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Abstract: This paper introduces an innovative method for enhancing time series data preprocessing
by integrating a cycling layer into a self-attention mechanism. Traditional approaches often fail to
capture the cyclical patterns inherent to time series data, which affects the predictive model accuracy.
The proposed method aims to improve models’ ability to identify and leverage these cyclical patterns,
as demonstrated using the Jena Climate dataset from the Max Planck Institute for Biogeochemistry.
Empirical results show that the proposed method enhances forecast accuracy and speeds up model
fitting compared to the conventional techniques. This paper contributes to the field of time series
analysis by providing a more effective preprocessing approach.

Keywords: information technology; machine learning; autoencoder; data science; data preprocessing;
attention model; unsupervised learning; weather prediction; regression model

1. Introduction

Time series analysis is a fundamental aspect of numerous scientific disciplines, in-
cluding economics and engineering. At its core, a time series is a sequence of data points,
typically comprising successive measurements made over a specific time interval. The
importance of time series data lies in its ability to predict future phenomena based on the
correlation between previous observations and future values. This forecasting process
is not merely an extrapolation; it involves a comprehensive understanding of intricate
patterns, trends, and seasonality within the data. For instance, in economics, time series
analysis facilitates distinguishing long-term trends from short-term variations, ensuring
that economic policies are not misguided by transient fluctuations [1].

Nevertheless, time series analysis presents several challenges. The data can exhibit
diverse patterns, including seasonal, cyclical, and chaotic behavior patterns. Furthermore,
the data’s non-stationarity can lead to unreliable forecasting outcomes if not properly
addressed. In addition to these analytical challenges, external factors can introduce noise
into data patterns, complicating the prediction process. Thus, the rigorous preprocessing of
time series data is imperative for effective analysis.

In our previous work [2], we explored the use of positional self-attention mechanisms
integrated into autoencoders for preprocessing time series data. This study demonstrated
that positional encodings could effectively capture short-term temporal dependencies,
leading to significant improvements in model performance over traditional statistical
preprocessing methods. The key findings highlighted a reduction in the Mean Squared
Error (MSE), Mean Absolute Error (MAE), and other performance metrics across various
regression models, including Linear Regression, Support Vector Regression (SVR), and K-
Nearest Neighbors (KNN). However, the previous study also identified several limitations.
The positional self-attention mechanism, while effective for short-term dependencies,
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struggled to adequately capture longer-term cyclical patterns in the data [3]. Additionally,
the method exhibited sensitivity to the choice of hyperparameters and showed limited
improvements in datasets with pronounced cyclical behaviors, such as seasonal or periodic
time series.

Our paper underscores the importance of addressing and mitigating various issues
that arise from improper data preprocessing methods. Capturing intricate temporal de-
pendencies within data that exhibit periodic features is a significant challenge in data
analysis, particularly in the context of time series and spatiotemporal data. A primary
difficulty lies in the tendency of most existing approaches to overlook the long-term depen-
dencies inherent to the data. These approaches often fail to consider the comprehensive
mechanisms required to model these long-term dependency issues [4]. Alternatively, they
employ batch techniques that fragment long sequences into numerous short ones, which
inadequately capture the dependencies between sequences, a problem known as sequence
fragmentation [5]. Additionally, the shifting of long-term periodic dependencies needs to
be addressed in current studies [6].

The objective of this paper is to capture periodic features effectively using weather
coefficient data. Addressing these challenges necessitates innovative techniques specifi-
cally designed for time series data. This paper proposes a pioneering approach to tackle
the complexities of preprocessing time series data. The central aspect of this approach
involves replacing traditional positional encoding techniques with a personalized cycling
technique integrated into self-attention mechanisms. The significance of this issue is further
highlighted by existing research that emphasizes the limitations of positional models in
accurately capturing these dependencies. Conventional approaches often neglect long-term
dependencies, resulting in fragmented data sequences that fail to accurately reflect the
underlying temporal dynamics.

The significance of this paper lies in its innovative approach to preprocessing strongly
time-correlated data, such as the weather data utilized in experiments. Firstly, this study
contributes to the time efficiency of data processing and the speed of regression in a time
series analysis. This advantage is evident in the faster regression capabilities, allowing the
model to achieve desired loss scores in significantly less time compared to traditional meth-
ods. Secondly, this paper enhances the accuracy and reduces the error of data predictions
in time series analysis. This improvement is demonstrated by lower scores in squared error
loss functions when employing regression model forecasting tasks, a standard metric for
assessing performance. The Cycling technique achieves lower function scores, indicating
a more accurate representation of the data. Finally, this study highlights the adaptability
and customizability of time series analysis. Traditional preprocessing techniques often
provide a one-size-fits-all solution, which may not be optimal for specific analytical tasks. In
contrast, the Cycling Layers can be tailored to capture the regular features of different time
series data by adjusting the cycling period. Furthermore, the architecture of the Cycling
Self-Attention Layer allows for customization, enabling users to modify and train models
specific to their objectives.

This paper aims to (1) evaluate the effectiveness of different preprocessing techniques,
including positional self-attention mechanisms and traditional statistical methods, in en-
hancing the performance of deep learning models for time series data, and (2) compare
the performance of these methods, particularly in tasks related to anomaly detection and
forecasting. Section 2 reviews the related work about the dataset and presents the theo-
retical framework for integrating positional self-attention mechanisms into autoencoders.
Section 3 describes the methodologies employed, including the specific models and eval-
uation metrics used. Section 4 discusses the dataset used and the results of the research,
comparing the performance of the positional self-attention method with traditional pre-
processing techniques. Section 5 concludes the paper by summarizing the findings and
discussing the implications for future research and potential applications.
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2. Literature Review

Traditional methods for time series data processing have relied heavily on statistical
and digital signal-processing techniques [7]. Statistical approaches, including autoregres-
sive models [8] and integrated moving average models [9], have provided a foundational
framework for analyzing linear dependencies within data. Concurrently, digital signal-
processing techniques, such as the Fourier transform, have facilitated trend decomposition
and offered insights into the underlying patterns of time series data [10–12]. As technology
advanced, the focus shifted towards more nuanced analyses, incorporating non-linear
dynamics [13] and time-frequency analysis [14]. Bayesian methods [15] have emerged
as powerful tools, incorporating prior knowledge and uncertainty into models, thereby
providing robust analyses capable of handling non-Gaussian distributions.

In parallel, researchers have addressed challenges in data preprocessing, focusing on
mitigating issues, such as noise reduction and feature selection arising from low-quality
data [16,17]. Novel methodologies, such as those proposed by Cortés-Ibáñez et al. [18], and
the use of positional self-attention autoencoders by Chen and Yang [2], have underscored the
critical importance of preprocessing in enhancing the performance of time series analyses.

