Beyond Thymol and Carvacrol: Characterizing the Phenolic Profiles and Antioxidant Capacity of Portuguese Oregano and Thyme for Food Applications
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals and Reagents
2.3. Preparation of Plant Extracts
2.4. Determination of Antioxidant Capacity
2.4.1. Total Phenolic Content (TPC)
2.4.2. DPPH Radical Scavenging Activity Assay
2.4.3. Ferric-Ion-Reducing Antioxidant Power Assay (FRAP)
2.5. Determination of Phenolic Compounds by UHPLC-ToF-MS
2.6. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant Capacity
3.1.1. Oregano
3.1.2. Thyme
3.1.3. Comparison between Oregano and Thyme Extracts
3.2. Phenolic Compounds
3.2.1. Oregano
3.2.2. Thyme
3.3. Correlations among Different Parameters
3.3.1. Oregano
3.3.2. Thyme
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Phenolic Acids | |||
---|---|---|---|
Hydroxycinnamic Acid Derivatives | Benzoic Acid Derivatives | ||
Caffeic acid | 0.050 | Protocatechuic acid | 0.100 |
p-coumaric acid | 0.200 | 4-Hydroxybenzoic acid | 0.100 |
o-coumaric acid | 0.200 | Gallic acid | 0.050 |
trans-ferulic acid | 0.100 | Gentisic acid | 0.200 |
Sinapic acid | 0.200 | Vanillic acid | 0.100 |
1,5-Dicaffeoylquinic acid | 0.050 | Syringic acid | 0.050 |
4-O-Caffeoylquinic acid | 0.050 | ||
Chlorogenic acid | 0.200 | ||
Neochlorogenic acid | 0.100 | ||
Rosmarinic acid | 0.500 | ||
Flavonoids | |||
Flavan-3-ols | Flavanone | ||
Epicatechin | 0.020 | Naringenin | 0.010 |
Catechin | 0.020 | Eriodyctiol | 0.020 |
(-)-Epigallocatechin | 0.100 | Sakuranetin | 0.010 |
(-)-Epigallocatechin gallate | 0.020 | Eriocitrin | 0.050 |
(-)-Gallocatechin | 0.020 | Hesperidin | 0.050 |
(-)-Gallocatechin gallate | 0.020 | Narirutin | 0.020 |
Epicatechin gallate | 0.050 | Pinocembrin | 0.002 |
Flavonols | Flavone | ||
Quercetin | 0.020 | Apigenin | 0.010 |
Isoquercetin | 0.020 | Luteolin | 0.020 |
Quercitrin | 0.020 | Sinensetin | 0.010 |
Rutin | 0.100 | Tangeretin | 0.020 |
Myricetin | 0.050 | Chrysin | 0.010 |
Isorhamnetin | 0.050 | Luteolin-7-O-glucoside | 0.010 |
Kaempferol | 0.010 | Anthocyanins | |
Isoflavone | 5,7-Dimethoxyluteolinidin chloride | 0.050 | |
Genistein | 0.020 | Apigeninidin chloride | 0.050 |
Genistin | 0.020 | Luteolinidin chloride | 0.050 |
Flavanonol | Cyanidin-3-glucoside | 0.100 | |
Taxifolin | 0.050 | Non-Flavonoids | |
Chalcones | Ellagic acid | 0.200 | |
Phloridzin | 0.200 | Carnosic acid | 0.500 |
References
- Stefanaki, A.; van Andel, T. Mediterranean Aromatic Herbs and Their Culinary Use. In Aromatic Herbs in Food: Bioactive Compounds, Processing, and Applications; Academic Press: Cambridge, MA, USA, 2021; pp. 93–121. [Google Scholar] [CrossRef]
- Rodrigues, M.; Lopes, A.C.; Vaz, F.; Filipe, M.; Alves, G.; Ribeiro, M.P.; Coutinho, P.; Araujo, A.R.T.S. Thymus mastichina: Composition and Biological Properties with a Focus on Antimicrobial Activity. Pharmaceuticals 2020, 13, 479. [Google Scholar] [CrossRef] [PubMed]
- Taghouti, M.; Martins-Gomes, C.; Schäfer, J.; Santos, J.A.; Bunzel, M.; Nunes, F.M.; Silva, A.M. Chemical Characterization and Bioactivity of Extracts from Thymus mastichina: A Thymus with a Distinct Salvianolic Acid Composition. Antioxidants 2019, 9, 34. [Google Scholar] [CrossRef] [PubMed]
