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Abstract: Bias could be defined as the tendency to be in favor or against a person or a group, thus
promoting unfairness. In computer science, bias is called algorithmic or artificial intelligence (i.e.,
AI) and can be described as the tendency to showcase recurrent errors in a computer system, which
result in “unfair” outcomes. Bias in the “outside world” and algorithmic bias are interconnected since
many types of algorithmic bias originate from external factors. The enormous variety of different
types of AI biases that have been identified in diverse domains highlights the need for classifying the
said types of AI bias and providing a detailed overview of ways to identify and mitigate them. The
different types of algorithmic bias that exist could be divided into categories based on the origin of
the bias, since bias can occur during the different stages of the Machine Learning (i.e., ML) lifecycle.
This manuscript is a literature study that provides a detailed survey regarding the different categories
of bias and the corresponding approaches that have been proposed to identify and mitigate them.
This study not only provides ready-to-use algorithms for identifying and mitigating bias, but also
enhances the empirical knowledge of ML engineers to identify bias based on the similarity that their
use cases have to other approaches that are presented in this manuscript. Based on the findings of
this study, it is observed that some types of AI bias are better covered in the literature, both in terms
of identification and mitigation, whilst others need to be studied more. The overall contribution of
this research work is to provide a useful guideline for the identification and mitigation of bias that
can be utilized by ML engineers and everyone who is interested in developing, evaluating and/or
utilizing ML models.

Keywords: bias; algorithms; machine learning; artificial intelligence; literature review

1. Introduction

Bias is the tendency to promote prejudiced results due to erroneous assumptions. In
the context of ML and AI in general, this could be caused due to erroneous data on which an
ML model has been trained, or due to other factors that will be further analyzed later in this
manuscript. Algorithmic or not [1], bias is not a recent discovery and has been recognized
by the research community for many decades. Looking back in history, it is quite clear
that bias not only exists but also has played—and still plays—a crucial negative role in the
evolution of humanity since the very early stages of its existence. Regardless of the era that
one lives in, the concept of bias remains the lack of internal validity or even false assessment
between an exposure and an effect that is expected to have a certain outcome that does not
equal the real value [2]. Bias from the “outside” world can infiltrate AI systems through,
for instance, the data that have been used for training the underlying ML models, thus
affecting the results of the said systems. In essence, bias finds its way into AI systems
and, given the fact that the adaptation of those systems is increasing exponentially [3], it
is of vital importance to identify it and try to mitigate it, by utilizing a plethora of tools,
algorithms and approaches that people have in their disposal. It is no surprise that in a
very recent survey [4], bias is, alongside data privacy, one of the key aspects about which
people are concerned when using AI tools.
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There have been several examples of AI tools, which have even been exploited in a
production environment, that have produced erroneous results and predictions due to bias
in the input data and/or the training process of the corresponding ML models. In deeper
detail, an indicative example of such tools is Large Language Models (LLMs) like ChatGPT,
which are known for inheriting bias from the training data, since the data themselves
are not bias-free [5,6]. This is a well-known issue of LLMs for which extensive research
is being carried out to minimize such bias. Bias has occurred repeatedly in computer
vision (CV) algorithms and applications as well. For example, in 2020 it was identified
that the algorithm used by Twitter (now X) for cropping images favored light-skinned over
dark-skinned individuals, whilst it also favored cropping female bodies instead of their
faces, thus showcasing signs of both racial and gender bias [7]. This is not the only example
of such an algorithm since both algorithms developed by Google and Apple for editing
images have also showcased similar behaviors [8]. In those cases, the training data were
also the culprit for the biased results generated by the algorithms. In another case, which
sparked a nation-wide debate in the United States, a tool called COMPAS that was used as
a Recidivism Prediction Instrument (RPI), was found to be biased in terms of race. The goal
of this tool was to predict the probability of a criminal defendant reoffending at some time
into the future [9]. It was discovered that this tool was biased against black defendants,
and this was not only due to the training data but also due to the way that the underlying
algorithm operates [10]. In the case of COMPAS, the nature of the algorithm relied on
population effects, which were also wrong because the training data were biased. The law
cares about individual cases and not population effects [11]; thus, the nature of the ML
algorithm utilized in COMPAS was also responsible for the biased results that it produced.

The above highlights the vital importance of mitigating any form of bias that might
occur in AI tools in different domains since the presence of bias will inevitably lead to
wrongful decision making. The vast number of different algorithmic biases that exist have
led to their classification, based on specific characteristics, in order to be easier to study
them and propose appropriate ways to deal with them. Such a classification that covers all
the different kinds of AI bias is based on the origin of bias. The bias that can be found in
an AI system (i.e., algorithmic bias) can generally be derived from three sources. The first
source is, obviously the data that the system utilizes, since if, for instance, an ML model is
trained on biased data, it will produce biased results [12]. The second source is the design
of the algorithm and the way that it operates. For instance, if the algorithm utilized does
not fit the given problem, it may lead to biased outputs. In another example, the objective
functions used in optimization algorithms may inject bias to maximize utility or minimize
costs [13]. The third source of algorithmic bias is the human bias. Of course, bias found in
the data can also be due to human bias. However, in the context of this paper, the reference
to human bias as a “high-level” category of bias refers to the bias that originates from the
ones that develop and/or evaluate an ML model [14]. An indicative example of such a
bias is the confirmation bias, where ML engineers unconsciously process data in a way that
affirms an initial hypothesis or a specific goal [15].

In the literature, there have been several attempts to identify the different forms of
algorithmic bias that exist in order to guide the corresponding implementations towards
bias-free AI tools. To this end, this manuscript summarizes the different types of algorithmic
bias that have been identified in the literature by classifying them into one of the following
three categories, namely data bias, algorithm bias and engineer bias, which are also essential
parts of the ML lifecycle. Alongside the type of algorithmic bias, the corresponding methods
that have been proposed in the literature are also mentioned, thus serving as a handbook
for everyone who is interested in developing, evaluating and/or using an AI model and
aims to identify and mitigate bias in such a model. What is more, this manuscript identifies
that most of the literature focuses mostly on a specific type of bias, namely the data bias,
whilst it completely omits other aspects of the ML lifecycle that can introduce bias. As a
result, it provides a future direction with regard to other aspects of the ML lifecycle that
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should be better investigated and clarified in terms of the way that they can introduce bias
and in what way this bias can be addressed.

The rest of the manuscript is structured as follows. Section 2 describes the methodology
that was followed in order to perform the comprehensive literature review that is presented
in this manuscript. Section 3 reports the types of algorithmic bias that originate from the
data themselves and the diverse methods that have been proposed in the literature in
order to mitigate them. More specifically, it analyzes general approaches that exist in the
literature regarding the mitigation of bias in data and then dives into specific types of
data bias, namely cognitive, selection and reporting, and presents the different methods
and techniques that have been presented in the literature. Section 4 analyzes the set
of algorithmic biases that are caused by the algorithms, as well as the corresponding
approaches to deal with them. In deeper detail, this section analyzes how estimators,
optimizers and different regularization methods can introduce bias and presents several
comparative studies per different domains that aim to find the approach that achieves the
least possible bias. In this section, specific bias-mitigation algorithms are also presented
and analyzed. Section 5 describes the group of algorithmic biases that originate from the
model builders and model evaluators and studies the analogous countermeasures that are
proposed in the literature. Section 6 discusses the proposed approaches for the mitigation
of algorithmic bias presented in the above-mentioned sections and potential unclear points
that should be further researched. It also compares this literature review with other similar
reviews and highlights the added value of this manuscript. Lastly, Section 7 summarizes
the findings of this manuscript and provides future research directions with regard to bias
identification and mitigation in ML. The sections of this manuscript are also depicted in
Table 1.

Table 1. Table of the contents of this manuscript.

Section Description

Section 1 Introduction to the scope of this manuscript and the overall work conducted
Section 2 Methodology followed to carry out the comprehensive literature review
Section 3 Analysis of approaches for identifying and mitigating data bias

Section 3.1 Analysis of approaches for identifying cognitive bias in data
Section 3.2 Analysis of approaches for identifying selection bias in data
Section 3.3 Analysis of approaches for identifying reporting bias in data

Section 3.4 Summarization of the most common approaches for mitigating data bias based
on the findings of Sections 3.1–3.3

Section 4 Analysis of approaches for identifying and mitigating algorithm bias

Section 4.1 Research regarding the different estimators that have been utilized in the
literature, in diverse domains, and the way that they may introduce bias

Section 4.2 Research regarding the different optimizers that have been utilized in the
literature, in diverse domains, and the way that they may introduce bias

Section 4.3 Research regarding the different regularization methods that have been utilized
in the literature, in diverse domains, and the way that they may introduce bias

Section 4.4 Summarization of the most common approaches for mitigating algorithm bias
based on the findings of Sections 4.1–4.3

Section 5 Analysis of approaches for identifying and mitigating engineer bias

Section 6 Discussion of the findings of this manuscript and comparison to other literature
reviews about bias

Section 7 Summarization of the findings of this manuscript and provision of future
research directions with regard to bias in ML

2. Materials and Methods

As mentioned in the Introduction part, this manuscript aims to perform a compre-
hensive literature review regarding bias in ML, investigating the corresponding methods
and approaches that have been proposed in order to identify and/or mitigate bias in the
whole ML lifecycle. More specifically, in the context of this manuscript, the ML lifecycle
consists of three (3) discrete stages for each there exist specific types of bias: (i) bias that can
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originate from the data themselves (i.e., data bias), (ii) bias deriving from the ML models
that are utilized (i.e., algorithm bias) or, (iii) bias by the ML engineers that develop and/or
evaluate the produced ML models (i.e., engineer bias). Having divided the ML lifecycle
into those categories, the types of bias that can occur in each category were identified,
which on the one hand allowed the definition of the said biases, and on the other hand
aided the identification of the corresponding approaches in the literature that manage to
tackle those biases. An overview of the types of bias that can occur in each of the three (3)
categories can be shown in Figure 1.
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When the different types of bias were identified, four (4) of the most widely known
publications databases were selected, namely ACM Digital Library, IEEE Xplore, Scopus
and Science Direct. For each database, the corresponding search query was generated. The
search for relevant studies was based on the presence of specific search terms in the title,
abstract or keywords of the said studies. For the data bias, the search terms consisted of the
name of the corresponding bias (e.g., reporting bias), the phrase “machine learning”, since
this manuscript is focused on ML approaches that aim to address the issue of bias presence
in data, and words like “addressing”, “mitigating”, “identifying” to further limit the search
to studies that actually propose a way to identify and/or mitigate data bias. Regarding
algorithm bias, more specifically estimator bias, another set of search terms was used.
In the estimator bias, only studies that compare different algorithms and also take into
consideration the aspect of bias were needed. As a result, words like “bias”, “comparative
study”, and “review” were used as search terms. Similarly, regarding the optimizers’ bias,
search terms like “bias”, “optimizer”, “hyperparameter”, and “neural network” were used.
The “hyperparameter” search term was used to only limit the search to studies that do
not refer to optimization algorithms in general, but to them as a hyperparameter of neural
networks. As for the bias caused by regularization techniques, a similar approach was
followed, consisting of the search terms “regularization”, “machine learning” and the
names of widely used regularization techniques. Lastly, regarding the engineer bias, there
exist no studies that particularly address this bias from the point of view of ML engineers,
rather than the point of view of researchers in general. As a result, for this specific type of
bias, and its subtypes, no specific search queries were performed, and a more theoretical
framework is analyzed in the corresponding section of this manuscript. A complete list of
the search queries that were performed per type of bias and per publications’ database is
shown in Table 2.
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Table 2. List of search queries performed.