The limitations of traditional approaches have catalyzed the development of advanced
techniques, especially within the domain of machine learning. Recurrent Neural Networks
(RNNs) marked a significant breakthrough in time series analysis due to their capacity to
process sequences and retain past information [19]. To further enhance the performance of
RNNs, Long Short-Term Memory (LSTM) units [20] and Gated Recurrent Units (GRUs) [21]
were introduced. These advancements addressed issues, such as vanishing and exploding
gradients, thereby enhancing the networks’ efficiency. Additionally, Convolutional Neural
Networks (CNNs) have proven to be powerful tools in time series analysis, excelling in
recognizing local and global patterns within data [22]. The integration of CNNs with other
methods, such as exponential smoothing, has led to hybrid models that offer improved
forecasting accuracy.

Recent research has focused on leveraging neural network technologies for prepro-
cessing time series data. Pre-trained LSTM-based stacked autoencoders [23] and ensem-
bles of recurrent autoencoders [24] have shown promise in outlier detection and data
denoising, highlighting the potential of neural networks for improving data quality for
subsequent analyses.

Overall, while statistical approaches, like ARIMA, have provided foundational in-
sights, their limitations have driven the adoption of neural networks, such as RNNs, LSTMs,
and CNNs, to better capture complex temporal patterns. Recent studies emphasize the
complementary strengths of combining statistical and machine learning methods, as seen
in the application of these techniques to the Jena Climate dataset. This ongoing evolution
underscores the need for continued innovation in time series analysis.

The analysis of the Jena Climate dataset by Li [25] involved a detailed Exploratory
Data Analysis (EDA) to understand the dataset’s characteristics, followed by the application
of an ARIMA model for time series forecasting. This approach predicts future climate
conditions based on historical data, which helps to reveal patterns, trends, and correlations
in climate variables, such as temperature and humidity.

Moreover, the ongoing debate between statistical and machine-learning approaches
highlights the dynamic nature of this field, underscoring the necessity for continued
research and innovation. The “Jena Climate Prediction with LSTM” analyzed by Qin [26]
and the “Daily Forecasting LSTM-FB Prophet” analyzed by Yacoub [27] both utilized
advanced machine learning techniques for climate data forecasting. Qin’s approach focused
on employing Long Short-Term Memory (LSTM) networks. On the other hand, Yacoub’s
method combined the deep learning capabilities of LSTMs with the robust, intuitive features
of Facebook’s Prophet tool. Aiming to enhance the precision of daily climate predictions.
This dual-model methodology in Yacoub’s analysis was particularly adept at capturing
complex temporal patterns and adapting to seasonal variations and irregularities.
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Meanwhile, the “Tensorflow 3-RNN” analyzed by Shen [28] employed advanced
Recurrent Neural Network (RNN) techniques within TensorFlow to analyze the Jena
Climate dataset. This approach focused on leveraging RNNs to capture complex temporal
relationships in climate data, such as temperature and humidity. The goal is to forecast
future climate conditions or to extract meaningful insights from the data’s temporal patterns
accurately. It prioritizes model optimization, training, and evaluation to ensure accurate
and reliable predictions.

Furthermore, Muhammad [29] focused on the meticulous preparation and exploration
of the Jena Climate dataset, emphasizing data wrangling techniques crucial for time series
analysis. This process addressed challenges, such as missing values, data normalization,
and outlier handling. Exploratory data analysis was then conducted to reveal trends,
seasonality, and patterns in climate variables. By leveraging Python libraries for data
manipulation and visualization, the study aimed to establish a solid foundation for more
complex time series forecasting, thereby providing insightful and reliable interpretations of
climatic trends and behaviors.

Despite these advancements, challenges persist in processing time series data, par-
ticularly in these data-type-related real-time scenarios. Robust and scalable streaming
frameworks are essential to handle the continuous influx of data efficiently.

3. Methodology and Materials
3.1. Autoencoder Methodology

Auto-encoders (AEs), as outlined in Goodfellow et al. [30], are a fundamental tech-
nique in unsupervised learning, utilizing neural networks to learn data representations.
These tools are particularly adept at managing high-dimensional data, focusing on dimen-
sionality reduction to effectively represent datasets. Auto-encoders also have extensive
applications in unsupervised learning tasks, including dimensionality reduction, feature
extraction, efficient coding, generative modeling, de-noising, and anomaly detection, as
discussed by Zhang et al. [31]. They are fundamentally similar to Principal Component
Analysis (PCA), particularly in terms of reducing the dimensionality of large datasets, a
similarity most apparent when comparing PCA to a single-layered auto-encoder with a
linear activation function, as noted by Sarker et al. [32].

For our research experiment, the cycling layer is incorporated within an autoencoder,
an artificial neural network designed to learn efficient representations of input data. This
autoencoder compresses the input data into a compact representation, which is then
decoded back to its original form. By integrating the cycling layer and self-attention
mechanism into the encoding process, the model is equipped to effectively capture and
represent the cyclical patterns present in the time series data.

Autoencoders play a crucial role in time series data preprocessing by performing noise
reduction and dimensionality reduction. They effectively filter out noise while preserving
essential signals, enhancing data quality for analysis. Additionally, autoencoders address
the challenge of high-dimensional time series data by reducing dimensionality, which
improves computational efficiency and mitigates the risk of overfitting. This is particularly
valuable in multivariate time series data, where complex variable interactions are present.
By encoding these interactions, autoencoders reveal the underlying structure, providing a
more refined input for further analysis.

However, they exhibit several limitations when applied to time series data. Single
autoencoders only compress all input data points into a fixed-size latent representation,
which often leads to the loss of crucial long-term dependencies. Moreover, they are not
designed to handle cyclical patterns effectively, treating sequences as linear inputs without
regard to periodicity. This limitation makes them less suitable for datasets where capturing
cycles, such as daily or seasonal variations, is essential. Additionally, autoencoders do not
distinguish between important and less relevant data points within a sequence, leading
to a loss of focus on critical time steps. These drawbacks motivate the need for additional
mechanisms to enhance their capabilities in time series analysis.
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3.2. Applying with Attention Mechanisms

In 2014, Bahdanau et al. [33] introduced the attention mechanism to overcome the lim-
itations of traditional sequence-to-sequence models, particularly for long sequences. This
mechanism enabled the model to dynamically focus on different parts of the input sequence
while generating the output. However, due to their sequential nature, recurrent models
inherently limit parallel processing within a single training instance [34]. This limitation is
especially problematic for longer sequences, where memory constraints hinder the batching
of multiple examples [35]. The introduction of attention mechanisms [36] revolutionized
sequence modeling by enabling the capture of dependencies regardless of the distance
between sequence elements. However, it is noteworthy that, with few exceptions [37], these
attention mechanisms were predominantly integrated with recurrent networks. Below will
explore how self-attention, when combined with a positional layer and novel cycling layer,
can enhance the model’s ability to process and analyze sequential data.