- Escobar, A.; Pérez, M.; Romanelli, G.; Blustein, G. Thymol Bioactivity: A Review Focusing on Practical Applications. Arab. J. Chem. 2020, 13, 9243–9269. [Google Scholar] [CrossRef]
- Singh, N.; Yadav, S.S. A Review on Health Benefits of Phenolics Derived from Dietary Spices. Curr. Res. Food Sci. 2022, 5, 1508–1523. [Google Scholar] [CrossRef] [PubMed]
- Rathod, N.B.; Kulawik, P.; Ozogul, F.; Regenstein, J.M.; Ozogul, Y. Biological Activity of Plant-Based Carvacrol and Thymol and Their Impact on Human Health and Food Quality. Trends Food Sci. Technol. 2021, 116, 733–748. [Google Scholar] [CrossRef]
- Galal, S.A.B.; Madhat Mousa, M.; Elzanfaly, E.S.; Hussien, E.M.; Amer, E.A.H.; Zaazaa, H.E. Quantitative Analysis of Residual Butylated Hydroxytoluene and Butylated Hydroxyanisole in Salmo Salar, Milk, and Butter by Liquid Chromatography–Tandem Mass Spectrometry. Food Chem. 2024, 453, 139653. [Google Scholar] [CrossRef]
- Fernandes, A.C.; Morais, C.; Franchini, B.; Pereira, B.; Pinho, O.; Cunha, L.M. Clean-Label Products: Factors Affecting Liking and Acceptability by Portuguese Older Adults. Appetite 2024, 197, 107307. [Google Scholar] [CrossRef]
- Mantzourani, I.; Daoutidou, M.; Nikolaou, A.; Kourkoutas, Y.; Alexopoulos, A.; Tzavellas, I.; Dasenaki, M.; Thomaidis, N.; Plessas, S. Microbiological Stability and Sensorial Valorization of Thyme and Oregano Essential Oils Alone or Combined with Ethanolic Pomegranate Extracts in Wine Marinated Pork Meat. Int. J. Food Microbiol. 2023, 386, 110022. [Google Scholar] [CrossRef]
- Lupuliasa, A.I.; Baroi, A.M.; Avramescu, S.M.; Vasile, B.S.; Prisada, R.M.; Fierascu, R.C.; Fierascu, I.; Sărdărescu, D.I.; Ripszky Totan, A.; Voicu-Bălășea, B.; et al. Application of Common Culinary Herbs for the Development of Bioactive Materials. Plants 2024, 13, 997. [Google Scholar] [CrossRef]
- Akbarbaglu, Z.; Mazloomi, N.; Sarabandi, K.; Ramezani, A.; Khaleghi, F.; Hamzehkollaei, A.R.; Jafari, S.M.; Hesarinejad, M.A. Stabilization of Antioxidant Thyme-Leaves Extract (Thymus vulgaris) within Biopolymers and Its Application in Functional Bread Formulation. Future Foods 2024, 9, 100356. [Google Scholar] [CrossRef]
- Shen, Y.; Zhou, J.; Yang, C.; Chen, Y.; Yang, Y.; Zhou, C.; Wang, L.; Xia, G.; Yu, X.; Yang, H. Preparation and Characterization of Oregano Essential Oil-Loaded Dioscorea Zingiberensis Starch Film with Antioxidant and Antibacterial Activity and Its Application in Chicken Preservation. Int. J. Biol. Macromol. 2022, 212, 20–30. [Google Scholar] [CrossRef] [PubMed]
- IPMA. Average Air Temperature (°C) by Geographical Location (Weather Station) and Month; Annual. 2022. Available online: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_indicadores&indOcorrCod=0009895&contexto=bd&selTab=tab2&xlang=pt (accessed on 4 July 2024).
- IPMA. Total Precipitation (Mm) by Geographical Location (Weather Station) and Month; Annual. 2022. Available online: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_indicadores&indOcorrCod=0009911&contexto=bd&selTab=tab2&xlang=pt (accessed on 4 July 2024).