Bias Type Publications Database Search Query

Reporting ACM [[Abstract: “reporting bias”] OR [Abstract: “reporting biases”]] AND [Abstract:
“machine learning”] AND [[Abstract: mitigation] OR [Abstract: mitigating] OR
[Abstract: identifying] OR [Abstract: identification] OR [Abstract: addressing]]

IEEE Xplore ((“Abstract”:reporting bias) OR (“Abstract”:reporting biases)) AND
(“Abstract”:machine learning) AND ((“Abstract”:mitigation) OR
(“Abstract”:mitigating) OR (“Abstract”:identifying) OR (“Abstract”:identification) OR
(“Abstract”:addressing))

Scopus TITLE-ABS-KEY ((“reporting bias” OR “reporting biases”) AND “machine learning”
AND (mitigation OR mitigating OR identifying OR identification OR addressing))

Science Direct Title, abstract, keywords: ((“reporting bias” OR “reporting biases”) AND “machine
learning” AND (mitigation OR mitigating OR identifying OR addressing))

Selection ACM [[Abstract: “selection bias”] OR [Abstract: “selection biases”]] AND [Abstract:
“machine learning”] AND [[Abstract: mitigation] OR [Abstract: mitigating] OR
[Abstract: identifying] OR [Abstract: identification] OR [Abstract: addressing]]

IEEE Xplore ((“Abstract”:selection bias) OR (“Abstract”:selection biases)) AND
(“Abstract”:machine learning) AND ((“Abstract”:mitigation) OR
(“Abstract”:mitigating) OR (“Abstract”:identifying) OR (“Abstract”:identification) OR
(“Abstract”:addressing))

Scopus TITLE-ABS-KEY ((“selection bias” OR “selection biases”) AND “machine learning”
AND (mitigation OR mitigating OR identifying OR identification OR addressing))

Science Direct Title, abstract, keywords: ((“cognitive bias” OR “cognitive biases”) AND “machine
learning” AND (mitigation OR mitigating OR identifying OR addressing))

Cognitive ACM [[Abstract: “cognitive bias”] OR [Abstract: “cognitive biases”]] AND [Abstract:
“machine learning”] AND [[Abstract: mitigation] OR [Abstract: mitigating] OR
[Abstract: identifying] OR [Abstract: identification] OR [Abstract: addressing]]

IEEE Xplore ((“Abstract”:cognitive bias) OR (“Abstract”:cognitive biases)) AND
(“Abstract”:machine learning) AND ((“Abstract”:mitigation) OR
(“Abstract”:mitigating) OR (“Abstract”:identifying) OR (“Abstract”:identification) OR
(“Abstract”:addressing))

Scopus TITLE-ABS-KEY ((“cognitive bias” OR “cognitive biases”) AND “machine learning”
AND (mitigation OR mitigating OR identifying OR addressing))

Science Direct Title, abstract, keywords: ((“cognitive bias” OR “cognitive biases”) AND “machine
learning” AND (mitigation OR mitigating OR identifying OR addressing))

Estimators ACM [[Abstract: “comparative study”] OR [Abstract: “review”]] AND [Abstract: “machine
learning”] AND [Abstract: “algorithm”] AND [Abstract: “bias”]

IEEE Xplore ((“Abstract”:”comparative study” OR “Abstract”:”review”) AND
(“Abstract”:”machine learning”) AND (“Abstract”:”algorithm”) AND
(“Abstract”:”bias”))

Scopus TITLE-ABS-KEY (“comparative study” AND “machine learning” AND “algorithm”
AND “bias”) AND (LIMIT-TO (SUBJAREA, “COMP”))

Science Direct Title, abstract, keywords: (“comparative study” AND “machine learning” AND
“algorithm” AND “bias”)
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Table 2. Cont.

Bias Type Publications Database Search Query

Optimizers ACM [Abstract: “optimizer”] AND [Abstract: “hyperparameter”] AND [Abstract: “machine
learning”] AND [Abstract: “neural network” AND [Abstract: “bias”]

IEEE Xplore (((“Abstract”:optimizer) AND (“Abstract”:hyperparameter) AND
(“Abstract”:machine learning) AND (“Abstract”:neural network) AND
(“Abstract”:bias)))

Scopus TITLE-ABS-KEY (“optimizer” AND “hyperparameter” AND “machine learning”
AND “neural network” AND “bias”)

Science Direct Title, abstract, keywords: (“optimizer” AND “hyperparameter” AND “machine
learning” AND “neural network” AND “bias”)

Regularization ACM [Abstract: “regularization”] AND [Abstract: “machine learning”] AND [Abstract:
“bias”] AND [[Abstract: “lasso”] OR [Abstract: “ridge”] OR [Abstract: “elastic net”]
OR [Abstract: “data augmentation”] OR [Abstract: “early stopping”] OR [Abstract:
“dropout”] OR [Abstract: “weight decay”]]

IEEE Xplore ((“Abstract”:”regularization”) AND (“Abstract”:”machine learning”) AND
((“Abstract”:”lasso”) OR (“Abstract”:”ridge”) OR (“Abstract”:”elastic net”) OR
(“Abstract”:”data augmentation”) OR (“Abstract”:”early stopping”) OR
(“Abstract”:”dropout)” OR (“Abstract”: “weight decay”)))

Scopus TITLE-ABS-KEY (“regularization” AND “machine learning” AND “bias” AND
(“lasso” OR “ridge” OR “elastic net” OR “data augmentation” OR “early stopping”
OR “dropout” OR “weight decay”))

Science Direct Title, abstract, keywords: (“regularization” AND “machine learning” AND “bias”
AND (“lasso” OR “ridge” OR “elastic net” OR “data augmentation” OR “early
stopping” OR “dropout” OR “weight decay”))

Having retrieved the research studies, a cleaning step took place where the duplicate
studies were removed from the list of collected documents. Afterward, this list was further
reduced, based on three (3) inclusion criteria (i.e., IC) and one (1) exclusion criterion (i.e.,
EC). The context of a study should obey the aforementioned IC in order to be considered
for this literature review. More specifically, the IC and EC that are taken into consideration
are the following:

1. IC#1: The study should contain a specific methodology, either theoretical framework
or technical method/algorithm for identifying and/or mitigating bias.

2. IC#2: The study takes algorithmic bias into consideration when comparing different
algorithms or optimizers.

3. IC#3: The study explains why a specific algorithm/optimizer/regularization method
was chosen.

4. EC#1: The study was not peer reviewed.

IC#1 and EC#1 refer to the studies related to all three (3) categories of bias (i.e., data,
algorithms and engineers). IC#2 refers to the studies related to the two (2) subtypes of
algorithm bias, namely estimator bias and optimizer bias while IC#3 corresponds to the
studies that are related to algorithm bias (i.e., including regularization bias). A visualization
of the process followed to select the studies that are analyzed in this manuscript, which
was also presented above, is depicted in Figure 2.
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3. Data Bias

As discussed earlier, one major cause of biased results of ML models is the fact that
the data used for training those models are also biased. Data bias is mostly related to the
way that data are selected and collected, as well as the nature of the data. As a result,
three categories of data bias can be identified, namely reporting bias, selection bias and
cognitive bias.

Apart from approaches that exist for dealing with specific categories of data bias
which will be analyzed in the following subsections, there are some more scenario-agnostic
techniques that can be applied in order to reduce data bias. These techniques mostly refer
to imbalanced datasets (i.e., one label occurs more often in the data than the other(s)) and
aim to reduce the bias in the datasets by under-sampling or over-sampling [16].

In under-sampling, the number of data instances that belong to the majority class
is reduced, whilst in over-sampling, the number of data instances that belong to the
minority class is increased [17]. A common approach for performing under-sampling
includes the application of a clustering algorithm to cluster the imbalanced dataset and
then remove instances of the majority class, based on the cluster to which every instance
belongs [18]. Other techniques that can be applied are random under-sampling and Tomek
links under-sampling. In random under-sampling, as its name suggests, a random number
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of observations to keep is selected [19]. In Tomek links under-sampling, data instances
that “overlap” each other are identified, thus removing instances of the majority class that
belong to the class “boundaries” [20].

With regard to over-sampling, there exist two main approaches, namely the synthetic
minority over-sampling technique (i.e., SMOTE) and adaptive synthetic sampling (i.e.,
ADASYN). SMOTE first identifies the minority class instances then selects the nearest
neighbor and generates a synthetic data sample by joining the minority class instance and
the corresponding nearest neighbor [21]. As for the ADASYN, it is similar to SMOTE; how-
ever, it generates a different number of samples based on the distribution of the minority
class, thus also improving learning performance [22]. What is more, there exist approaches
that perform over-sampling on multi-class datasets such as Mahalanobis distance-based
over-sampling (i.e., MDO) and adaptive Mahalanobis distance-based over-sampling (i.e.,
AMDO) that are appropriate for numeric and mixed data, respectively [23].

3.1. Cognitive Bias

Cognitive bias is mostly related to the nature of the data. For example, text data from
social media posts are quite likely to represent the cognitive bias of the people who wrote
those posts. This kind of bias is several times identified in LLMs [24], since they are usually
trained, among others, on this kind of data. At this point, it is important to note that
this kind of human bias is not related to the bias caused by the ML model builders and
evaluators. They are both caused by humans, but the first one is interconnected with the
data, whilst the second one is associated with the implementation and evaluation of the
ML models.

There have been several attempts to identify cognitive bias in text data such as the
one presented in [25]. In this paper, the authors try to automatically detect 188 cognitive
biases that are present in the 2016 Cognitive Bias Codex [26] and test its performance to
both human and AI-generated text data, showcasing promising results. However, the
authors also state that they need more human participants in their study in order to use
their responses as the ground truth and establish a better understanding of the approach’s
accuracy. In a similar approach that also focuses on text data [27], where the authors try to
mitigate cognitive bias that can be found in text data, an ontology-based approach named
Automatic Bias Identification (i.e., ABI) is showcased. The main idea of ABI is to consider
the decisions made by the users in the past in order to identify whether new, different
decisions made by the same users contain cognitive bias. In essence, based on the historical
decisions available to the tool, it performs a Boolean classification regarding whether a new
decision is biased or not.