3.2.1. Applying Self-Attention with a Positional Layer

In models such as Transformers, the self-attention mechanism includes multiple
attention heads within each self-attention sublayer. For an input sequence, each attention
head processes an input sequence, x = (x1, ..., xn), consisting of n elements, where xi ∈ Rdx ,
and computes a new sequence z = (z1, ..., zn) of the same length, where zi ∈ Rdz . Each
output element, zi, is determined by a weighted sum of the input elements that have been
linearly transformed (Equation (1)).

zi =
n

∑
j=1

αij

(
xjWV

)
(1)

The weight coefficient αij for the contribution of input element xi to output element zi
is computed using a SoftMax function (Equation (2)).

αij =
exp eij

∑n
k=1 exp eik

(2)

The SoftMax function (Equation (2)) is applied to a set of scores that measure the
compatibility or similarity between xi and xj. These scores are typically computed using
a trainable linear transformation of the input elements, involving dot products among
the query, key, and value vectors derived from the input elements. Finally, the output of
each attention head, represented by different z sequences, is concatenated and linearly
transformed through a fully connected layer.

Algorithm 1 outlines the function Self_Attention, which takes three input matrices: Q
(queries), K (keys), and V (values). The function initializes three empty lists: attention_scores,
attention_weights, and output. For each query in Q, the dot product is computed with each
key in K to generate attention scores. These scores are normalized using the SoftMax func-
tion to obtain the attention weights. Each value in V is then multiplied by its corresponding
attention weight, and the results are aggregated into the output list.

In an additional approach, Vaswani et al. [38] introduced positional encodings before
self-attention, allowing the model to capture the order of the sequence.

Incorporating positional layer self-attention into data preprocessing primarily aims to
leverage its capability to effectively understand and encode the positional relationships
within sequential data. Traditional methods of sequence data processing often depend on
manual feature engineering or simplistic assumptions about sequences, which can result
in a significant loss of context and information. In contrast, positional layer self-attention
automates the recognition of complex dependencies, thus avoiding the pitfalls of traditional
approaches. In positional layer self-attention, data preprocessing enhances the performance
of self-attention mechanisms by ensuring that the temporal or sequential relationships
inherent in the data are not only preserved but are also highlighted and actively utilized
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for analysis or predictions.

Algorithm 1: Self_Attention

1 Input: Q, K, V;
2 Output: output list S
3 Initialized empty lists: attention_scores, attention_weights, output
4 for each query in Q do
5 for each key in K do
6 Compute attention score as dot product of query and key
7 Add attention score to attention_scores list
8 end for
9 for each score in attention_scores do
10 Compute attention weight as SoftMax of score
11 Add attention weight to attention_weights list
12 end for
13 for each value in V do
14 Multiply value by corresponding attention weight
15 Add result to output list
16 end for
17 end for

Moving to the method by which a positional self-attention system addresses experi-
mental challenges by incorporating positional information, consider that the input repre-
sentation xi ∈ Rn×d contains the d-dimensional embeddings for n tokens of a sequence.
The positional encoding outputs X + P using a positional embedding matrix P ∈ Rn×d of
the same shape. The element in the i th row and the (2j)th (Equation (3)) or the (2j + 1)th

(Equation (4)) column is as follows:

pi,2j = sin
(

i
10, 0002j/d

)
(3)

pi,2j+1 = cos
(

i
10, 0002j/d

)
(4)

This process ensures that the model understands the content of each element and its
position within the sequence.

Algorithm 2 outlines a function that takes the sequence_length and the number of
dimensions as input. It initializes a matrix pos_enc of size sequence_length × dimensions
filled with zeros. The function then iterates over each position in the sequence and each
dimension in the embedding space. For each pair of positions and dimensions, a value
is computed using either the sine or cosine function, and these values are assigned to the
corresponding elements in the pos_enc matrix. Finally, the function returns the pos_enc
matrix, which represents the positional encodings.

However, it is crucial to recognize the potential pitfalls associated with the intricate
dynamics of positional self-attention. Its comprehensive consideration of all sequence
attributes can present challenges, mainly when dealing with time series data. Many
researchers have focused on addressing these issues.

By incorporating self-attention mechanisms, we address several limitations of tradi-
tional autoencoders in a time series analysis. Self-attention improves the model’s ability
to capture long-term dependencies by dynamically computing the relationships between
all elements in a sequence, regardless of their distance from one another. This allows the
model to focus on the most relevant time steps, enhancing interpretability by highlighting
which data points contribute most to the prediction. Additionally, self-attention provides
greater flexibility in handling variable-length sequences, avoiding the need for fixed-size
inputs and allowing for better generalization across different datasets.
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Algorithm 2: Positional_Encoding

1 Input: sequence_length, dimensions;
2 Output: pos_enc
3 Initialize pos_enc as a matrix of size sequence_length × dimensions with all zeros
4 for pos from 0 to sequence_length −1 do
5 for I from 0 to dimensions −1 in steps of 2 do

6 Pos_enc[pos,i] = sin
(

pos
10000 2i

dimensions

)
7 if i + 1 < dimensions then

8 Pos_enc[pos,i+1] = cos
(

pos
10000 2i

dimensions

)
9 end if
10 end for
11 end for

3.2.2. Applying Self-Attention with Novel Cycling Layer

However, while self-attention mechanisms offer significant advantages, they still
rely on positional encodings to maintain the order of the elements in a sequence. These
positional encodings are designed to capture the linear order of data points but do not
inherently account for cyclical patterns, such as daily, weekly, or seasonal cycles, which
are crucial in many real-world time series datasets. Moreover, the quadratic complexity of
self-attention can make it computationally expensive for very long sequences, limiting its
efficiency in practical applications.

In light of this, we advocate for adopting cycling encoding as a substitute for positional
self-attention. This method refines the attention’s focus based on the temporal characteris-
tics of the target data, ensuring a more nuanced and contextually relevant representation.

Based on our analysis of weather data with seasonal features incorporated into the
positional layer Figure 1, we observed inconsistencies in the step length of the positional
layer. While a straightforward numerical step relationship may be effective for dynamic
features, such as language, it is less suitable for capturing the temporal characteristics of
time series data. To address this issue, we have developed a cycling layer. We anticipate
that our cycling layer, with its consistent step length, will more accurately capture the
seasonal features inherent to time series data.

The advent of the cycling layer self-attention signifies a pivotal advancement in unsu-
pervised machine learning, particularly in preprocessing time series data. This innovative
architectural layer is motivated by the intrinsic need to capture the cyclical nature of tempo-
ral data more effectively. Traditional layers, such as positional encodings, handle sequential
information but often need more capability to grasp cyclical patterns critical in datasets,
such as weather patterns, where features fluctuate periodically.