- Serrano, C.; Oliveira, M.C.; Lopes, V.R.; Soares, A.; Molina, A.K.; Paschoalinotto, B.H.; Pires, T.C.S.P.; Serra, O.; Barata, A.M. Chemical Profile and Biological Activities of Brassica rapa and Brassica napus Ex Situ Collection from Portugal. Foods 2024, 13, 1164. [Google Scholar] [CrossRef] [PubMed]
- Asami, D.K.; Hong, Y.J.; Barrett, D.M.; Mitchell, A.E. Processing-Induced Changes in Total Phenolics and Procyanidins in Clingstone Peaches. J. Sci. Food Agric. 2003, 83, 56–63. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Kondo, S.; Yoshikawa, H.; Katayama, R. Antioxidant Activity in Astringent and Non-Astringent Persimmons. J. Hortic. Sci. Biotechnol. 2004, 79, 390–394. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Teixeira, J.D.; Soares Mateus, A.R.; Sanchez, C.; Parpot, P.; Almeida, C.; Sanches Silva, A. Antioxidant Capacity and Phenolics Profile of Portuguese Traditional Cultivars of Apples and Pears and Their By-Products: On the Way to Newer Applications. Foods 2023, 12, 1537. [Google Scholar] [CrossRef]
- Kumar, K.; Debnath, P.; Singh, S.; Kumar, N. An Overview of Plant Phenolics and Their Involvement in Abiotic Stress Tolerance. Stresses 2023, 3, 570–585. [Google Scholar] [CrossRef]
- Ancillotti, C.; Bogani, P.; Biricolti, S.; Calistri, E.; Checchini, L.; Ciofi, L.; Gonnelli, C.; Del Bubba, M. Changes in Polyphenol and Sugar Concentrations in Wild Type and Genetically Modified Nicotiana Langsdorffii Weinmann in Response to Water and Heat Stress. Plant Physiol. Biochem. 2015, 97, 52–61. [Google Scholar] [CrossRef]
- Jafari Khorsand, G.; Morshedloo, M.R.; Mumivand, H.; Emami Bistgani, Z.; Maggi, F.; Khademi, A. Natural Diversity in Phenolic Components and Antioxidant Properties of Oregano (Origanum vulgare L.) Accessions, Grown under the Same Conditions. Sci. Rep. 2022, 12, 5813. [Google Scholar] [CrossRef]
- Yan, F.; Azizi, A.; Janke, S.; Schwarz, M.; Zeller, S.; Honermeier, B. Antioxidant Capacity Variation in the Oregano (Origanum vulgare L.) Collection of the German National Genebank. Ind. Crops Prod. 2016, 92, 19–25. [Google Scholar] [CrossRef]
- Michalaki, A.; Karantonis, H.C.; Kritikou, A.S.; Thomaidis, N.S.; Dasenaki, M.E. Ultrasound-Assisted Extraction of Total Phenolic Compounds and Antioxidant Activity Evaluation from Oregano (Origanum vulgare ssp. hirtum) Using Response Surface Methodology and Identification of Specific Phenolic Compounds with HPLC-PDA and Q-TOF-MS/MS. Molecules 2023, 28, 2033. [Google Scholar] [CrossRef] [PubMed]
- Costa, D.C.; Costa, H.S.; Albuquerque, T.G.; Ramos, F.; Castilho, M.C.; Sanches-Silva, A. Advances in Phenolic Compounds Analysis of Aromatic Plants and Their Potential Applications. Trends Food Sci. Technol. 2015, 45, 336–354. [Google Scholar] [CrossRef]
- Ribeiro-Santos, R.; Carvalho-Costa, D.; Cavaleiro, C.; Costa, H.S.; Albuquerque, T.G.; Castilho, M.C.; Ramos, F.; Melo, N.R.; Sanches-Silva, A. A Novel Insight on an Ancient Aromatic Plant: The Rosemary (Rosmarinus officinalis L.). Trends Food Sci. Technol. 2015, 45, 355–368. [Google Scholar] [CrossRef]