In [28], the authors aim to identify four types of cognitive bias in ML models by
allowing users to provide feedback to the said models and then examining whether this
feedback increases or decreases the variance of future choices made by the ML models.
In [29], BiasEye is introduced, which aims to identify and mitigate cognitive bias in text
data and, more precisely, text data coming from curriculum vitae (i.e., CVs). BiasEye de-
pends on an ML approach that models individual screening preferences so that it improves
information transparency and accessibility, thus enhancing awareness regarding cognitive
biases. Similarly, regarding text data from CVs, the authors in [30] propose a three-step ap-
proach for mitigating cognitive bias, consisting of pre-process, in-process and post-process
steps. More specifically, for the pre-process step, they examine three techniques, namely
optimized pre-processing (i.e., OPP), massaging–reweighting–sampling (i.e., MRS) and
disparate impact reduction (i.e., DIR). Regarding the in-process step, they utilize adversarial
debiasing (i.e., AD) and prejudice remover (i.e., PR). As for the post-process step, they test
three techniques namely equalized odds post-processing (i.e., EOP), calibrated equalized
odds post-processing (i.e., CEOP) and reject option classification (i.e., ROC). Based on their
experiments, they conclude that the combination of DIR, AD and EOP achieves the best
results but has higher complexity and computational cost, whereas without the utilization
of AD, the accuracy is slightly lower but, still, quite promising. In [31], the integration
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of causal analysis results is suggested in order to mitigate cognitive biases. The authors
argue that this integration, as well as the utilization of knowledge discovery mechanisms,
alongside data-driven methodologies, will assist in avoiding cognitive biases.

In another study [32], the authors also propose an approach to not only identify
cognitive bias but also mitigate it, utilizing a module that alters data attributes that cause
cognitive bias and then evaluates the results by measuring the KL divergence value. Their
approach has been tested in computer vision—related datasets and more specifically in
image data, showcasing promising results. In [33], the authors propose a different approach
for mitigating cognitive bias in medical LLMs. In their study, they propose “informing” the
model that the provided input question may lead to an answer (i.e., model output) that
contains some kind of cognitive bias. In this approach, the original training data are not
altered in any way, but the model modifies the provided answers based on the assumption
that the training data is biased.

A complete list of approaches that have been proposed to identify and/or mitigate
cognitive bias can be found in Table 3.

Table 3. Approaches to identify and/or mitigate cognitive bias.

ID Year Ref. Domain Data Category Type

CB1 2023 [25] Natural Language Processing
(i.e., NLP) (Generic)

Text Identification

CB2 2023 [27] NLP-Generic Text Identification

CB3 2020 [28] Generic Not specific Identification

CB4 2024 [29] NLP (Business) Text Identification
and Mitigation

CB5 2020 [30] NLP (Business) Text Identification
and Mitigation

CB6 2024 [31] Generic Not specific Identification
and Mitigation

CB7 2022 [32] Computer Vision Images Identification
and Mitigation

CB8 2024 [33] NLP (Health) Text Identification
and Mitigation

3.2. Selection Bias

Another type of bias that can be identified in the data is the selection bias. Selection
bias occurs when the data samples that are selected are not reflective of the real-world
distribution of the data [34]. Under the umbrella of this kind of bias, there exists a plethora
of subtypes of bias such as sampling, attrition, self-selection, survivorship, nonresponse
and under-coverage bias [35].

In general, selection bias can be avoided by applying the proper techniques when
sampling the population of interest and designing the corresponding study, thus under-
standing the connection between the data samples and the target population [36]. Except
for the initial stages of a study, selection bias can also be addressed later on, when the data
has already been collected.

To achieve this, there have been proposed several methods in the literature, mainly
statistical ones. Those statistical methods include the delta-method, linear scaling, power
transformation of precipitation [37], empirical quantile mapping, gamma quantile mapping
and gamma-pareto quantile mapping [38]. Selection bias is quite common in historical
climate-related data; thus, the aforementioned methods are greatly used in relevant use
cases, such as rainfall-runoff processes [39]. Another approach that aims to identify selection
bias in environmental observational data is presented in [40], where the authors introduce
two methods. The first one relies on the uniqueness of members of exponential families



Appl. Sci. 2024, 14, 8860 10 of 40

over any set of non-zero probabilities. The second method depends on the invariances of
the true generating distribution before selection. The authors claim that both approaches
generate adequate results for identifying the variables affected by selection bias.

Similarly, in [41] an approach for mitigating selection bias in environment time series
data is also presented. It consists of two cross-validation iterations. The outer one is used
for identifying the set of variables based on which the corresponding predictor produces
the minimum residual sum of squares (i.e., RSS), whilst in the inner iteration a grid search
is performed to identify the optimal hyperparameters corresponding to the minimum RSS.
Regarding computer vision, three approaches can be found in the literature. The first one is
presented in [42] and makes use of a causally regularized logistic regression (i.e., CRLR)
model for classifying data that contain agnostic selection bias. The model consists of a
weighted logistic loss term and a subtly designed causal regularizer. The second one is
showcased in [43], where the authors utilize an adapted triplet loss (i.e., ATL) method. In
ATL, a matching loss term reduces the distribution shift between all possible triplets and
the selected triplets, thus minimizing selection bias. The third one is presented in [44] and
mainly focuses on medical images and utilizes a technique called Recalibrated Feature
Compensation (i.e., RFC). RFC uses a recalibrated distribution to augment features for
minority groups, by restricting the feature distribution gap between different sample views.
With regard to the health domain, an additional five can be found in the literature.

In [45], the selection bias that can be found in electronic health records (i.e., EHRs),
which is caused due to missing values can be reduced by implementing an inverse proba-
bility weighting (i.e., IPW) adjustment technique. Moreover, the authors utilized chained
equations to fill any additional missing features, showcasing that data-cleaning techniques
can also assist in mitigating data bias. Data cleaning is also used in [46] to address se-
lection bias. A threshold of 30% is set which means that if a feature has more than 30%
missing values, it should be eliminated. The goal of this procedure is to ensure that every
feature consists of the approximately same number of missing values. Moreover, since
the data come from different hospitals of different sizes, the dataset is clipped in order to
contain an equal number of records from every hospital, thus avoiding the domination of
large-sized hospitals.

Similarly, in [47] a clique-based causal feature separation (i.e., CCFS) algorithm is
presented that theoretically guarantees that either the largest clique or the rest of the causal
skeleton is the exact set of all causal features of the outcome. In [48], the authors address
the issue of medical question-answering (i.e., Q&A) and propose label resetting in order
to avoid the effects of selection bias in medical text data, simultaneously preserving the
textual content and the corresponding semantic information. In another health-related
approach [49], four propensity methods are presented and tested, including one-to-one
matching with replacement, IPW and two methods based on doubly robust (i.e., DR)
estimation that combines outcome regression and IPW.

In [50], IPW is also being used and a two-stage process if followed, consisting of a
classification and a regression model that uses the reweighted results of the classification.
In essence, this procedure enhances underrepresented records in the dataset and reduces
the weights of overrepresented records. A group fairness metric for model selection called
area delimited between classification (i.e., ABC) is introduced in [51] that is based on item
response theory (i.e., IRT) and differential item functioning (i.e., DIF) characteristic curve
and aims to identify selection bias, also showcasing promising results.

Apart from the above-mentioned methods, the authors in [52] introduce Imitate
(Identify and Mitigate Selection Bias) for mitigating selection bias, which they have also
released as a Python module [53]. The idea behind this approach is that the algorithm first
calculates the dataset’s probability density and then adds generated points to smooth out
the density. If the points are concentrated in certain areas and are not widespread, this
could be an indication that selection bias is present in the dataset.

However, the Imitate algorithm assumes that there exists only one normally distributed
cluster per class in the dataset. To this end, the authors in [54] propose MIMIC (Multi-
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IMItate Bias Correction), which utilizes Imitate as a building block, being, however, capable
of handling multi-cluster datasets by speculating that the ground-truth data consists of a set
of multivariate Gaussians. Even though this is a limiting assumption, MIMIC is able to deal
with more datasets than Imitate. In another approach [55], the authors discuss selection bias
in recommender systems, which is a common issue in such systems, since they heavily rely
on users’ historical data [56]. Their proposed approach consists of a data-filling strategy
utilizing, irrelevant to the users, items based on temporal visibility.

A complete list of approaches that have been proposed to identify and/or mitigate
selection bias can be found in Table 4.

Table 4. Approaches to identify and/or mitigate selection bias.

ID Year Ref. Domain Data Category Type

SB1 2019 [39] Environment Time series Identification

SB2 2023 [40] Environment Observations
(numeric)

Identification

SB3 2021 [41] Environment Time series Identification and Mitigation

SB4 2018 [42] Computer Vision Images Identification and Mitigation

SB5 2022 [43] Computer Vision Images Identification and Mitigation

SB6 2023 [44] Computer Vision
(Health)

Images Identification and Mitigation

SB7 2019 [45] Health EHR data (numeric
and text)

Identification and Mitigation

SB8 2023 [46] Health Mixed (text and
numeric)

Identification and Mitigation

SB9 2023 [47] Health Numeric Identification and Mitigation

SB10 2023 [48] Health Text (NLP—Q&A) Identification and Mitigation

SB11 2021 [49] Health Mixed (text and
numeric)

Identification and Mitigation

SB12 2017 [50] Not specific Not specific Identification and Mitigation

SB13 2023 [51] Mixed (text and
numeric)

Several (binary
classification)

Identification

3.3. Reporting Bias

An additional type of bias that can be encountered in the data is the reporting bias.
Reporting bias is quite common in Language Models (LMs) [57] and a plethora of studies
have concluded that LMs such as RoBERTa and GTP-2 amplify reporting bias, due to the
data that they have been trained on [58].

To address this issue, the authors in [59] propose a neural logic-based Soft Logic
Enhanced Event Temporal Reasoning (SLEER) model in order to mitigate the reporting
bias originating from the Temporal Common Sense (TCS) knowledge that is extracted from
free-form text. In another paper, the authors focus on text-image datasets and the reporting
bias that might occur in those cases [60]. They propose the bimodal augmentation (BiAug)
approach that generates pairs of object-attributes to diminish the over-representation
of recurrent patterns. However, the generation of data (i.e., pairs of object-attributes)
is quite expensive in terms of computational resources due to the utilization of LMs.
The authors suggest that this challenge can be mitigated by utilizing techniques such as
parallel processing.

In a similar approach focusing on image data [61], the authors suggest that the re-
porting bias can be removed by using label frequencies. Those frequencies, which are the
per-class fraction of labeled and positive examples found in all positive examples, are being
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estimated using Dynamic Label Frequency Estimation (DLFE); thus, an increased accuracy
of the debiasing process is observed.

Similarly, in [62], it is suggested that a new variable should be added in the training
dataset describing what is shown in every image, except for the image’s label. In that
way, this technique leverages both the aspects of human performance and the algorithmic
understanding, thus showcasing quite promising results.

In another approach [63], where the authors focus on the task of facial recognition,
the authors experiment with five algorithms namely, logistic regression (i.e., LR), linear
discriminant analysis (i.e., LDA), k-nearest neighbors (i.e., KNN), support vector machines
(i.e., SVM) and decision trees (i.e., DT). Based on their results, DT seems to better address
reporting bias that is present in the corresponding data. Regarding cybersecurity, two
approaches can be found in the literature that focus on threat classification and malware
detection, respectively. The first approach makes use of four techniques for mitigating
reporting bias in the data, namely covariate shift, kernel mean matching, Kullback–Liebler
importance estimation procedure (i.e., KLIEP) and relative density ratio estimation [64].
In the second approach, the authors split the private and public datasets that they have at
their disposal in different ways prior to training and testing the implemented convolutional
neural network (i.e., CNN). The training and testing of the model occur in a disjoint way,
using different timescales, thus mitigating the reporting bias of the training data [65].
In [66], the authors utilize a statistical technique called repeated measures correlation (i.e.,
RMCorr) to avoid reporting bias from health-related data, by using multiple samples from
each subject.