The cycling layer is specifically designed to address this gap. Unlike the one-size-
fits-all approach of traditional positional encoding, it provides a framework to isolate and
understand the seasonal and daily cycles inherent in time series datasets. The flexibility
of the cycling layer allows for the manual adjustment of periodic time features, enabling
a more tailored and precise capture of cyclical trends. This ability to adjust and focus
on specific cycle lengths with a reduced risk of overfitting irrelevant patterns represents
a significant improvement over the traditional method. Furthermore, the simpler con-
struction of the cycling layer compared to more complex positional encoding mechanisms
can potentially reduce computational overhead and streamline the preprocessing phase,
leading to cost efficiencies in both time and resources.



Appl. Sci. 2024, 14, 8922 8 of 23

Figure 1. Difference between the positional layer and cycling layer: in the positional layer, the
arrows show that the attention trend is based on mathematical properties and focuses on subsequent
directions that are not fixed; in the cycling layer, the arrows reveal a periodic pattern in finding the
next direction of focus. The color intensity reflects the weight of attention given to each sequence.

Suppose that the input representation xi ∈ Rn×d, each value x in X is a timestamp
t. Here, the cycling period represents the total time for one full cycle, such as 24 h for
daily cycles. The result t ′ will be a fraction between 0 and 1 representing the position
of the timestamp within the cycle. Then, convert the fraction of the cycle t ′ to radians,
representing the position within the cycle in radians, covering a full circle from 0 to 2π.
This equation (Equation (5)) transforms the timestamp t into two values, sint (Equation (6))
and cost (Equation (7)), which together represent the cyclic nature of the timestamp.

θ =

((
t

cycling period time

)
mod 1

)
× 2π (5)

sint = sin(θ) (6)

cost = cos(θ) (7)

The cycling layer is a novel construct in the architecture of machine learning models
designed for processing time series data. Algorithm 3 begins with the input tensor x, which
is assumed to have a shape of (batch_size, sequence_length, embed_dim), where each
value in x represents a timestamp. The design goal of the cycling layer is to encode these
timestamps to make the cyclical information explicit and usable by the model. The cycling
position features are the cornerstone of the cycling layer’s functionality. They are derived
from the radian-converted timestamps using sine and cosine functions, creating a pair of
values for each point in time. This duality allows the model to capture the cyclical nature
of time, ensuring that it recognizes the continuity at the cycle’s boundaries—such as the
transition from the end of one day to the beginning of the next. The sine and cosine values
are concatenated along the tensor’s last dimension, effectively doubling this dimension’s
size. This concatenation preserves the original timestamp information while augmenting it
with cyclical encoding, providing a dual representation of linear time and its inherent cycles.



Appl. Sci. 2024, 14, 8922 9 of 23

Algorithm 3: Cycling_Encoding

1 Input: batch_size, sequence_length, embed_dim
2 Output: combined feature x

3
x is assumed to be a tensor of shape (batch_size, sequence_length, embed_dim) where
each value in x is a timestamp. The goal is to encode these timestamp

4 for pos from 0 to sequence_length −1 do
5 Convert x to fraction of the day ( x

cycling period time

)
mod 1

6 Convert to radians x × 2π

7 Concatenate[sin(x), cos(x) ], along last dimension
8 end for
9 Concatenate original feature with cyclically encoded feature

The final step in the cycling layer’s process is concatenating the original features with
these newly created cyclical position features. The result is a combined feature vector that
retains all information from the original data enriched with a clear, cyclical context. This
enriched representation is then fed into the self-attention mechanism, which can now take
advantage of the cyclical patterns alongside the raw data features.

3.2.3. Autoencoder Preprocess with Cycling Layer

Within the autoencoder’s encoding phase, we have innovatively integrated the cycling
layer and self-attention layer. This integration is critical as it allows the encoder to reduce
the data dimensionality and recognize and encode the cyclical patterns inherent to time
series datasets.

In Figure 2, the data after cleaning and sequence creation will be moved to the au-
toencoder process. The dataset with 14 × 16 (original attributes with timestamp and
order) dimensions allows these models to efficiently learn and compress data into lower-
dimensional spaces, preserving the crucial sequential information that would be lost in
flattened 2D representations. The encoding process commences may encompass various
time series variables recorded over time. Initially, the data are routed through the cy-
cling layer, which incorporates cyclical temporal information into the data representation.
Subsequently, the enriched data are processed by the self-attention layer, which enables
the network to emphasize information based on the cyclical context introduced by the
preceding layer. As the data advance through the subsequent layers of the encoder, they
are progressively compressed into a latent space—the core of the autoencoder. This latent
space embodies the most salient features of the input data in a condensed format. At
this bottleneck, the data, now represented as a compressed version of the original dataset,
encapsulate the most crucial patterns and trends discerned by the network.

The decoding process mirrors the encoding process. The compressed representation
obtained from the latent space is fed into the decoder. The decoder aims to reconstruct the
original high-dimensional data from this compressed representation. This reconstruction
occurs through a sequence of layers that progressively increase in dimensionality. In the
initial stages, the decoder aims to re-expand the encoded features toward a format that
approximates the original input data. Subsequent layers further refine this reconstruction by
adjusting the output according to a loss function, which quantifies the discrepancy between
the original data and the reconstructed data. The final output layer of the decoder is
designed to align with the dimensions of the original input data, yielding the reconstructed
data. These reconstructed data are then compared against the original dataset to evaluate
the accuracy of the reconstruction and the efficacy of the encoding process.

In our experiment, the entire autoencoder process, encompassing both encoding and
decoding, undergoes optimization and training. A loss function, such as the Mean Squared
Error for continuous data, is employed to guide the adjustment of network weights to
minimize reconstruction error. This process ensures that the autoencoder learns the most
effective input data representation. The autoencoder refines its parameters through iterative
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training until the reconstruction loss is minimized, indicating that the network has acquired
a robust representation of the time series data.

Figure 2. Preprocess plow chart about the autoencoder with a cycling layer.

The proposed autoencoder preprocessing method excels at extracting essential features
from complex datasets, allowing models to concentrate on the most significant elements.
Through Table 1, the cycling layer demonstrates its value when compared to traditional
self-attention in an autoencoder. The comparison in the table is grounded in the inherent
design strengths and weaknesses of positional and cycling self-attention layers based on
the analysis and summary in the methodology section.

Table 1. Autoencoder challenge comparison between the design of positional and cycling self-attention.

Challenge of
Autoencoder

With Positional
Self-Attention

With Cycling
Self-Attention

Capturing Long-Term Dependencies Normal Better
Manual Focusing on Relevant Time Steps Bad Better

Reducing Overfitting and Improving Generalization Same Same
Computational Efficiency Normal Better

Note: focusing on time series data and current experiment environment.