- Castilho, P.C.; Savluchinske-Feio, S.; Weinhold, T.S.; Gouveia, S.C. Evaluation of the Antimicrobial and Antioxidant Activities of Essential Oils, Extracts and Their Main Components from Oregano from Madeira Island, Portugal. Food Control 2012, 23, 552–558. [Google Scholar] [CrossRef]
- Delgado, T.; Marinero, P.; Asensio-S.-Manzanera, M.C.; Asensio, C.; Herrero, B.; Pereira, J.A.; Ramalhosa, E. Antioxidant Activity of Twenty Wild Spanish Thymus mastichina L. Populations and Its Relation with Their Chemical Composition. LWT 2014, 57, 412–418. [Google Scholar] [CrossRef]
- Taghouti, M.; Martins-Gomes, C.; Félix, L.M.; Schäfer, J.; Santos, J.A.; Bunzel, M.; Nunes, F.M.; Silva, A.M. Polyphenol Composition and Biological Activity of Thymus Citriodorus and Thymus vulgaris: Comparison with Endemic Iberian Thymus Species. Food Chem. 2020, 331, 127362. [Google Scholar] [CrossRef]
- Skendi, A.; Irakli, M.; Chatzopoulou, P. Analysis of Phenolic Compounds in Greek Plants of Lamiaceae Family by HPLC. J. Appl. Res. Med. Aromat. Plants 2017, 6, 62–69. [Google Scholar] [CrossRef]
- Vargas-Madriz, Á.F.; Kuri-García, A.; Luzardo-Ocampo, I.; Vargas-Madriz, H.; Pérez-Ramírez, I.F.; Anaya-Loyola, M.A.; Ferriz-Martínez, R.A.; Roldán-Padrón, O.; Hernández-Sandoval, L.; Guzmán-Maldonado, S.H.; et al. Impact of Drying Process on the Phenolic Profile and Antioxidant Capacity of Raw and Boiled Leaves and Inflorescences of Chenopodium berlandieri ssp. berlandieri. Molecules 2023, 28, 7235. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Regueiro, J.; Martínez-Huélamo, M.; Rinaldi Alvarenga, J.F.; Leal, L.N.; Lamuela-Raventos, R.M. A Comprehensive Study on the Phenolic Profile of Widely Used Culinary Herbs and Spices: Rosemary, Thyme, Oregano, Cinnamon, Cumin and Bay. Food Chem. 2014, 154, 299–307. [Google Scholar] [CrossRef]
- Muzolf-Panek, M.; Stuper-Szablewska, K. Comprehensive Study on the Antioxidant Capacity and Phenolic Profiles of Black Seed and Other Spices and Herbs: Effect of Solvent and Time of Extraction. J. Food Meas. Charact. 2021, 15, 4561–4574. [Google Scholar] [CrossRef]
- Guan, H.; Luo, W.; Bao, B.; Cao, Y.; Cheng, F.; Yu, S.; Fan, Q.; Zhang, L.; Wu, Q.; Shan, M. A Comprehensive Review of Rosmarinic Acid: From Phytochemistry to Pharmacology and Its New Insight. Molecules 2022, 27, 3292. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Xu, L.; Jin, D.; Xin, Y.; Tian, L.; Wang, T.; Zhao, D.; Wang, Z.; Wang, J. Rosmarinic Acid and Related Dietary Supplements: Potential Applications in the Prevention and Treatment of Cancer. Biomolecules 2022, 12, 1410. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.S.; Ribeiro-Santos, R.; Ramos, F.; Castilho, M.C.; Sanches-Silva, A. UHPLC-DAD Multi-Method for Determination of Phenolics in Aromatic Plants. Food Anal. Methods 2018, 11, 440–450. [Google Scholar] [CrossRef]
- Peng, H.; Shahidi, F. Oxidation and Degradation of (Epi)Gallocatechin Gallate (EGCG/GCG) and (Epi)Catechin Gallate (ECG/CG) in Alkali Solution. Food Chem. 2023, 408, 134815. [Google Scholar] [CrossRef]
- Martins, N.; Barros, L.; Santos-Buelga, C.; Silva, S.; Henriques, M.; Ferreira, I.C.F.R. Decoction, Infusion and Hydroalcoholic Extract of Cultivated Thyme: Antioxidant and Antibacterial Activities, and Phenolic Characterisation. Food Chem. 2015, 167, 131–137. [Google Scholar] [CrossRef]