Similarly, the authors in [67] mainly focus on the data collection phase in order to
avoid reporting bias by explicitly adjusting the survey responses related to the intention
of patients to vaccinate. Those responses are then used to train a random forest (i.e., RF)
algorithm that predicts whether a specific patient will be vaccinated on time. The approach
presented in [68], also focuses on the data collection phase to mitigate potential reporting
bias. In this case, the authors utilize specific software (https://acasillc.com/acasi.htm, 22
March 2024) called audio computer-assisted self-interviewing (i.e., ACASI) and computer-
assisted personal interviewing (i.e., CAPI) to provide a secure, private and confidential
environment, thus increasing the level of answers’ honesty to questions related to sensitive
behaviors such as illicit drug use. Focusing on an entirely different domain and trying
to estimate the dropout rate in college institutions, the authors in [69] propose Disc-Less
(Discrimination-Less) which is based on the advanced process optimizer (i.e., ADOPT).

In a similar case [70], where the authors try to predict whether a university student
will fail a class, they compare three algorithms which are LR, Rawlsian and cooperative
contextual bandits (i.e., CBB). LR has the highest accuracy but is prone to bias. Rawlsian is a
fairness algorithm but in this specific case fails to remove bias. Finally, CBB consists of two
Gradient Contextual Bandits, which not only mitigate reporting bias that is present in the
data but are also easier to implement in contrast to other similar baseline models such as
Learning Fair Representation (i.e., LFR) and Adversarial Learned Fair Representation (i.e.,
ALFR). In [71], a complete toolkit is presented that allows the users to compare thirteen
ML algorithms and utilize twelve (12) evaluation metrics, as well as perform a significance
test to reduce reporting bias. The results of this toolkit are very promising; however, it has
been utilized only for aerospace prognostic data. In [72], Bosco is introduced to deal with
imbalanced biology data. The main rule that Bosco follows is assigning samples in the
major group with different important scores, thus mitigating potential bias in the data.

As for time series data, the authors in [73] compared two known techniques, namely
quantile mapping and power transformation to correct the data coming from several
different regional climate models. Their results showcased that power transformation out-
performed quantile mapping, since the corrected data that power transformation generated,
enhanced the accuracy of the model that was trained based on them. In [74], the authors
suggest that Privacy-Preserving Decentralized Intelligence can also be utilized to avoid
bias by training ML models over a network of autonomous entities without the training

https://acasillc.com/acasi.htm
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data being exposed. Except for the model training, data analysis can also take place in a
distributed manner, which could also help mitigate bias.

In another approach [75], the authors focus on financial data and the mitigation of the
corresponding reporting bias that might occur, either due to human error or deliberately
as part of a fraud. In this case, a hybrid method is showcased that combines the input of
human experts on the corresponding field, as well as the utilization of Shannon entropy
analysis to evaluate the information that is provided by the experts. Finally, in order to
identify reporting bias in social media data, the authors in [76], compare a set of traditional
ML algorithms, namely, Naïve Bayes (i.e., NB), LR and SVM. SVM managed to achieve the
highest accuracy in identifying the bias that is present in the data, showcasing that it can be
a useful tool for identifying reporting bias in text data.

A complete list of approaches that have been proposed to identify and/or mitigate
selection bias can be found in Table 5.

Table 5. Approaches to identify and/or mitigate reporting bias.

ID Year Ref. Domain Data Category Type

RB1 2022 [59] Not specific Text Identification and Mitigation

RB2 2023 [60] Computer Vision Text and Images Identification and Mitigation

RB3 2021 [61] Computer Vision Images Identification and Mitigation

RB4 2016 [62] Computer Vision Images Identification and Mitigation

RB5 2021 [63] Facial Recognition Images Identification and Mitigation

RB6 2018 [64] Security Numeric Identification and Mitigation

RB7 2019 [65] Security (Malware
Detection)

Numeric Identification and Mitigation

RB8 2023 [66] Health Numeric Identification and Mitigation

RB9 2023 [67] Health Numeric Identification and Mitigation

RB10 2020 [68] Health Numeric Identification and Mitigation

RB11 2023 [69] Education Numeric Identification and Mitigation

RB12 2020 [70] Education Numeric Identification and Mitigation

RB13 2019 [71] Aerospace Prognostic Data Identification and Mitigation

RB14 2017 [72] Biology Mixed Identification and Mitigation

RB15 2023 [73] Environment Time series data Identification and Mitigation

RB16 2023 [74] Generic Mixed Identification and Mitigation

RB17 2021 [75] Finance Numeric Identification and Mitigation

RB18 2018 [76] Social media Text Identification

3.4. Common Mitigation Techniques for Data Bias

According to the above-mentioned findings, there exist some common issues with
regard to data bias, as well as corresponding techniques that can be applied to mitigate
it. More specifically, as stated in the beginning of this section, common techniques that
can be applied to address data bias, regardless of the use case, are under-sampling and
over-sampling. As for use-case-specific approaches, major issues regarding data bias are
mostly common in NLP, computer vision and the health domain. The relatively common
domains that are affected from data bias and the corresponding solutions that have been
proposed in the literature and presented above are depicted in Figure 3.
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By comparing the above-mentioned techniques, in terms of the domain that they are
applied to, it is noticeable that methods like under-sampling, over-sampling, DIR, AD and
ROC are interesting candidates that can be used for mitigating data bias, regardless of
the domain. Moreover, IPW is also a useful technique when it comes to text data and can
be applied to several domains as well, given the fact that the corresponding data are text
data. With regard to image data, there exist specific techniques that are appropriate for this
kind of data which can also be applied to several domains, like health, considering that the
corresponding data are image data.

4. Algorithm Bias
4.1. Estimators

Except for the bias that originates from the data and described above, bias can also
occur due to the ML models that are being utilized. To begin with, the most obvious reason
that leads to bias is the selection of an algorithm (i.e., estimator) that is not suitable for the
given task (e.g., using a linear model to provide prediction on non-linear data). Another
reason is that, given a certain task (e.g., classification), an algorithm might outperform
others in a specific use case but fall behind in other use cases, due to the nature of the
corresponding data. To this end, various comparative studies have been published that
compare several ML algorithms and try to propose the most appropriate ones for specific
use cases by minimizing the bias of the results and thus maximizing the accuracy of
the predictions.

Prior to presenting the said comparative studies, a brief description of every estimator
that will be mentioned later on should be provided so that the rest of the context will be more
understandable by the readers of this manuscript. The names of the algorithms that are
compared in the comparative studies that are analyzed below, as well as a brief description
of the said algorithms, are shown in Table 6. The algorithms are sorted alphabetically.

Table 6. High-level description of the algorithms that are tested in the corresponding literature.

Algorithm (Estimator) Name Abbreviation Description

Autoregressive Moving Average ARIMA Mostly used in time series forecasting, where the current value of the
series can be explained as a function of past values [77]

Adaptive Neuro-Fuzzy Inference
System

ANFIS Type of a Neural Network that is based on the Takagi-Sugeno fuzzy
system [78]

Bee Colony Optimization BCO System that consists of multiple agents for solving complex
optimization problems [79]
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Table 6. Cont.

Algorithm (Estimator) Name Abbreviation Description

Bidirectional Long Short-Term Memory
Neural Network

Bi-LSTM NN Specific type of LSTM neural network that enables additional
training by traversing the input data [80]

Cascade Support Vector Machine C-SVM Ensemble ML technique that consists of several SVMs stacked in a
cascade [81]

C4.5 Classifier C4.5 Type of a decision tree classifier [82]

Classification and regression tree CART Type of a decision tree algorithm that can be used for both
classification and regression tasks [83]

CNN-Bi-LSTM CNN-Bi-LSTM Type of a Bi-LSTM NN that also utilizes a convolutional layer [84]

Conditional Random Fields CRF Statistical modeling method that is mostly used in pattern
recognition and ML for structured predictions, since it models
predictions into graphs [85]

Convolution Long Short-Term Memory CLSTM Type of an LSTM NN that also utilizes a convolutional layer [86]

Convolutional Neural Network CNN A type of feed-forward NN that consists of at least one convolutional
layer and is widely used in computer vision tasks [87]

Cox proportional hazards model Cox regression Type of a survival model. That kind of models try to associate time
prior to one event happening with one or more covariates [88]

Cubist Cubist Rule-based model that contains a tree whose final leaves use linear
regression models [89]

Decision Trees DT Fundamental ML algorithm that uses a tree-like model of decisions
and can be used for both regression and classification tasks [90]

Deep Neural Network DNN A type of an NN that has multiple hidden layers between the input
and the output [91]

Double Deep Q-Network DDQN Consists of two separate Q-networks that are a type of reinforcement
learning algorithms [92]

Exponential smoothing methods ESM Method used in time series forecasting that utilizes an exponentially
weighted average of past values to predict a future value [93]

Extra Trees ET An ensemble ML approach that utilizes multiple randomized
decision trees [94]

Extreme Gradient Boosting XGBoost Iteratively combines predictions of multiple individual models,
usually DTs [95]

Gene Expression Programming GEP Type of evolutionary algorithm that consist of complex trees that
adapt and alter their structures [96]

Gradient Boosted Regression Trees GBRT Type of additive model that makes predictions by combining
decisions from a set of other models [97]

Gated Recurrent Unit Networks GRU Type of Recurrent Neural Network, similar to LSTM, that utilize less
parameters, thus having less computational cost [98]

k-Nearest Neighbors KNN A fundamental ML algorithm used for classification and regression
based on proximity of data points [99]

Light Gradient Boosting Machine LightGBM Ensemble method that is based on gradient boosting [100]

Linear Discriminant Analysis LDA Supervised ML algorithm for classification that aims to identify linear
set of features that identify classes into a dataset [101]

Linear Regression LinearR Fundamental algorithm that estimates the linear relationship
between two variables [102]

Linear Support Vector Classification LinearSVC Subtype of SVM used for perfectly linear data [103]

Logistic Regression LogR Used for estimating the parameters of logistic models [104]

Long-Short Term Memory LSTM Type of recurrent neural network that is particularly useful for time
series forecasting, since it is capable to “remember” [105]
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Table 6. Cont.