Based on the methodology analysis, positional self-attention captures short-term de-
pendencies well but struggles with long-term cyclical patterns, while cycling self-attention
is designed to handle periodic structures, excelling at capturing long-term dependencies.
Positional self-attention treats each time step rigidly, which can make it less efficient at fo-
cusing on key cyclical moments, whereas cycling self-attention prioritizes relevant cyclical
events. Positional self-attention may lead to overfitting and a larger generalization gap,
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while cycling self-attention reflects the same issue. Lastly, positional self-attention is com-
putationally more complex, leading to slower convergence, whereas cycling self-attention
improves efficiency by focusing on cyclical patterns and speeding up convergence.

3.3. Data Split

Partitioning the dataset into training, validation, and test sets is essential for develop-
ing predictive models. The training set, which constitutes the majority of the data, allows
the model to learn and internalize patterns comprehensively. The test set, distinct from the
training phase, provides an unbiased evaluation of the model’s generalization capabilities.
Additionally, validation subsets derived from the training data function as checkpoints for
model refinement, helping to prevent overfitting and ensuring the robustness and reliability
of the model’s performance.

As illustrated in Figure 3, the data-splitting strategy begins with dividing the entire
dataset into an 80–20 ratio. Eighty percent of the data is designated for the training
set, which forms the foundation for autoencoder preprocessing. This training subset is
processed through the autoencoder to generate a compressed representation of the input
data, a crucial step for effective feature extraction.

Figure 3. Data split flow graph.

The remaining 20% of the dataset is allocated to the test set, serving as the final
assessment of the model’s performance. This test set is further divided into validation
VR_sequence and Test TR_sequence partitions, allowing for additional refinement and an
evaluation of the model’s generalization capabilities.

The VR_sequence, representing a subset comprising one-tenth of the training data, is
reintroduced into the autoencoder as a validation set. This procedure facilitates model
validation and employs early stopping techniques to mitigate overfitting. As the autoen-
coder iterates through compressing and reconstructing the training data, the VR_sequence
provides an unbiased assessment of the model’s ability to generalize beyond the training
examples. This subset is crucial for calibrating the model, optimizing hyperparameters,
and determining the optimal complexity of the network architecture.

The early stopping mechanism monitors the validation loss—calculated based on
the VR_sequence throughout the training iterations. Training is halted if the validation
loss does not show improvement or decreases only slightly over a predetermined number
of iterations, known as the “patience” parameter. This process, commonly referred to
as learning rate annealing or decay, allows the model to make finer adjustments as it
approaches the minimum of the loss function, leading to more accurate convergence. The
VR_sequence, which constitutes a portion of the test set, is employed for final validation
across various regression models. This phase serves as a critical checkpoint to ensure that
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the representations learned by the encoding layer remain robust and accurate when applied
to data not used in the initial training phase.

In the regression model validation stage, the features are generated and optimized
through the autoencoder are evaluated using several regression techniques. The perfor-
mance of these regression models reflects the encoded features’ efficacy in capturing the
original data’s essential characteristics. This evaluation helps to determine the quality of
the autoencoder’s feature extraction process and its ability to facilitate accurate predictions
across various modeling approaches.

3.4. Data Sample

The dataset utilized in this paper was sourced from the Jena Climate dataset, available
through Kaggle. This dataset was collected at the Weather Station of the Max Planck
Institute for Biogeochemistry in Jena, Germany, and is intended for climate and environ-
mental research. It provides a comprehensive and detailed long-term record of various
meteorological conditions. The data span a period of over eight years, from 1 January 2009
to 31 December 2016, offering a robust foundation for the time series analysis in this study.
Data introduction was adapted from Chen, J.; Yang, Z. Enhancing Data Preprocessing using
Positional Self-Attention Autoencoders. In Proceedings of the 2024 16th International Con-
ference on Intelligent Human Machine Systems and Cybernetics (IHMSC 2024), Hangzhou,
China, 24–25 August 2024 [2].

Table 2 provides a comprehensive summary of the range and mean values for each
feature, reflecting distinct aspects of the atmospheric state. Atmospheric pressure, rang-
ing from 913.60 to 1015.35 mbar, indicates the weight of the air and is crucial in shaping
weather patterns. Temperature data, ranging from −23.01 ◦C to 37.28 ◦C, offer insights into
atmospheric stability, including the dew point temperature, a key indicator of atmospheric
moisture. Relative humidity, spanning from 12.95% to 100%, impacts weather conditions
and ecological systems. Water vapor metrics, including the maximum water vapor pres-
sure, actual vapor pressure, vapor pressure deficit, specific humidity, and water vapor
concentration, collectively delineate the moisture level of the air, influencing precipitation,
cloud formation, and overall atmospheric processes. Air density, affected by temperature,
Version 7 August 2024, submitted to Journal Not Specified 4 of 24 pressures and humidity,
has implications across various fields, from aviation to engineering. Despite some data
anomalies, the wind speed and direction are fundamental in understanding air movement,
weather systems, and pollutant dispersion. The range and mean of these variables illustrate
the dynamic and complex nature of the climate at the Jena station, offering deep insights
into weather patterns and providing a robust foundation for extensive climatic research
and applications in forecasting, environmental planning, and beyond.

Table 2. The overall range and mean for each feature reflecting distinct aspects of data features.

Feature Mean Minimum Maximum

p (mbar) 989.21 913.60 1015.35
T (degC) 9.45 −23.01 37.28
Tpot (K) 283.49 250.60 311.34

Tdew (degC) 4.96 −25.01 23.11
rh (%) 76.01 12.95 100.00

VPmax (mbar) 13.58 0.95 63.77
VPact (mbar) 9.53 0.79 28.32
VPdef (mbar) 4.04 0.00 46.01

sh (g/kg) 6.02 0.50 18.13
H2OC (mmol/mol) 9.64 0.80 28.82

rho (g/m3) 1216.06 1059.45 1393.54
wv (m/s) 1.70 −9999.00 28.49

max. wv (m/s) 3.06 −9999.00 23.50
wd (deg) 174.74 0.00 360.00

Note: data anomalies exist in wind speed measurements.
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Figure 4 illustrates the relationships between various features within the dataset.
Temperature T (degC) demonstrates a strong positive correlation with both potential
temperature Tpot (K) and dew point temperature Tdew (degC), suggesting a cohesive
relationship among different measures of atmospheric heat. The specific humidity sh
(g/kg), water vapor concentration H2OCmmol/mol, and actual vapor pressure VPact
(mbar) exhibit close interrelationships, reflecting the interconnected nature of moisture vari-
ables. Conversely, relative humidity rh% shows an inverse correlation with temperature,
highlighting the dynamic balance between temperature and the air’s moisture-carrying
capacity. Atmospheric pressure p (mbar) negatively correlates with temperature, consistent
with the principles of thermal expansion. Wind speed wv (m/s) and maximum wind speed
max. wv (m/s), while showing low correlation with other variables, indicate the relative
independence of wind characteristics from other meteorological factors. It is important to
acknowledge data anomalies for precise interpretation. The dew point temperature Tdew
(degC) closely aligns with air temperature, reinforcing the relationship between tempera-
ture and moisture content. Finally, the vapor pressure deficit VPdef (mbar) underscores its
significance in understanding the air’s drying capacity, showing a positive correlation with
temperature and a negative correlation with relative humidity, which is crucial for studies
on evaporation and plant transpiration. These relationships underscore the intricate and
interdependent dynamics of climatic factors within the dataset.