- Martins-Gomes, C.; Steck, J.; Keller, J.; Bunzel, M.; Santos, J.A.; Nunes, F.M.; Silva, A.M. Phytochemical Composition and Antioxidant, Anti-Acetylcholinesterase, and Anti-α-Glucosidase Activity of Thymus carnosus Extracts: A Three-Year Study on the Impact of Annual Variation and Geographic Location. Antioxidants 2023, 12, 668. [Google Scholar] [CrossRef]
- Salehi, B.; Abu-Darwish, M.S.; Tarawneh, A.H.; Cabral, C.; Gadetskaya, A.V.; Salgueiro, L.; Hosseinabadi, T.; Rajabi, S.; Chanda, W.; Sharifi-Rad, M.; et al. Thymus spp. Plants—Food Applications and Phytopharmacy Properties. Trends Food Sci. Technol. 2019, 85, 287–306. [Google Scholar] [CrossRef]
- Méndez-Tovar, I.; Sponza, S.; Asensio-S-Manzanera, M.C.; Novak, J. Contribution of the Main Polyphenols of Thymus mastichina subsp. mastichina to Its Antioxidant Properties. Ind. Crops Prod. 2015, 66, 291–298. [Google Scholar] [CrossRef]
Accession * | Origin | Elevation (m) | Field Observations |
---|---|---|---|
BPGV10423 | Ponte de Sôr Portalegre | 245 | Elliptical oval bracts |
BPGV10442 | Sousel Portalegre | 1278 | Common morphotype |
BPGV10442 ** | Sousel Portalegre | 1278 | Common morphotype |
BPGV11267 | Gimonde Bragança | 622 | Dense foliage and sparse flowers |
BPGV11280 | Parâmio Bragança | 780 | Common morphotype |
BPGV11408 | Alcanede Santarém | 297 | Sparse foliage and smaller leaves |
BPGV16272 | Rio Frio Viana do Castelo | 333 | Common morphotype |
BPGV16286 | Soajo Viana do Castelo | 127 | Larger cordiform leaves with dentate margin, no petals |
BPGV16427 | Alpendrinha Castelo Branco | 650 | Common morphotype |
Accession * | Origin | Sub-Sample | Field Observations |
---|---|---|---|
BPGV10381 | Vila Velha de Rodão | 1.1 | Reddish fruiting branch with elliptical leaves and larger nodes |
Portalegre | 1.2 | Light green foliage color | |
BPGV10384 | Ponte de Sôr Portalegre | 2.1 | Reddish fruiting branch with elliptical leaves and larger nodes |
2.2 | Chalk-green foliage | ||
2.3 | Common morphotype | ||
BPGV11264 | Gimonde | 3.1 | More citrus-green foliage |
Bragança | 3.2 | Common morphotype | |
BPGV11276 | Donai Bragança | 4.1 | Common morphotype |
BPGV11288 | Castanheira | 5.1 | Dark green foliage |
Bragança | 5.2 | Common morphotype | |
BPGV11295 | Minas de Santo Adrião | 6.1 | Larger leaves and revolute margin |
Bragança | 6.2 | Common morphotype | |
BPGV12078 | Vilarinho da Castanheira | 7.1 | Larger leaves and revolute margin |
Bragança | 7.2 | Common morphotype | |
BPGV12093 | Junqueira Bragança | 8.1 | Reddish fruiting branch with elliptical leaves and larger nodes |
8.2 | More brownish fruiting branches | ||
8.3 | Larger leaves and revolute margin | ||
8.4 | Light green foliage color | ||
8.5 | Common morphotype |
Accessions | TPC mg GAE/g DW | FRAP µmol Fe2+/g DW | DPPH mmol TE/g DW |
---|---|---|---|
BPGV10423 | 1639.71 ± 41.37 a | 1354.86 ± 47.60 a | 0.5011 ± 0.0310 ab |
BPGV10442 | 2130.95 ± 62.48 abc | 1626.06 ± 37.79 ab | 0.5590 ± 0.0095 ab |
BPGV10442 | 2171.24 ± 63.73 abc | 1769.20 ± 27.09 ab | 0.5739 ± 0.0263 ab |
BPGV11267 | 1927.32 ± 272.69 ab | 1548.89 ± 163.40 ab | 0.4476 ± 0.0350 a |
BPGV11280 | 2066.20 ± 239.83 abc | 1564.58 ± 131.87 ab | 0.5335 ± 0.0187 ab |