Algorithm (Estimator) Name Abbreviation Description

Multi-Layer Perceptron neural network MLP Subtype of a DNN [106]

Multinomial Naive Bayes MNB Probabilistic classifier that is based on the Bayes’ theorem and
focuses on calculation of text data’s distribution [107]

Neural Network NN Structure that is made of artificial neurons that receive signals from
other connected neurons and create an output that can be forwarded
to other neurons [108]

Random Forest RF Fundamental ML algorithm that makes use of the output of multiple
decision trees for classification, regression and other tasks [109]

Squeaky Wheel Optimization SWO An optimization technique based on a greedy algorithm [110]

Seasonal and Trend decomposition
using Loess

STL Method used in time series where linear regression models are
applied to decompose a time series into separate components [111]

Support Vector Machines SVM Classification algorithm that finds an optimal line or hyperplane to
maximize the distance between each class [112]

Temporal Difference (lambda) TD Reinforcement learning method that share common characteristics
with Monte Carlo method and Dynamic Programming methods [113]

Term Frequency Inverse Document
Frequency of records

TF-IDF A measure calculating the relevancy of a word in a series of words or
entire corpus [114]

Value-Biased Stochastic Search VBSS Randomization method that can be used for determining stochastic
bias [115]

Vector Autoregression VAR Model that can be used for multiple time series that influence each
other [116]

Having presented the algorithms that will be discussed in this section, the correspond-
ing comparative studies are now going to be analyzed. Starting from the agricultural
domain, the authors in [117] compare three algorithms to estimate soil organic carbon (i.e.,
SOC), namely RF, SVM and Cubist. Based on the results of the experiments, an ensemble
method that utilized all three algorithms was proposed, since it reduced the overall bias
when modeling SOC, regardless of the different spectral measurement conditions. In [118],
the authors compare several algorithms from reinforcement learning, including SWO, VBSS,
BCO and TD, for the scheduling problem. They conclude that SWO performed better since
it was particularly designed to solve that kind of problem.

Regarding biological data used to predict bacterial heterotrophic fluxomics, the authors
in [119] test SVM, KNN and DT and conclude that SVM is the most appropriate one in this
use case since it achieves the highest accuracy.

As for the business domain, the authors in [120] test the MNB and a CLSTM NN
for the classification of clients’ reviews. Their results showcase that CLSTM NN is more
appropriate for this classification task because the MNB produces biased results since it is
learning a single class and neglects the other ones because the training data are imbalanced.
In a similar approach [121], the authors compare RF, SVM and a DNN for predicting
whether a machine in an assembly line will fail, based on its kinematic, dynamic, electrical
current, and temperature data. Even though SVM reduced model overfitting and bias, it
did not achieve the desired accuracy whilst the DNN not only improved the accuracy but
also produced insignificant bias.

In [122], where the authors handle time series data of marine systems the authors ex-
periment on a set of algorithms and methods including STL decomposition, ESM, ARIMA,
LinearR, KNN, SVM, VAR, DT and ensemble methods that combine the previously men-
tioned methods. The authors suggest that the ensemble methods should be avoided since
they have a higher computational cost. They also argue that for this specific use case, VAR
should be used when many missing values are present in the time series, whilst ARIMA
should be chosen if there are no missing values. In a computer vision problem [123], where
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data from remote sensing are available (e.g., data coming from satellites), the authors test
RF, ET and GBRT. Out of the three, ET performed the best in terms of accuracy, while GBRT
performed the worst. In [124], XGBoost, LightGBM and GEP are studied in the context of
estimating the quality of steel-fiber-reinforced concrete. Even though all of them generate
adequate predictions, GEP is selected for forecasting the shear strength considering the
most important factors, such as the beam depth effect. The authors in [125] experiment with
CART, ANFIS, SVM and an MLP NN for performing time series forecasting using hydro-
meteorological data. They conclude that the CART algorithm can be a very useful tool
since it generates the most promising results in terms of the Nash–Sutcliffe model efficiency
coefficient (i.e., NSE), Kling–Gupta efficiency (i.e., KGE) and Percent Bias (i.e., PBias).

In another approach related to the environment [126], a fully connected NN, a CNN
and an LSTM NN are trained on seismic data and the results showcase that the CNN and
the LSTM NN were extremely effective both in terms of Mean Square Error (i.e., MSE) and
statistical bias.

In [127], the authors utilize a set of algorithms to predict whether an account holder
will be able to repay financial loans in time. Those algorithms include DDQN, SVM, KNN,
RF and XGBoost. Based on the results of this comparative study, KNN outperformed all
the other algorithms in terms of prediction accuracy, whilst DDQN provided interesting
results, paving the way for the application of other reinforcement learning techniques in
similar use cases.

With regard to the health domain, there have been several comparative studies that
experiment on a diverse set of algorithms and datasets. Starting from [128], the authors
compare LogR, an NN, SGD, RF, NB, KNN and DT by training them on a variety of
open-source datasets concluding that LogR provided the best results based on a set of
evaluation metrics that include, accuracy, precision, recall and F1-Score. In [129], the authors
compare LinearSVC, LogR, MNB and RF in the context of identifying stereotypical patient
characteristics in clinical science vignettes, concluding that LogR when combined with
TF-IDF, can be quite useful for such use cases. In [130], the authors use Cox regression and
an NN to predict the outcome of a COVID-19 infection. Even though both achieved high
accuracy, the NN had significantly greater discriminatory ability. SVM, an NN and NB are
tested in the context of [131], with regard to detecting leukemia and is showcased that SVM
produced superior results in terms of classification accuracy. In [132], the authors make use
of twenty-three (23) medical datasets and experiment with an NN, a DNN, C4.5, NB, KNN,
LogR and SVM in order to find the most appropriate algorithm for medical datasets. Based
on their results, SVM is the best-performing algorithm for medical datasets. Similarly,
in [133] LogR, DT, RF and an NN are tested. NN had a greater accuracy but for a single
class since it was affected by the bias present in the dataset. Taking this into consideration,
the authors argue that RF performed the best with regard to all the classes present in the
dataset. In [134], SVM and DT are compared. In this case, DT is slightly more accurate than
SVM for diagnosing soft tissue tumors; however, it is more sensitive to the total number of
parameters. As for medical images, the authors in [135] compare a non-recurrent NN and
an LSTM NN, concluding that the LSTM-based approach improves the prediction accuracy,
and the F1-Score compared to its non-recurrent counterpart. As for sentiment analysis, the
authors in [136] experiment on a vast set of NN-based architectures, such as CNN-Bi-LSTM,
LSTM, Bi-LSTM, CNN and GRU, as well as non-NN-based algorithms such as RF and SVM.
According to their results, CNN-Bi-LSTM outperformed all the other algorithms in terms
of accuracy. Lastly, with regard to sensor data coming from smart homes for automatic
activity recognition, the authors in [137] experiment on C-SVM, CRF and LDA by utilizing
an imbalanced dataset. According to this study, CRF is more sensitive to overfitting on
a dominant class, whilst SVM outperforms the other two with respect to class accuracy,
making it a feasible method for this specific use case.

A complete list of comparative studies of algorithms that have been conducted and
take bias into consideration can be found in Table 7. The comparative studies are sorted
alphabetically based on the domain that each study refers to.
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Table 7. Complete list of comparative studies of ML algorithms (estimators).

ID Year Ref. Domain Data Category Estimators Most Suitable Estimator

CS1 2022 [117] Agriculture Spectra Data RF, SVM, Cubist Ensemble Method

CS2 2009 [118] Automobiles Mixed
(text–numeric)

SWO, VBSS, BCO, TD TS and SWO

CS3 2016 [119] Biology Numeric SVM, KNN, DT SVM

CS4 2020 [120] Business Text (reviews) MNB, CLSTM CLSTM

CS5 2022 [121] Business Numeric RF, SVM, DNN DNN

CS6 2020 [122] Business Time series STL decomposition, ESM, ARIMA,
LinearR, KNN, SVR, VAR, DT

VAR or ARIMA (based on
missing values presence)

CS7 2015 [123] Computer Vision Remote Sensing RF, ET, GBRT ET

CS8 2024 [124] Construction Numeric XGBoost, LightGBM, GEP GEP

CS9 2018 [125] Environment Time series CART, ANFIS, MLP NN CART

CS10 2021 [126] Environement Seismic data Dense NN, CNN, LSTM CNN and LSTM

CS11 2022 [127] Financial Numeric DDQN, SVM, KNN, RF, XGBoost KNN

CS12 2022 [128] Health Numeric LogR, NN, SGD, RF, NB, KNN, DT LogR

CS13 2021 [129] Health Text LinearSVC, LogR, MNB, RF LogR with TF-IDF

CS14 2020 [130] Health Numeric Cox regression, NN NN

CS15 2017 [131] Health Numeric SVM, NN, NB SVM

CS16 2021 [132] Health Numeric NN, C4.5 Classifier, NB, KNN,
Logistic Classifier, SVM, DNN.

SVM

SC17 2020 [133] Health Numeric LogR, DT, RF, NN RF

CS18 2022 [134] Health Numeric SVM, DT SVM

CS19 2021 [135] Health Images Simple NN, LSTM LSTM

CS20 2023 [136] Sentiment
Analysis

Text CNN-Bi-LSTM, LSTM, Bi-LSTM,
CNN, GRU, RF, SVM

CNN-Bi-LSTM

CS21 2012 [137] Smart Homes Sensor Data C-SVM, CRF, LDA C-SVM

In the literature, there also exist algorithms that have been developed specifically
for bias mitigation and thus can assist in reducing bias that is caused by an estimator
like the ones that are presented above. An indicative example of such an approach is
adversarial debiasing. Adversarial debiasing is based on adversarial learning and suggests
the simultaneous training of a predictor and a discriminator where the first one aims to
predict the target variable accurately, whilst the latter one aims to predict the protected
variable (e.g., gender). The goal of adversarial debiasing is maximizing the ability of the
predictor to predict the target variable while simultaneously minimizing the ability of
the discriminator to predict the protected attribute based on the predictions made by the
predictor [138]. What is more, a federated version of the aforementioned approach has
been proposed in [139] which not only deals with privacy concerns related to the training
data but also achieves almost identical performance with the centralized version of it.

Another mechanism that can help in tackling bias when training an estimator and thus,
ensuring fairness, are the fairness constraints. A fairness constraint prevents a classifier
from outputting predictions that correlate with a protected/sensitive attribute that is
present in the data [140]. There exist numerous related approaches, including the one
presented in [141], where the authors utilize an intuitive measure of decision boundary
(un)fairness to implement fairness constraints while using datasets with multiple sensitive
attributes. Similarly, the approaches that are presented in [142,143] are also able to handle
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multiple sensitive attributes but do not address the disparate impact’s business necessity
clause [144].

Furthermore, in the literature, there exists a type of neural network architecture named
variational autoencoders which are able to achieve subgroup demographic parity with
regard to multiple sensitive attributes, thus reducing bias [145]. Moreover, other approaches
that are used in the literature for bias mitigation are contrastive learning [146] and neural
style transfer [147]. In the first one, contrastive information estimators are utilized to control
the parity of an estimator by limiting the mutual information between representations and
protected attributes of a dataset. The second one is an approach for performing image-to-
image translation which, in the context of dealing with bias and improving fairness, can be
used for mapping from an input domain to a fair target domain.

4.2. Optimizers

Aside from the selection of the appropriate estimator (i.e., algorithm), the utmost care
should be taken when selecting optimizers and types of regularization, since all of them can
contribute to biased algorithmic decisions, regardless of the absence or presence of bias in
the input data [148]. Regarding optimizers, those are algorithms that are utilized in neural
networks to change their attributes, such as weights and learning rate, thus minimizing the
losses. There have been proposed several optimizers in the literature, from which the most
widely used are Stochastic Gradient Descent (SGD) and its variant Stochastic Gradient
Descent with Gradient Clipping (SGD with GC), Momentum and its variant Nesterov,
Adan (Adaptive Nesterov) and AdaPlus, AdaGrad (Adaptive Gradient), its variation
Adadelta, RMSProp (Root Mean Square Propagation) and its variants NRMSProp and
SMORMS3 (Squared Mean Over Root Mean Squared Cubed), as well as Adam (Adaptive
Moment Estimation) and its variants Nadam, AdaMax and AdamW (Adam with decoupled
Weight Decay).