Figure 4. Correlation matrix of the Jena Climate dataset.

The experimental setup involves integrating the proposed cycling layer into a self-
attention mechanism within an autoencoder architecture. We use the Adam optimizer and
a learning rate of 0.001 for training, with early stopping based on validation performance
to prevent overfitting. Meanwhile, we also need to undertake preprocessing steps to
prepare the Jena Climate dataset for subsequent analysis using an autoencoder model.
This section details the conversion of the date–time column from its original form into
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a Unix timestamp, thereby standardizing it for easier model ingestion and alignment
with other time series data processing methods. Also, we aim to address the problem of
missing values, a common issue in real-world datasets. If this problem is addressed, it can
significantly distort model training and predictions. The chosen method, mean imputation,
replaces missing values with the mean of each column, maintaining the overall statistical
characteristics of the dataset. Lastly, this section discusses the creation of sequences from
the processed data. Autoencoders, especially those designed for time series data, benefit
from learning sequential patterns and dependencies, necessitating the transformation of
the dataset into a sequence of data points.

4. Result and Discussion

Evaluating encoded features is vital for assessing autoencoder performance, as it
reveals the quality of the data transformations and their impact on downstream tasks. This
analysis helps determine how effectively the autoencoder compresses and represents the
data, influencing the training efficiency and model accuracy. Comparing the correlation
matrices of original and encoded features provides insight into the autoencoder’s success
in reducing redundancy and capturing the essential data structure, which informs future
model and preprocessing choices.

The encoded features, following preprocessing and transformation by the autoencoder,
exhibit a notably distinct correlation matrix compared to the original data (Figure 4). The
preprocessing phase has regularized the relationships between variables, as evidenced
by the more uniform and moderated correlation coefficients. In the original dataset, vari-
ables demonstrate significant positive and negative correlations, reflective of the inherent
interdependencies in raw environmental data. In contrast, the encoded features reveal a
correlation structure. Figure 5 indicates a transformation towards a space where variables
are more orthogonal or independent from one another.

Figure 5. Correlation matrix for encoded feature.

Figure 5 displays the correlation matrix for the encoded features, essential for under-
standing the interrelationships among variables in the dataset. Each matrix cell indicates
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the correlation between features, with 1 representing a perfect positive correlation and −1 a
perfect negative correlation. The shades of gray illustrate the strength of these correlations.
This matrix is crucial for identifying highly correlated features that may be redundant,
thereby aiding in feature selection and dimensionality reduction. This phase enhances the
model’s efficiency and accuracy by thoroughly analyzing the encoded features, ensuring
that only the most relevant and independent features are utilized for training.

This new structure within the encoded features implies a significant dimensional
reduction and a distillation of the raw data into a form where the overlapping information
is minimized. The correlation matrix from the encoded features, typically the output
from an autoencoder’s bottleneck layer, would show the relationship between each pair
of encoded variables. In a well-trained autoencoder, especially one created to produce
disentangled representations, we would expect to see a correlation matrix with lower
off-diagonal values. This indicates that the encoded features are less correlated with each
other, meaning the autoencoder has learned a representation that separates the underlying
factors of the data. This is desirable because it suggests that each encoded feature captures
a unique aspect of the input data, reducing redundancy and potentially improving the
performance of downstream tasks. Furthermore, the correlation matrices of the original
and encoded features serve as compelling visual evidence of the impact of preprocessing.
Where the original data’s correlation matrix shows extensive correlation coefficients and
the encoded data’s matrix demonstrates a more subdued variance, signaling a more refined
feature set.

The practical implications of these improvements are significant. In anomaly detection,
models trained on less correlated and more disentangled features are likely to respond
more to deviations from standard patterns, thereby enhancing their detection capabilities.
In forecasting, the refined features can contribute to models that generalize more effectively
from the training data to new, unseen data, leading to more accurate and reliable predictions.
This enhanced ability to capture and represent the underlying structure of the data translates
into better performance across various analytical tasks.

The numerical research serves two purposes: (1) comparing fitting speed of different
models; (2) testing regression model performance based on different models.

Comparing the model fitting speed allows for a comparison of the efficiency of au-
toencoder models employing traditional positional layer self-attention against those using
cycling layer self-attention. This comparison is vital as it reveals the practicality and perfor-
mance of the models in real-world applications, particularly in handling large and complex
datasets, like the Jena Climate dataset. Understanding which configuration yields faster
convergence to the best fit can significantly impact the choice of model architecture in
future implementations and research.

The key metric for this comparison is the overall number of iterations taken by each
model to reach the best fit, which is determined by the lowest training loss achieved. This
metric is chosen as it directly reflects the time efficiency of the model in learning from the
data and reaching a point of optimal performance.

Regression model performance comparison aims to evaluate and compare the perfor-
mance of different regression models that utilize the representations learned by autoencoder
models. This evaluation is crucial for understanding how effectively the learned repre-
sentations can predict or reconstruct relevant outputs, thereby determining the practical
utility of the autoencoder models in real-world applications. This comparison uses MSE,
MAE, RMSE, and median MAE as the metrics for different regression methodologies. To
assess the specific contribution of the cycling layer, we conducted an ablation study com-
paring different model configurations: (1) with only the positional layer, (2) with only the
cycling layer.

4.1. Model Fitting Speed

To maintain the integrity of the comparison, the number of iterations and losses were
meticulously recorded for each autoencoder model throughout the training. This recording
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began from the initialization of training and continued at each iteration, capturing the time
taken and the loss incurred until the end of the training.

From Table 3, the number of iterations for the positional layer autoencoder shows
significant variability, ranging from as low as 5 to as high as 48. The loss values also
vary considerably, indicating fluctuations in model training performance across different
runs; its average number of iterations without counting outliers is 277. The variability
suggests that the positional layer autoencoder may struggle with consistency, potentially
due to the complexity or non-cyclic nature of the data. The cycling 12 h autoencoder
has more consistent and generally lower iteration times, with a minimum of 72 and a
maximum of 255, considerably lower than the positional layer autoencoder times. The loss
values are also more consistent, hovering around a narrower band. The average number
of iterations of the cycling 12 h autoencoder is around 191. The cycling 24 h autoencoder
also demonstrates improved consistency in the number of iterations, ranging from 81 to
210, and maintains loss values close to those of the 12 h cycling model. It has the lowest
number of iterations, which is around 169 compared to the others. The 24 h cycling model
is likely capturing the full diurnal cycle, which might be a strong component in the data
due to natural daily rhythms in weather patterns.