BPGV11408 | 2660.86 ± 0.58 c | 1932.33 ± 38.84 b | 0.6029 ± 0.0192 b |
BPGV16272 | 2486.45 ± 148.58 bc | 1619.82 ± 78.03 ab | 0.5440 ± 0.0510 ab |
BPGV16286 | 2271.46 ± 28.90 abc | 1667.45 ± 80.86 ab | 0.5364 ± 0.0375 ab |
BPGV16427 | 2014.73 ± 81.32 abc | 1567.66 ± 45.15 ab | 0.5320 ± 0.0064 ab |
Accession | TPC mg GAE/g DW | FRAP µmol Fe2+/g DW | DPPH mmol TE/g DW | |
---|---|---|---|---|
BPGV10381 | 1.1 | 410.98 ± 10.87 | 342.60 ± 4.58 | 0.6143 ± 0.0001 |
1.2 | 389.44 ± 2.71 | 334.38 ± 7.74 | 0.5879 ± 0.0220 | |
BPGV10384 | 2.1 | 415.17 ± 21.24 a | 281.95 ± 2.79 a | 0.4812 ± 0.0371 a |
2.2 | 529.46 ± 9.72 b | 3940.91 ± 34.40 c | 0.6292 ± 0.0046 b | |
2.3 | 448.94 ± 2.05 a | 3362.87 ± 225.97 bABC | 0.5738 ± 0.0363 ab | |
BPGV11264 | 3.1 | 460.59 ± 1.92 | 3431.37 ± 233.35 | 0.7205 ± 0.0137 |
3.2 | 439.43 ± 19.19 | 3818.78 ± 16.06 BC | 0.6922 ± 0.0091 | |
BPGV11276 | 4.1 | 503.70 ± 15.97 | 3990.88 ± 2.80 C | 0.6254 ± 0.0190 |
BPGV11288 | 5.1 | 371.96 ± 17.77 a | 3395.88 ± 10.20 | 0.6205 ± 0.0525 |
5.2 | 466.77 ± 14.71 b | 3053.55 ± 427.24 AB | 0.5780 ± 0.0471 | |
BPGV11295 | 6.1 | 443.80 ± 23.58 | 2702.53 ± 56.21 | 0.6044 ± 0.0292 |
6.2 | 418.92 ± 43.04 | 2521.99 ± 102.40 A | 0.6051 ± 0.0384 | |
BPGV12078 | 7.1 | 440.49 ± 12.17 | 2610.13 ± 2.27 a | 0.5814 ± 0.0104 a |
7.2 | 467.09 ± 26.92 | 3011.71 ± 12.00 bAB | 0.6791 ± 0.0089 b | |
BPGV12093 | 8.1 | 365.64 ± 19.16 | 2543.83 ± 3.42 a | 0.6267 ± 0.0173 |
8.2 | 408.59 ± 28.92 | 2928.82 ± 26.47 bc | 0.6630 ± 0.0113 | |
8.3 | 444.87 ± 35.08 | 2861.80 ± 41.62 b | 0.6332 ± 0.0211 | |
8.4 | 422.55 ± 43.92 | 3084.56 ± 9.95 c | 0.7011 ± 0.0391 | |
8.5 | 428.57 ± 9.52 | 3109.83 ± 78.16 cABC | 0.6758 ± 0.0197 |
Accession * | Rosmarinic Acid | Gentisic Acid | 4-Hydroxybenzoic acid | Rutin | Kaempferol-3-O-B-rutinoside | Naringenin | Eriodictyol | Sakuranetin |
---|---|---|---|---|---|---|---|---|
BPGV10423 | 2.129 ± 0.128 ab | 0.386 ± 0.007 cd | 0.0537 ± 0.0014 bc | 0.021 ± 0.0044 ab | 0.0088 ± 0.0014 a | 0.0307 ± 0.009 d | 0.0368 ± 0.004 d | 0.0042 ± 0.0002 c |
BPGV10442 | 2.120 ± 0.166 ab | 0.454 ± 0.022 d | 0.0543 ± 0.0003 bc | 0.0037 ± 0.0028 cd | 0.0131 ± 0.0028 a | 0.0305 ± 0.0005 d | 0.0304 ± 0.005 d | 0.0047 ± 0.0001 c |
BPGV10442 ** | 1.667 ± 0.049 a | 0.576 ± 0.007 e | 0.0372 ± 0.0016 ab | 0.094 ± 0.0043 e | 0.0125 ± 0.0004 a | 0.0332 ± 0.0007 d | 0.0235 ± 0.008 c | 0.0047 ± 0.0001 c |
BPGV11267 | 2.252 ± 0.112 abc | 0.232 ± 0.004 b | 0.0321 ± 0.0010 a | 0.035 ± 0.0036 bcd | 0.0109 ± 0.0008 a | 0.0077 ± 0.0001 a | 0.0033 ± 0.002 a | 0.0020 ± 0.0001 a |
BPGV11280 | 2.706 ± 0.266 bcd | 0.209 ± 0.006 b | 0.0499 ± 0.0033 bc | 0.039 ± 0.0022 cd | 0.0123 ± 0.0021 a | 0.0108 ± 0.0003 a | 0.0083 ± 0.025 ab | 0.0020 ± 0.0002 a |
BPGV11408 | 3.109 ± 0.240 cd | 0.240 ± 0.013 b | 0.0561 ± 0.0048 c | 0.045 ± 0.0029 d | 0.0156 ± 0.0034 a | 0.0113 ± 0.0005 a | 0.0085 ± 0.025 ab | 0.0021 ± 0.0001 a |
BPGV16272 | 3.438 ± 0.343 d | 0.236 ± 0.033 b | 0.0747 ± 0.0086 d | 0.027 ± 0.0034 abc | 0.0129 ± 0.0014 a | 0.0168 ± 0.0020 b | 0.0137 ± 0.016 b | 0.0031 ± 0.0001 b |
BPGV16286 | 3.069 ± 0.109 cd | 0.121 ± 0.023 a | 0.0392 ± 0.0025 abc | 0.016 ± 0.0005 a | 0.0096 ± 0.0006 a | 0.0229 ± 0.0007 c | 0.0238 ± 0.007 c | 0.0027 ± 0.0001 b |
