensor array C had variations and their regions overlapped; however, in sensor
array L, the plots were independent at any concentration level for all the target gases. In
a detailed analysis using a neural network, the correct answer rate was over 90% for all
dataset conditions. Under all conditions, the correct answer rate and accuracy of predicting
the concentration of components were higher for sensor array L than for sensor array
C. This result occurred because sensor array L combined several sensors that possessed
different semiconductor sensor principles and high sensing properties for the components.
However, it is desirable to ensure that the time intervals for acquiring the dataset are as
consistent as possible.
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