Table 3. Comparative analysis of the number of iterations and loss metrics for three different
autoencoder architectures: a positional layer autoencoder, a cycling layer autoencoder with a 12 h
cycle, and a cycling layer autoencoder with a 24 h cycle.

Positional Cycling 12 Cycling 24

Number of
Iterations Loss Number of

Iterations Loss Number of
Iterations Loss

485 98,786,208 176 98,713,768 169 98,713,792
51 101,394,888 187 98,713,768 175 98,713,792
96 99,171,104 166 98,713,768 151 98,713,808

199 99,171,104 202 98,713,792 149 98,713,936
265 98,720,472 225 98,713,792 144 98,713,856
305 98,720,472 169 98,713,752 210 98,713,768
272 98,713,776 193 98,713,768 81 98,727,216
103 98,713,776 201 98,713,944 192 98,713,832
269 98,715,536 199 98,713,848 200 98,713,920
239 98,713,896 72 98,804,704 132 98,713,856

Table 3 enumerates the number of iterations and losses for positional, cycling 12, and
cycling 24 layers. Cycling layers demonstrate a reduced number of iterations, implying
faster processing than the positional layer. For instance, the cycling 24 layers exhibit the
number of iterations as low as 81, whereas the positional layer’s minimum of a similar loss
value is 96, suggesting a more efficient training process. Thus, loss values across cycling
12 and cycling 24 are consistently lower than positional, which can imply better convergence.
Table 2 suggests that cycling layers enhance speed and minimize loss, indicating a more
efficient training process. Therefore, the graph infers that both cycling layer autoencoders
outperform the positional layer autoencoders regarding training efficiency. This is evident
from the less time for each iteration, suggesting that these models adapt to the training
data more quickly. The more consistent loss values across iterations for the cycling models
indicate stable learning and potentially better generalization capabilities.

Additionally, Table 3 presents the loss values for different models incorporating either
a positional layer or cycling layer with varying cycle lengths (12 h and 24 h). The loss value
in this context typically represents the difference between the predicted values and the
actual values of the time series data, measured using the Mean Squared Error (MSE) and
Mean Absolute Error (MAE). These loss metrics evaluate how well the model performs,
with lower loss values indicating better accuracy in the model’s predictions. The table
shows that models using the cycling layers (both 12 h and 24 h cycles) have consistently
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lower loss values compared to those with the positional layer, suggesting that the cycling
layers are more effective at capturing long-term cyclical patterns in time series data. The
cycling 24 h model has the lowest overall loss, indicating that it aligns well with the natural
daily cycles present in the weather data, leading to more accurate predictions.

4.2. Regression Model Performance

The chart in Figure 6 uses a logarithmic scale to display the MSE values, which allows
for a clear visual representation of differences across multiple values. Lower MSE values
indicate better model performance as they signify that the model’s predictions are closer to
the actual values (the content below shows numbers estimated to five decimal places).

Figure 6. MSE for four different regressions.

This method processes the data by considering a 12 h cycle, which could be useful for
capturing daily patterns that repeat on a half-day basis. When analyzing the cycling 12
method, it is observable that for SVR, the MSE is very low at around 0.10717, indicating that
this model has performed well with the 12 h cycle data preprocessing. However, for the
Polynomial and Linear Regression models, the cycling 12 preprocessing does not yield the
lowest MSE, suggesting that these models may not benefit as much from this preprocessing
method as SVR. The cycling 24 method considers an entire 24 h cycle, potentially capturing
daily patterns. For KNN, just like with the cycling 12, the MSE is exceedingly low at around
0.01508, implying that KNN is particularly well-suited to benefit from the cycling approach.
Polynomial Regression and SVR are slightly improved in MSE with cycling 24 compared to
cycling 12, indicating some benefit from considering the entire daily cycle.

Upon examining the Mean Absolute Error (Figure 7) across various regression models
and data preprocessing methods, cycling 12 and cycling 24 methods offer substantial
improvements in predictive accuracy over the original and positional methods. Specifically,
for Linear Regression, cycling 12 and cycling 24 achieve a drastically lower MAE, which
is 0.00024 and 0.00002, respectively, with cycling 24 edging out as the most effective,
suggesting its superior capability in capturing daily patterns within the data. Polynomial
Regression also benefits from the cycling approaches, albeit to a lesser degree, with cycling
12 (0.00160) outperforming cycling 24 (0.00214). Support Vector Regression reflects a similar
trend, with cycling 12 (around 0.10680) reducing the MAE more than cycling 24 (around
0.16090) when compared to positional encoding. Remarkably, the K-Nearest Neighbor
Regression model exhibits the most pronounced improvement with cycling 24 at around
0.00773, reaching the lowest MAE among all the preprocessing methods, underscoring the
value of a complete 24 h cycle in capturing the inherent temporal dynamics of the dataset.
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These findings highlight the effectiveness of incorporating cyclical temporal information
into the preprocessing phase, particularly for models sensitive to time-based patterns.

Figure 7. MAE for four different regressions.

In Figure 8, the RMSE values suggest that Linear Regression benefits significantly
from the cycling 12 (0.00031) and cycling 24 (0.00020) methods, showcasing much lower
errors compared to the original (2.84823) and positional (0.07078) methods. This indicates
a strong fit of the model to the data when temporal cycles are considered. The RMSE for
Polynomial Regression and Support Vector Regression, while lower for cycling 12 and
cycling 24 than for positional, does not dramatically improve, as observed with Linear
Regression. K-Nearest Neighbor Regression was also enhanced, with cycling 12 at around
0.34340 and cycling 24 at around 0.12270, suggesting that these models have a better ability
to capture the central tendency of the data in a more accurate way with cycling-based
preprocessing.

Figure 8. RMSE for four different regressions.
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Figure 9, focusing on Med AE, presents a similar trend. Linear Regression again
shows a marked improvement with the cycling 12, at around 0.00024, and cycling 24, at
around 0.00013, methods, with Med AE dropping significantly. This metric confirms that
the central tendency of the predictions made by the Linear Regression model aligns closely
with the actual values when cyclic patterns are integrated into the data preprocessing. For
Polynomial Regression and Support Vector Regression, the Med AE is notably reduced
with cycling 12 and cycling 24, albeit to a lesser extent than Linear Regression. K-Nearest
Neighbor Regression displays the absolute consistency for Med AE at 0 with cycling 24
and cycling 12, underscoring the benefit of this preprocessing in reducing the typical error
in predictions.

Figure 9. MedAE for four different regressions.