SGD is used for unconstrained optimization problems. It is preferred in cases where
there are requirements of low storage space and fast computation speed, and the data might
be non-stationary or noisy [149]. However, SGD is one of the most basic optimizers [150].
Moreover, the selection of the learning rate is not an easy task and, if not tuned carefully, it
might lead to not ensuring convergence [151]. In order to avoid the slow convergence issue
of standard SGD, SGD with GC has been proposed [152]. The key difference between the
two optimizers is that in the case of SGD with GC, the gradients are clipped if their norm
exceeds a specified threshold, prior to updating the parameters of the model using (1). By
doing so, the stability of SGD is enhanced, and convergence is ensured in more cases [153].

Momentum is a type of optimization technique that “accelerates” the training process
of neural networks, being first studied in [154]. In contrast to the above-mentioned gradient
descend optimizers, this technique does not directly update the weights of an ML model but
rather introduces a new term named the “momentum term” that will update the weights
by calculating the moving average of the gradients, thus guiding the search direction of
the optimizer [155]. The momentum technique has been utilized in the SGD optimizer
described above resulting in the variant of SGD with momentum. SGD with momentum
works faster and generally performs better than SGD without momentum [156]. As men-
tioned above, a variant of the Momentum technique is the Nesterov Momentum [157]. In
Nesterov Momentum, the main idea is that the “momentum term” mentioned previously
can be utilized for the prediction of the next weights’ location, thus allowing the optimizer
to take larger steps while trying to ensure convergence [158]. A recently proposed optimizer
that utilizes the Nesterov Momentum is presented in [159] and is named Adan. Adan
has been tested in a variety of use cases, including Deep Learning (DL) related tasks such
as NLP and CV, surpassing other currently available optimizers. The source code of the
optimizer is available in [160]. Another optimizer that utilizes the Nesterov Momentum
and combines the advantages of other optimizers such as AdamW and Nadam is called
AdaPlus [161]. AdaPlus has been evaluated in CV-related tasks by being utilized in CNNs
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and being compared with other state-of-the-art optimizers, showcasing promising results.
The source code of the AdaPlus can be found in [162].

Another optimizer that is widely used in ML and DL is the AdaGrad [163]. AdaGrad
is used for gradient-based optimization and the main idea behind AdaGrad is that it adjusts
the learning rate per feature, based on the feature’s updates. If the feature is being updated
often, this means that it frequently occurs in the dataset and the Adagrad optimizer assigns
a smaller learning rate. On the other hand, if the feature is not being updated often, this
means that this feature is infrequent in the dataset and the AdaGrad optimizer assigns a
high learning rate for the corresponding parameters. This makes AdaGrad an appropriate
choice when dealing with sparse data [164]. However, even though AdaGrad utilizes
adaptive learning rates, as explained above, it is sensitive to the global learning rate that is
being initialized at the beginning of the optimization and which may result in not arriving
at the desired local optima [165]. In order to address the aforementioned issue, other
variants of the AdaGrad have been proposed in the literature, including Adadelta. The
main difference between AdaGrad and Adadelta is that the latter does not require to
manually set the learning rate [166]. More specifically, Adadelta utilizes “delta updates”
in which it calculates the ratio of the root mean squared (RMS) of past gradients and the
RMS of the past updates so that it can adjust the learning rate. As a result, Adadelta can
potentially outperform AdaGrad in use cases where the latter fails to reach the desired
solution [167–169].

Another variation of AdaGrad is RMSProp. The main idea behind RMSProp, which is
also the key difference with AdaGrad, is that a weight’s learning rate is divided by a running
average of the magnitudes of the recent gradients of the aforementioned weight [170,171].
In [172], the authors propose a variant of RMSProp called NRMSProp that utilizes the Nes-
terov Momentum. NRMSProp is capable of convergence quicker than RMSProp without
adding too much complexity as depicted in the experiments that the authors carried out.
Another variation of RMSProp is SMORMS3 [173]. SMORMS3 is particularly useful in
Deep Neural Networks (DNNs), where the gradients have a high variance and it might
prevent the learning rate from becoming too small, which could potentially slow down the
optimization process [174].

Another optimizer that has also been proposed in the literature is Adam. Adam is a
combination of AdaGrad and RMSProp and thus is able to work with sparse gradients and
does not need a stationary objective [175]. It has very little memory requirements since it
only requires first-order gradients. The authors that proposed Adam also proposed in the
same manuscript AdaMax, which is a variant of Adam based on the infinity norm. Another
variant of Adam is Adam with decoupled Weight Decay (AdamW). In AdamW a decay
rate is introduced in order to insert a regularization based on the decay of weights during
the process of the optimization [176].

In the literature, there have been specific studies that experiment on a set of optimizers
to find the most appropriate ones for the corresponding use cases, whilst also taking the
reduction in bias into consideration.

More specifically, the authors in [177] propose an NN architecture to estimate crop
water requirements. In order to minimize the bias of the approach, they test the SGD,
RMSProp and Adam optimizers. According to their results, they select SGD since it
increases the accuracy of the NN whilst it is also quite simple to implement. In a similar
approach [178], where the authors aim to predict frosts in southern Brazil, they test SGD
and Adam for their NN. They observe that experiments using the ADAM optimizer present
greater variability and slightly lower accuracy than those using SGD.

Adam and SGD are also compared in [179], where the authors develop an NN for
human resources analytics and, more specifically, employee turnover. Based on the accuracy
of the predictions, Adam is the optimal optimizer.

In another approach [180], where electricity consumption needs to be predicted, the
authors experiment with Adagrad, Adadelta, RMSProp, SGD, Nadam and Adam optimiz-
ers in their NN architecture. According to their results, for the given architecture, which is
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an LSTM, and for the given dataset, the SGD optimizer is the most suitable one. In [181],
the authors aim to assess the Captcha vulnerability. They develop an NN architecture and
experiment with Nadam, Adam and Adamax. They conclude that Nadam is the optimal
optimizer since it achieves the highest accuracy. In a similar approach [182] for facial
expression recognition, the authors test Adam and SGD for their implemented CNN. They
conclude that Adam is the appropriate optimizer since it allows CNN to generalize better
when dealing with unseen data.

Both those two optimizers are also tested in [183], alongside Adagrad, and RMSProp
in order to be used in an NN that is trained on diabetic data. In this case, RMSProp is the
preferred optimizer since it achieves the highest accuracy in the least possible time. In a
similar approach [184] that focuses on epilepsy detection, SGD is compared with RMSProp
and it is shown that SGD achieves the highest accuracy.

Lastly, in [185] the authors develop an LSTM NN for network-based anomaly detection
and experiment with seven optimizers, namely Adam, Adagrad, Adamax, Ftrl, Nadam,
RMSProp and SGD. Their results define Nadam as the optimal optimizer since it achieves
the highest accuracy.

A complete list of comparative studies of optimizers that have been conducted and
that also take bias into consideration can be found in Table 8.

Table 8. Complete list of comparative studies of optimizers.

ID Year Ref. Domain Data Category Optimizers Most Suitable Optimizer

OCS1 2021 [177] Agriculture Numeric SGD, RMSprop, Adam SGD

OCS2 2023 [178] Agriculture Time Series Data Adam, SGD SGD

OCS3 2024 [179] Business Numeric Adam, SGD Adam

OCS4 2022 [180] Civil Numeric Adagrad, Adadelta, RMSProp,
SGD, Nadam, Adam

SGD

OCS5 2021 [181] Computer Vision Images Nadam, Adam, Adamax Nadam

OCS6 2021 [182] Computer Vision Images Adam, SGD Adam

OCS7 2021 [183] Health (diabetes) Numeric SGD, Adagrad, Adam, RMSProp RMSProp

OCS8 2023 [184] Health Numeric SGD, RMSProp SGD

OCS9 2023 [185] Security Numeric Adam, Adagrad, Adamax, Ftrl,
Nadam, RMSProp, SGD

Nadam

Based on the above table, it would be useful to compare the selected optimizer per
approach and understand when each one of them is more appropriate to be used, thus mini-
mizing the bias introduced into the model. In general, the Adam optimizer converges faster
and has fewer memory requirements than RMSProp, whilst SGD converges slower. How-
ever, SGD converges to optimal solutions and is able to better generalize than Adam [186].
As for Nadam, which, as mentioned previously, is a variant of Adam, it converges slightly
faster than Adam, thus resulting in less training time. The above-mentioned optimizers are
also summarized in Table 9.

Table 9. Recommended usage of Adam, RMSProp, SGD and Nadam.

Optimizer Recommended Usage

Adam Training time needs to be reduced
RMSProp Memory requirements are not important
SGD There is no time constraint
Nadam Adam does not produce sufficient results

Selecting the appropriate optimizer is not an easy or straightforward process, and
excessive attention should be paid to this matter in order to minimize the bias that can
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be introduced. To achieve the above-mentioned goal, it is generally a good practice to
experiment with a variety of optimizers based on the use case requirements, such as training
time and computational resources, and monitor the training parameters to decide which
one should be selected.

4.3. Regularization

As also mentioned earlier, apart from the selection of optimizers, equally great care
should be taken when selecting a regularization method in order to avoid biased results
from the algorithms. Regularization is a set of techniques and methods that are applied
in order to deal with overfitting, which is a frequent phenomenon in ML where a model
fits very well in the training data but fails to generalize when fed unseen data [187].
Regularization methods are known to suffer from a certain bias since they need to increase
the weight of the regularization term [188]. At this point, the bias–variance tradeoff should
be introduced and explained. As mentioned above, in ML, bias measures the difference
between the predicted values and the ground true. Variance measures the difference
between the predicted values across various applications of the model. Increasing variance
means that the model fails to predict accurately on unseen data [189]. In other words,
high variance indicates an error during testing and validation, whilst high bias indicates
an error during training. Simultaneously decreasing bias and variance is not always
possible, which leads to the adaptation of regularization techniques that aim to decrease
a model’s variance at the cost of increased bias [190]. However, recent surveys suggest
that the above-mentioned is not entirely true since it is possible to decrease both bias and
variance [191].

Towards this direction, there have been proposed several regularization techniques in
the literature. First of all, with regard to ML problems where linear models are utilized,
three different types of regularization can be applied, namely Lasso (L1) regression, Ridge
regression (L2) and elastic net regularization. Lasso introduces a regularization term that
penalizes high-value coefficients and, practically, removes highly correlated features from
the model [192]. The main difference between Lasso and Ridge is that the latter does not
penalize high-value coefficients that much and thus does not remove features from the
model [193]. With regard to the elastic net regularization, this combines both Lasso and
Ridge, inserting the corresponding penalties in the sum of square errors (i.e., SSE) loss
function, thus addressing the issue of collinearity and performing feature selectin [194].