BPGV16427 | 3.274 ± 0.029 d | 0.352 ± 0.007 c | 0.0272 ± 0.0005 a | 0.039 ± 0.0012 cd | 0.0118 ± 0.0006 a | 0.0193 ± 0.0004 b | 0.0107 ± 0.002 b | 0.0028 ± 0.0001 b |
Accession * | Rosmarinic Acid | Quercitrin | Isorhamnetin-3-O-glucoside | Eriodictyol | Luteolin | Genistin | Naringenin | |
---|---|---|---|---|---|---|---|---|
BPGV10381 | 1.1 | 37.05 ± 0.662 b | 31.07 ± 0.424 | 9.413 ± 0.134 a | 1.422 ± 0.046 b | 2.311 ± 0.046 | 3.782 ± 0.071 a | 3.180 ± 0.074 b |
1.2 | 33.75 ± 0.299 a | 35.36 ± 0.432 | 11.25 ± 0.433 b | 1.068 ± 0.031 a | 2.448 ± 0.082 | 5.219 ± 0.221 b | 1.741 ± 0.210 a | |
BPGV10384 | 2.1 | 31.18 ± 1.13 a | 21.03 ± 0.808 a | 6.412 ± 0.334 b | 3.099 ± 0.145 a | 5.471 ±0.261 a | 1.531 ± 0.073 a | 2.232 ± 0.084 a |
2.2 | 40.45 ±0.749 b | 23.45 ± 2.62 a | 3.820 ± 0.083 a | 4.160 ± 0.122 b | 6.853 ± 0.517 b | 2.189 ± 0.045 b | 4.011 ± 0.334 b | |
2.3 | 33.71 ± 0.899 aB | 26.89 ± 0.869 aAB | 7.254 ± 0.196 bA | 2.508 ± 0.187 aBC | 4.148 ± 0.070 aBC | 2.453 ± 0.044 cBC | 2.010 ± 0.231 aA | |
BPGV11264 | 3.1 | 35.63 ± 1.65 | 32.31 ± 2.01 | 12.99 ± 1.10 | 1.413 ± 0.085 | 4.859 ± 0.278 b | 2.873 ± 0.334 | 2.362 ± 0.106 |
3.2 | 32.34 ± 0.943 B | 31.30 ± 2.25 B | 11.50 ± 0.350 BC | 1.570 ± 0.036 A | 3.903 ± 0.117 aAB | 2.548 ± 0.111 BC | 2.115 ± 0.066 AB | |
BPGV11276 | 4.1 | 39.14 ± 1.06 C | 22.44 ± 1.05 A | 8.050 ± 0.539 A | 3.142 ± 0.079 D | 3.441 ± 0.123 AB | 1.403 ± 0.096 A | 3.129 ± 0.182 C |
BPGV11288 | 5.1 | 36.38 ± 1.79 | 28.89 ± 0.928 | 7.831 ± 0.220 a | 2.975 ± 0.227 | 5.308 ± 0.301 | 2.313 ± 0.146 | 2.384 ± 0.287 |
5.2 | 39.59 ± 1.15 C | 30.33 ± 1.31 B | 14.59 ± 1.621 bC | 2.805 ± 0.084 CD | 5.120 ± 0.186 C | 2.196 ± 0.242 ABC | 2.638 ± 0.080 BC | |
BPGV11295 | 6.2 | 23.11 ± 0.701 a | 28.64 ± 1.37 | 8.781 ± 0.658 | 1.519 ± 0.120 a | 4.738 ±0.379 b | 2.339 ± 0.368 | 1.774 ± 0.148 |
6.3 | 27.76 ± 1.33 bA | 26.94 ± 1.01 AB | 7.023 ± 0.372 A | 2.264 ± 0.096 bB | 2.918 ± 0.156 aAB | 2.019 ± 0.099 AB | 1.797 ± 0.029 A | |
BPGV12078 | 7.1 | 31.60 ± 1.68 | 22.82 ± 0.721 a | 8.000 ± 0.381 a | 4.192 ± 0.343 b | 11.37 ± 1.03 b | 1.478 ± 0.132 a | 2.997 ± 0.143 |
7.2 | 34.66 ± 0.724 B | 29.35 ± 2.31 bB | 9.532 ± 0.218 bAB | 2.702 ± 0.088 aBCD | 4.531 ± 0.164 aBC | 2.712 ± 0.107 bBC | 3.009 ± 0.123 C | |
BPGV12093 | 8.1 | 31.31 ± 0.921 b | 24.90 ± 0.268 a | 4.944 ± 0.066 a | 2.059 ± 0.060 b | 6.253 ± 0.152 b | 1.930 ± 0.221 a | 1.116 ± 0.025 a |
8.2 | 32.37 ± 0.579 bc | 32.51 ± 0.798 b | 8.923 ± 0.222 bc | 1.291 ± 0.036 a | 2.950 ± 0.119 a | 4.286 ± 0.136 c | 1.170 ± 0.029 a | |
8.3 | 29.34 ± 0.979 ab | 23.82 ± 0.836 a | 10.14 ± 0.343 c | 3.937 ± 0.151 d | 13.38 ± 0.806 c | 2.674 ± 0.069 ab | 2.635 ± 0.096 c | |
8.4 | 26.82 ± 1.02 a | 26.59 ± 0.965 a | 13.41 ± 0.613 d | 2.951 ± 0.217 c | 6.469 ± 0.106 b | 2.387 ± 0.130 ab | 1.328 ± 0.045 a | |
8.5 | 35.79 ± 0.299 cBC | 26.99 ± 0.813 aAB | 7.390 ± 0.268 bA | 4.235 ± 0.069 dE | 12.06 ± 0.539 cD | 3.030 ± 0.382 bC | 1.827 ± 0.050 bA | |
Accession * | Quercetin | Apigenin | 4-Hydroxybenzoic acid | Rutin | Sakuranetin | 4-O-Caffeoylquinic acid | Taxifolin | |
BPGV10381 | 1.1 | nd | 0.459 ± 0.020 | 0.584 ± 0.041 | 0.247 ± 0.125 | 1.418 ± 0.109 | 0.736 ± 0.037 b | 0.204 ± 0.014 b |