Cycling 12 and cycling 24 enhance Linear Regression performance, as indicated by
substantially lower MSE and MAE values compared to the original and positional methods.
Specifically, the cycling 24 method appears to be most effective in capturing full daily
patterns within the data, which is beneficial for time series datasets with pronounced
diurnal or seasonal variations.

For Polynomial Regression, a slight improvement in MSE with cycling 24 compared to
cycling 12 is noted, indicating some benefit from considering the entire daily cycle. In the
case of SVR, the improvements in MAE suggest that both cycling methods can reduce the
typical prediction error, although the extent of improvement is less than that observed in
Linear Regression. The KNN model exhibits the most remarkable improvement in MAE
with cycling 24, emphasizing the value of an entire 24 h cycle in capturing the inherent
temporal dynamics of the dataset. This improvement is significant, as it highlights that
integrating cyclical temporal information into preprocessing can substantially enhance
predictive accuracy for models sensitive to time-based patterns.

The RMSE analysis aligns with these findings, where Linear Regression benefits
significantly from the cycling 12 and cycling 24 methods, revealing a solid fit to the data
when temporal cycles are considered. KNN Regression also improves with these cycling-
based preprocessing methods, validating the value of the cycling layer. Overall, the results
from the comparative analysis suggest that cycling 12 and cycling 24 preprocessing methods
redefine the paradigm in regression analysis by incorporating cyclical patterns, leading to
more accurate predictions in strong cyclical patterns in time series data.

While Figure 6 indicates that Linear Regression achieves the lowest MSE in this specific
dataset, which does not necessarily imply that it is the optimal choice for all scenarios. The
proposed cycling layer integrated with self-attention mechanisms demonstrates superior
performance in metrics, such as the Mean Absolute Error (MAE) and Root Mean Squared
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Error (RMSE), which are more indicative of real-world performance when dealing with
complex and non-linear time series data. Moreover, our approach captures long-term
cyclical patterns that Linear Regression cannot model effectively, as evidenced by its stable
performance across different datasets and extended time horizons. This adaptability and
robustness make our method more suitable for applications that require handling dynamic,
non-linear data patterns, such as environmental monitoring, financial forecasting, and
anomaly detection in industrial settings.

To further assess the efficacy of the cycling layer self-attention autoencoder prepro-
cessing, we conducted comparative experiments involving four regression models in
conjunction with the existing sequence model. In this experiment, the same data split
was used to maintain consistency, except that both LSTM and GRU models included 12
h and 24 h time factors as focal points. In Table 4, it can be seen that the cycling layer
preprocessing with Linear Regression under the 24 h time factor significantly leads in MAE
performance. For MSE, the cycling layer preprocessing with KNN regression achieves the
best performance. Other regression methods also outperform LSTM and GRU models to
varying degrees, which indirectly proves the advantage of using cycling layer self-attention
preprocessing in this data environment.

Table 4. Four regression models with cycling layer preprocessing against LSTM and GRU.

Linear
Regression

Polynomial
Regression

Support Vector
Regression

KNN
Regression LSTM GRU

MAE 0.0001487 (24 h) 0.00159 (12 h) 0.1068 (12 h) 0.0077 (24 h) 0.00238 0.00226

MSE 3.978 (24 h) 2.0274 (24 h) 0.1071 (12 h) 0.0150 (24 h) 1.2093 1.1162

Note: The bold marks the best MSE and MAE scores.

Comparing other research from the same dataset, it can still show the novelty. Qin
et al. [24] applied LSTM networks to forecast climate data, achieving improved accuracy
for short-term predictions but struggling with longer-term dependencies. Yacoub et al. [25]
combined LSTM and Prophet models to capture daily cycles effectively, yet this approach
required significant computational resources. Shen et al. [26] employed advanced RNNs to
model temporal relationships, demonstrating good performance in handling sequential
data but with limited capacity to capture cyclical patterns. Unlike these methods, our
proposed approach introduces a cycling layer to better capture both short-term and long-
term cyclical patterns, resulting in lower error rates and faster model fitting times.

Furthermore, the sensitivity of the model’s performance to various hyper-parameters,
such as the cycling period and the choice of activation functions, also plays a crucial role
in determining its effectiveness. The cycling period defines how well the model captures
repetitive patterns in time series data. We set 12 h or 24 h per cycling in the experiment. If
the period is too short, the model may focus only on short-term dependencies, missing out
on long-term trends. Conversely, a period that is too long might overlook shorter, important
fluctuations. Similarly, the choice of activation functions impacts how the model handles
non-linearities in the data. Functions like ReLU can speed up training but may suffer
from issues like “dead neurons,” while tanh or sigmoid activations may better capture
smooth cyclic patterns but could be prone to the vanishing gradient problem. The paper
does not provide a detailed exploration of how these hyper-parameters influence model
performance, particularly in terms of the forecast accuracy and model fitting speed.

While the results are encouraging, several limitations of the testing process should
be acknowledged. The models were evaluated using a narrow set of metrics, and critical
factors, such as computational efficiency, robustness to outliers, and scalability, were not
addressed. Additionally, the performance of the cycling layer may vary with different
parameter configurations, and a more comprehensive hyperparameter search could po-
tentially yield different outcomes. Moreover, the findings are constrained to the specific
conditions of the tests that were conducted. The observed improvements with the cycling
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layer may not be universally applicable across all datasets or problem domains. It is also
important to recognize that the cyclical patterns examined—specifically the 12 h and 24 h
cycles—were selected based on specific assumptions that might not be relevant to other
temporal patterns or phenomena.

5. Conclusions and Future Research Directions

This paper introduces a novel approach for time series data preprocessing by integrating
cycling layers into self-attention mechanisms within an autoencoder framework. The proposed
method specifically addresses the challenges of capturing both short-term and long-term
cyclical patterns, such as those found in weather data, thereby improving the accuracy of time
series forecasting models. Unlike traditional methods that struggle with these complexities,
our approach demonstrates significant enhancements in identifying and leveraging cyclical
dependencies, as shown through experiments on the Jena Climate dataset.

While the empirical results indicate improvements in both the forecast accuracy and
model fitting speed, it is essential to contextualize these gains. The method excels in
scenarios where cyclical patterns are prominent and must be captured effectively, such
as in environmental monitoring and financial time series forecasting. However, these
improvements in accuracy do come with computational costs. Although the cycling layer
enhances the model’s ability to handle complex temporal dependencies, it introduces
additional computational overhead compared to simpler preprocessing techniques. Future
research should explore optimizing this approach to balance accuracy with computational
efficiency more effectively.

In conclusion, the integration of cycling layers into self-attention mechanisms offers a
promising avenue for advancing time series analysis, particularly in domains where captur-
ing periodic patterns is critical. Further investigation is needed to refine this technique for
broader applications and to explore its utility in conjunction with other advanced machine
learning methodologies.
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