In other ML problems, such as object recognition, speech synthesis and time series
forecasting, regularization can also take place in the forms of data augmentation, early stop-
ping, dropout and weight decay. Data augmentation is the process of artificially creating
training data from the original data samples in order to enrich the training process of an
algorithm [195]. Data augmentation is a quite common technique in DL [196], especially
when it comes to text and image data [197]. The two main categories of regularization that
can be found in the literature are data wrapping and oversampling, both achieving interest-
ing results in specific use cases. However, it should be taken into consideration that the
quality of the training and test data can inevitably affect the data augmentation phase; thus,
any assumptions made for the distributions of the said data should be well justified [198].
Inappropriate data augmentation techniques can introduce bias in the ML lifecycle, but can
also deflate bias coming from the dataset, as shown in numerous approaches such as the
ones presented in [199–202].

With regard to early stopping, this is another popular regularization technique that
is widely used in model training [203]. More specifically, early stopping refers to limiting
the number of iterations (i.e., epochs), and training the model until it achieves the lowest
possible training error before the validation error starts to increase. What is more, early
stopping can improve the accuracy of ML algorithms and more specifically NNs by helping
them to deal with noisy data, as discussed in [204].

Apart from early stopping, in NNs there also exist two additional strategies of reg-
ularization, namely dropout and weight decay. Regarding dropout, it randomly alters
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the architecture of an NN in order to allow the model to avoid pure generalization to
unseen data [205]. Even though it is a simple concept, it still requires the finetuning of
hyperparameters, such as the learning rate and the number of units in the NN’s hidden
layer(s), so that it is indeed beneficial for the model [206].

As for the weight decay, it is quite similar to dropout; however, the latter penalizes
the NN’s complexity exponentially, whilst dropout penalizes the NN’s complexity lin-
early [207]. Among the different weight decay methods that have been proposed in the
literature, the most recent ones are Selective Weight Decay (i.e., SWD) [208] and Adaptive
Weight Decay (AdaDecay) [209]. At this point, it should be mentioned that many sources
in the literature conflict weight decay with L2 regression, while others clearly distinguish
each other. This should be resolved in future scholarship, in order to avoid any confusion
between those two concepts.

There exist several studies in the literature that utilize the aforementioned regular-
ization techniques. In deeper detail, Lasso regression has been used alongside the RF
algorithm for classifying long non-coding RNAs [210]. In [211], the authors compare early
stopping with Bayesian regularization in an NN architecture that predicts the vapor pres-
sure of pure ionic liquids, showcasing that the latter outperformed the first one in terms of
generalization performance.

With regard to computer vision tasks, in [212], two versions of dropout are showcased,
namely Biased and Crossmap dropouts. They both offer higher performance to the CNNs
that utilize them. Similarly, in [213] weight decay, which is also used in [214], and dropout
are also utilized in a CNN that performs facial emotion recognition, enabling it to achieve
higher accuracy. In another computer vision task related to geological data, the authors
utilize two types of data augmentation as a way of regularization in their developed CNN,
namely CutOut and CutMix [215]. By doing so, they managed to minimize training loss
and validation loss, thus achieving a performance equal to a transfer learning method
that utilized a specific domain model. Moreover, in [216] the authors utilize a derivative
of Lasso for an image classification task, and they prove that their approach is not only
slightly inferior to other regularization techniques but also the corresponding NN needs
fewer features to achieve those inferior results.

With regard to the energy domain, the authors in [217] use Lasso regularization in
a linear regression model for time series forecasting while in another approach [218], a
subtype of elastic net regularization named Adaptive Elastic Net is utilized in a multilevel
regression model for estimating residential energy consumption. In [219], where the authors
aim to predict rainfall runoff, they make use of early stopping and weight decay, thus
simultaneously decreasing the model’s overall training time whilst ensuring the highest
accuracy of predictions possible.

As for the health domain, numerous approaches can be found in the literature that
make use of different types of regularization techniques. More specifically, Lasso reg-
ularization is used in [220] alongside a regression model for subgroup identification of
conditioning regimens in patients with Acute Myeloid Leukemia (i.e., AML) in Complete
Remission (i.e., CR). A variation of Lasso is also used in [221], where the authors perform
non-linear regression for tracking the position of the head and neck based on corresponding
images. Elastic net is used in [222] and in [223]. In both cases, the authors make use of
Magnetic Resonance Imaging (i.e., MRI) data alongside a logistic regression model and a
linear regression model, respectively, achieving remarkable results in terms of classification
accuracy. A variation of elastic net, named adjusted adaptive regularized logistic regression
(i.e., AAElastic), is also utilized in [224] for cancer classification since it also allows the
corresponding model to achieve the highest classification accuracy. With regard to dropout,
this has been used in the CNN presented in [225], where the authors work on the brain
tumor segmentation task. In a similar case [226], the authors utilize a combination of
dropout and data augmentation in their CNN in order to estimate brain age based on MRI
images, thus achieving state-of-the-art results. In another case regarding the diagnosis of
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Parkinson’s disease, the authors make use of a combination of dropout and L2 regression
in a CNN-LSTM classifier again achieving promising results [227].

With regard to the traffic domain, Lasso regression has been adopted by various
approaches. In [228], Lasso is being used for the evaluation of short and long-term effects
of traffic policies, based on data coming from vehicles. In [229], the same regularization
method is being used for estimating how crowded the means of public transport are, based
on a set of different parameters, such as time, origin and destination stop. For predicting
the severity of a crash, Lasso is also being utilized alongside a linear regression model, as
shown in [230], thus providing promising results. Lasso is also being used in the context of
network traffic since the authors in [231] prove that it provides a good trade-off between
bias and variance when trying to estimate the day-to-day network demand. Lastly, in two
more generic approaches, the authors utilize early stopping [232] and L2 regression [233],
respectively. In the first case, the utilized NN makes use of the SDG optimizer, whose bias
is being reduced due to early stopping, whilst in the second case the authors use an NN
with a single layer, whose bias is also being reduced due to the application of L2 regression.

A complete list of studies regarding regularization techniques and that also take bias
into consideration can be found in Table 10.

Table 10. Complete list of studies related to regularization techniques.

ID Year Ref. Domain Data Category Regularization Technique

RS1 2019 [210] Biology Numeric Lasso

RS2 2017 [211] Chemisrty Numeric Early stopping

RS3 2018 [212] Computer Vision Images Dropout

RS4 2023 [213] Computer Vision Images Weight Decay and dropout

RS5 2020 [214] Computer Vision Images Weight Decay

RS6 2022 [215] Computer Vision (Geology) Images Data augmentation

RS7 2017 [216] Computer vision Images Lasso

RS8 2021 [217] Energy Time series Data Lasso

RS9 2019 [218] Energy Numeric Elastic Net

RS10 2012 [219] Environment Numeric Early stopping and weight decay

RS11 2023 [220] Health Numeric Lasso

RS12 2022 [221] Health Images Lasso

RS13 2022 [222] Health Images Elastic Net

RS14 2015 [223] Health Images Elastic Net

RS15 2015 [224] Health Numeric Elastic Net

RS16 2018 [225] Health Images Dropout

RS17 2021 [226] Health Images Data augmentation and dropout

RS18 2022 [227] Health Signals L2 and Dropout

RS19 2020 [228] Transport Vehicle Data Lasso

RS20 2020 [229] Transport Numeric Lasso

RS21 2020 [230] Transport Numeric Lasso and Elastic Net

RS22 2018 [231] Networks Numeric Lasso

RS23 2020 [232] Not Specific Not Specific Early stopping

RS24 2019 [233] Not Specific Numeric L2

Based on the above table, it would be useful to compare the selected regularization
techniques per approach and understand when each one of them is more appropriate to be
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used, thus minimizing the bias introduced into the model. Generally, Lasso is used when
the dataset consists of many features, since it is also able to perform feature selection, and
when most coefficients are equal to zero. Ridge, on the other hand, is used when most of the
coefficients are not equal to zero [234], while elastic net is a combination of them and can
be used when the other two do not provide the appropriate results. Data augmentation is
mostly suitable for image and text data where it is needed to increase the training samples.
Dropout is more beneficial when it comes to training complex NN architectures on less
complex datasets. Otherwise, weight decay is preferred [235]. Lastly, early stopping should
usually be utilized regardless of the NN architecture, and the early stopping point should
be set just before the model starts overfitting. The above-mentioned techniques are also
summarized in Table 11.

Table 11. Recommended usage of Lasso, Ridge, Elastic Net, Data Augmentation, Dropout, Weight
Decay.

Regularization Method Recommended Usage

Lasso Most feature coefficients are equal to zero
Ridge Most feature coefficients are not equal to zero
Elastic Net Need a combination of Lasso and Ridge
Data Augmentation Image and text data with not sufficient samples
Dropout Complex NN architectures and less complex data
Weight Decay Dropout is not suitable

Early Stopping Good practice as long as the threshold is set just before
the model starts overfitting

4.4. Common Mitigation Techniques for Algorithm Bias

According to the above-mentioned findings, there exist some common mitigation
techniques that can be applied to address the bias that can be caused by ML algorithms.
Those, as stated above, include adversarial debiasing, fairness constraints, variational
autoencoders, contrastive learning and neural style transfer. By comparing the above-
mentioned techniques, it is clear that fairness constraints are a set of restrictions that can
be applied to ensure fairness when training a model, adversarial debiasing is based on
training two models simultaneously, whilst variational autoencoders, contrastive learning
and neural style transfer are an entirely different set of algorithms and architectures. All of
them mainly focus on mitigating bias with respect to the existence of protected attributes
in the datasets, such as gender or race. With regard to the comparative studies of ML
algorithms, optimizers and regularization techniques that were previously presented, a
summarization of the most common estimators, optimizers and regularization techniques
that performed the best is depicted in Figure 4, as a summary of Section 4.
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5. Engineer Bias

The third factor that can affect ML models in terms of introducing bias is the ML
engineers who are responsible for training and/or evaluating such models. ML model
builders are prone to implicit bias, which occurs when the engineers make assumptions
about the model that they are training based on their own experiences and personal beliefs
that do not necessarily apply in general [236]. There exists a plethora of implicit biases
in the literature, with the most identified one being when training and/or evaluating ML
models, referring to confirmation bias. In confirmation bias, ML engineers unconsciously
process the data and train the ML models in a way that will affirm their initial hypothesis
or general beliefs [237].

Confirmation bias is a type of cognitive bias and, as such, there have been proposed
several techniques that try to mitigate it. Those techniques are mainly theoretical frame-
works that do not focus on ML engineers specifically but on analysts in general [238]. A
plan for mitigating confirmation bias has been proposed in [239], where it is suggested that
an analysis should be teamwork, and the analysts should exchange ideas prior to solving
a problem. This, in the domain of ML model training, could be translated to discussing
a possible solution to an ML problem with other ML engineers, who could possibly have
different perspectives, thus leading to diverse approaches and techniques that could be
applied to solve a specific problem, based on the perspectives of multiple engineers and
not the perspective of just one. Another approach for reducing confirmation bias refers to
“considering the opposite” [240]. In terms of ML, this means that the engineers would not
keep on training a model until the results align with their initial hypothesis, thus avoiding
the so-called experimenter’s bias [241].

ML engineers can also introduce bias during the model’s evaluation. More specifically,
many proposed approaches in the literature do not apply adequate statistical methods for
evaluating the proposed ML models [242]. Especially in NN architectures, k-fold testing
(i.e., randomly partitioning original data sample in k equal-sized folds) is often being
overlooked, even though it is well known that each different random initialization of the
parameters of a model can drastically affect the model’s results [243]. Moreover, many
approaches fail to compare the developed ML models to null (i.e., baseline) models. For
instance, achieving 95% accuracy when classifying images of plants is trivial, while having
the same accuracy for a model that predicts whether a person will develop cancer would
be life-changing. On top of that, there is a lack of third-party evaluation and many NN
architectures that are proposed in the literature cannot be verified [244]. Overall, ML
engineers can introduce bias in their approaches due to the reasons that are depicted in
Figure 5.
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To mitigate those issues in model evaluation, the authors in [242] propose a three-step
action plan that consists of statistically validating results, training a dataset estimator as a
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control model and conducting third-party evaluation of ML models. This action plan is
summarized in Figure 6.
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Following the above-mentioned methodology, the bias introduced by the ML engineers
could be addressed to a great extent. In deeper detail, by experimenting with different
values of random seed, performing hypothesis testing, subsampling the test data and
monitoring and reporting the standard error of the trained estimator, would address the
issue of the lack of statistical validation. Furthermore, the model training could be better
controlled by observing how the model is affected by swapping targets and labels in the
training dataset. With regard to the lack of third-party evaluation, this could be addressed
by collaborating with other experienced engineers and providing access to source code,
data and configuration, thus making the whole evaluation process more transparent and
objective. To minimize the bias that could be caused by ML engineers, all the methods and
techniques that were previously mentioned should be followed step by step as depicted in
the above figure. They all aim to address the said bias during different stages of ML model
training and evaluation, being complementary to each other.

6. Discussion

Bias, whether it originates from humans or the underlying mathematics of ML models,
is a key factor in ML that actively affects the results of such models. The research community
is aware of this influence, which is why several approaches have been proposed to try
and mitigate it, as described in the previous sections. What is more, there also exist some
initiatives, such as the AI Fairness 360 [245], Fairlearn [246] and Fairkit-learn [247] tools
that aim to provide a more complete technical framework for mitigating bias when training
ML models, thus promoting AI fairness. These kinds of frameworks have showcased
promising results in terms of bias mitigation [248]; however, they still have a lot of room for
improvement, which is why their developers request the active engagement of researchers
so that they can be further enhanced and improved [249].

Removing all types of bias entirely from the ML lifecycle is not an easy task and some
would argue that it is impossible. The first and foremost concern when training and/or
evaluating ML models is identifying the existence of bias and the corresponding types of
bias that might occur in terms of the provided data, the models themselves, as well as the
bias that can be introduced by ML engineers, unconsciously or not. This identification
can be conducted either empirically by taking into consideration other similar approaches
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and use cases or by utilizing algorithms that are capable of identifying bias, as the ones
presented in this manuscript. Then, the corresponding countermeasures should be taken
into consideration and applied in order to minimize the identified biases. To this end, this
manuscript’s scope is to serve as a reference point for ML engineers and everyone who is
interested in developing, evaluating and/or utilizing ML models, which they can consult
so that they can firstly identify bias and then debias their approaches.

Based on the literature review that was undertaken, it appears that most of the current
approaches mainly focus on the existence of bias in the training datasets (i.e., data bias) and
claim to have applied some kind of corresponding bias mitigation technique, like the IPW
adjustment technique, the Imitate algorithm and its derivatives. With regard to the bias
caused by the ML models and especially the selection of the appropriate optimizer and
regularization method, little attention is paid to this matter, whilst most of the proposed
approaches do not take into consideration that the choice of an optimizer and regularization
method can also introduce bias in the model, as mentioned in Section 4.2.

Overall, from all the research documents that were analyzed in the context of this
manuscript, 39 papers analyzed methods and techniques for identifying and mitigating data
bias, 21 comparative studies highlighted the importance of selecting the proper estimator
to avoid the introduction of further bias and 24 comparative studies analyzed the way that
a regularization technique may assist in reducing algorithmic bias. With regard to the way
that an optimizer can affect a model in terms of bias and how an ML engineer can introduce
bias, only nine and three studies were identified in the literature, respectively, as shown in
Figure 7.
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The latter signifies that future research approaches should aim to (i) better justify the
selection of a specific optimizer and how it may minimize bias in contrast to other available
optimizers and (ii) evaluate their proposed approaches based on the appropriate metrics
and offer transparency to their trained models by allowing the evaluation from third-party
evaluators and reviewers.

As for other literature reviews that talk about bias in machine learning, they mostly
focus on data bias as well. More specifically, in [250] the authors mainly focus on selection
bias and bias caused by imbalanced data, whilst they present the most common techniques
to address these types of biases. Similarly, in [251] the authors provide a comprehensive
review with regard to methods that can mitigate human bias (e.g., selection bias) that is
present in the data. Another interesting comprehensive review is provided by the authors
in [252], where they have gathered a noticeable amount of research studies to identify
types of bias and methods to mitigate them, focusing on data bias and estimator bias.
However, the above-mentioned review does not take into consideration either the fact
that model builders may also introduce bias when training/evaluating their models (i.e.,
engineer bias), as depicted in Section 5 of this manuscript, nor the fact that the selection of
an optimizer may also affect an ML model in terms of bias, as stated in Section 4. A similar
comprehensive review that focuses on the same aspects as the last-mentioned review is
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presented in [253]. What is more, in contrast to this manuscript, the above-mentioned
reviews do not categorize the provided approaches per use case domain, making it difficult
to identify the most appropriate approach for a specific domain.

With regard to reviews that are more use-case-specific, those mostly refer to the health
domain. More specifically, the authors in [254] provide a comprehensive study of the types
of bias that can be encountered in health-related ML models and, more precisely, in ML
models that assess the risk of cardiovascular disease (i.e., CVD). In this study, the authors
also focused on data and estimator bias. In [255], the authors also investigate data bias
in the context of CVD and provide ways to mitigate the bias that may be present in the
electronic health records (i.e., EHRs) of patients. Similarly, the authors in [256] also provide
a comprehensive list of approaches that tackle bias in radiology; however, they also refer
to optimizers and regularization techniques, since they also identify that those can also
introduce further bias. However, also in this case little to no attention is paid to the bias that
can be introduced by the ML engineers. A summary of the above can be found in Table 12.

Table 12. Comparison of reviews related to bias mitigation.

ID Year Ref. Data
Bias

Estimator Bias Optimizer Bias Regularization Bias Engineer Bias

LR1 2019 [250] ✓

LR2 2018 [251] ✓

LR3 2024 [252] ✓ ✓

LR4 2023 [253] ✓ ✓

LR5 2022 [254] ✓ ✓

LR6 2023 [255] ✓

LR7 2022 [256] ✓ ✓ ✓ ✓

Proposed
Approach

✓ ✓ ✓ ✓ ✓

The above provides a direction for future research related to ML models towards
improving methodological practices to incorporate the necessary bias mitigation techniques,
thus providing more complete and meaningful results. Having said that, the findings of
this manuscript regarding algorithm bias show that the SVM algorithm is preferred to
reduce bias whilst the SGD optimizer and the regularization method Lasso are the most
widely used optimizer and regularization method, respectively. However, it should be
highlighted that the above does not suggest that SVM, SGD and Lasso always produce the
least bias. As it has already been stated multiple times in the manuscript, the type of data
and the corresponding ML task that must be undertaken will dictate the most appropriate
algorithm, optimizer and regularization method in order to reduce bias. Having this in
mind, it is also quite useful to have access to other similar approaches and the methods
that they use so that the model builders have some guidance regarding what techniques
seem to be more appropriate for their use case. As for the model’s evaluation, there also
seems to be a lack of reference to the adaptation of appropriate techniques for mitigating
bias and ensuring objectivity during the evaluation process. Based on the findings of this
study, the three-step action plan presented in Figure 6 should become the cornerstone of
the evaluation of ML models and related publications, thus leading to a widely adopted
framework for achieving objective evaluation of ML approaches.

With regard to any limitations that this literature review may have, those are mainly
related to potential selection bias when performing the selection process of the correspond-
ing studies. The most representative search keywords were selected and used for each type
of bias; however, the search was carried out based on the presence of these keywords on
the title, abstract and the keywords of the corresponding manuscripts. This means that
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there might exist publications that refer to the concepts that are analyzed throughout this
manuscript in the main text of the publications. In order to address the aforementioned
possibility, the search queries could be further updated to also search the full text of the
publications, although this is a capability that is not offered by every publication database.
Moreover, all the publications that are taken into consideration are written in English. Based
on the search results, there exist a few publications that are written in other languages.
These publications, which are mostly written in Chinese, were not taken into consideration.
This limitation can be addressed by communicating with scientific personnel that know
these foreign languages, in order to help with translating the publications to English. What
is more, as already stated, this research provides a literature review regarding the concept
of bias in AI and how to identify/mitigate it. As a future direction of this research, a
framework could be implemented that integrates several techniques and algorithms for
bias identification/mitigation that are analyzed in this manuscript to further assist AI
practitioners and enthusiasts in identifying and mitigating bias in their approaches.

7. Conclusions

To summarize, bias is a key factor in ML that will further trouble researchers during
the exponential growth and adaptation of AI systems in everyday life. It is imperative for
everyone who is involved in training, evaluation or even using AI systems to (i) identify
the biases that may be present in the underlying ML model and (ii) apply the appropriate
methods to mitigate them. As mentioned earlier, bias is almost impossible to eliminate,
but a more realistic goal is to minimize it. As shown in this manuscript, bias has many
forms that can be identified during the different stages of the ML lifecycle. In the context of
this manuscript, the types of bias were grouped into three main categories, namely bias
originating from the data, the ML models and the ML engineers, respectively. For each of
those categories, the types of bias were presented, as well as the methods and approaches
that have been proposed in the literature in order to mitigate them. Based on the findings
of this study, it appears that the current literature mainly focuses on specific biases in ML,
mostly related to the data, whilst it either underestimates or omits other types of biases,
especially when it comes to evaluating the proposed ML models.

Researchers undoubtedly try to mitigate bias in their approaches; however, they
should start exploring other aspects of it and try to mitigate it throughout the whole ML
lifecycle and not on isolated stages. To this end, this manuscript not only serves as a
guideline for ML engineers regarding possible biases and ways to mitigate them but also
provides a direction for future research, especially focusing on the existing terms and
approaches of ML models’ biases, where the ML engineers should better concentrate on.
Of course, this manuscript could be further extended in terms of the existing AI fairness
tools that, in the context of this study, were briefly described. Moreover, the context of
this manuscript could be transformed into a technical implementation that would pave
the way for a more complete mitigation of bias in ML, regardless of the provided use case
scenario. The aforementioned technical implementation could then also be evaluated in
the context of several related EU projects in which the authors of this manuscript have
participated [257–262] to extract more valuable results and potentially update the technical
implementation accordingly to better tackle bias-related challenges in the corresponding
use cases.
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