1.2 | nd | 0.386 ± 0.064 | 0.629 ± 0.038 | 0.182 ± 0.082 | 1.521 ± 0.038 | 0.602 ± 0.049 a | 0.137 ± 0.041 a | |
BPGV10384 | 2.2 | nd | 0.298 ± 0.193 a | 0.411 ± 0.018 a | <LOQ | 1.636 ± 0.038 b | 0.436 ± 0.221 | 0.943 ± 0.088 b |
2.1 | 0.102 ± 0.001 | 0.447 ± 0.043 a | 0.499 ± 0.019 b | 0.107 ± 0.032 | 1.058 ± 0.083 a | 0.568 ± 0.046 | 0.532 ± 0.017 a | |
2.3 | 1.113 ± 0.583 aA | 0.406 ± 0.022 aBC | 0.423 ± 0.021 a | 0.154 ± 0.039 | 1.452 ± 0.222 abB | 0.628 ± 0.091 AB | 0.999 ± 0.009 bD | |
BPGV11264 | 3.1 | 1.170 ± 0.417 | 0.514 ± 0.027 b | 0.636 ± 0.029 b | 0.163 ± 0.015 | 0.768 ± 0.250 | 0.816 ± 0.058 b | 0.106 ± 0.022 |
3.2 | 1.562 ± 0.070 AB | 0.403 ± 0.013 aABC | 0.468 ± 0.025 a | 0.125 ± 0.046 | 1.351 ± 0.059 AB | 0.470 ± 0.072 a | 0.158 ± 0.013 A | |
BPGV11276 | 4.1 | 2.321 ± 0.114 AB | 0.356 ± 0.045 AB | 0.592 ± 0.048 | <LOQ | 1.372 ± 0.170 AB | 0.747 ± 0.144 B | nd |
BPGV11288 | 5.1 | 0.529 ± 0.003 a | 0.530 ± 0.047 | 0.581 ± 0.031 | <LOQ | 1.834 ± 0.188b | 0.656 ± 0.065 | 1.133 ± 0.024 b |
5.3 | 2.786 ± 0.067 bB | 0.476 ± 0.015 C | 0.393 ± 0.140 | 0.100 ± 0.018 | 1.279 ± 0.055 aAB | 0.613 ± 0.021 AB | 0.495 ± 0.037 aC | |
BPGV11295 | 6.2 | 1.663 ± 0.832 b | 0.379 ± 0.078 | 0.522 ± 0.098 | 0.100 ± 0.021 b | 0.985 ± 0.173 | 0.411 ± 0.096 b | nd |
6.3 | 0.585 ± 0.090 aA | 0.325 ± 0.020 A | 0.483 ± 0.133 | 0.070 ± 0.010 a | 1.074 ± 0.073 AB | 0.384 ± 0.121 a | nd | |
BPGV12078 | 7.1 | nd | 0.623 ± 0.070 b | 0.451 ± 0.046 a | 0.090 ± 0.072 | 2.348 ± 0.249 b | 0.441 ± 0.055 a | 0.301 ± 0.068 |
7.2 | nd | 0.429 ± 0.020 aBC | 0.651 ± 0.078 b | 0.104 ± 0.006 | 1.364 ± 0.092 a | 0.550 ± 0.031 bAB | nd | |
BPGV12093 | 8.1 | 0.866 ± 0.110 a | 0.327 ± 0.018 a | 0.377 ± 0.029 ab | 0.097 ± 0.050 a | 0.885 ± 0.075 ab | 0.434 ± 0.037 a | 0.086 ± 0.016 a |
8.2 | nd | 0.434 ± 0.031 a | 0.463 ± 0.041 b | 0.135 ± 0.064 ab | 1.032 ± 0.055 b | 0.455 ± 0.076 a | 0.070 ± 0.003 a | |
8.3 | 3.115 ± 0.100 b | 1.244 ± 0.069 c | 0.378 ± 0.029 ab | 0.099 ± 0.007 a | 1.272 ± 0.058 c | 0.350 ± 0.021 a | 0.055 ± 0.020 a | |
8.4 | 1.548 ± 0.100 a | 0.738 ± 0.029 b | 0.339 ± 0.021 a | 0.244 ± 0.046 b | 0.780 ± 0.048 a | 1.376 ± 0.075 b | 0.035 ± 0.008 a | |
8.5 | 5.597 ± 0.398 cC | 0.785 ± 0.023 bD | 0.448 ± 0.007 b | 0.128 ± 0.008 ab | 0.972 ± 0.026 bA | 0.383 ± 0.010 aA | 0.293 ± 0.030 bB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mateus, A.R.S.; Serrano, C.; Almeida, C.; Soares, A.; Rolim Lopes, V.; Sanches-Silva, A. Beyond Thymol and Carvacrol: Characterizing the Phenolic Profiles and Antioxidant Capacity of Portuguese Oregano and Thyme for Food Applications. Appl. Sci. 2024, 14, 8924. https://doi.org/10.3390/app14198924
Mateus ARS, Serrano C, Almeida C, Soares A, Rolim Lopes V, Sanches-Silva A. Beyond Thymol and Carvacrol: Characterizing the Phenolic Profiles and Antioxidant Capacity of Portuguese Oregano and Thyme for Food Applications. Applied Sciences. 2024; 14(19):8924. https://doi.org/10.3390/app14198924
Chicago/Turabian StyleMateus, Ana Rita Soares, Carmo Serrano, Carina Almeida, Andreia Soares, Violeta Rolim Lopes, and Ana Sanches-Silva. 2024. "Beyond Thymol and Carvacrol: Characterizing the Phenolic Profiles and Antioxidant Capacity of Portuguese Oregano and Thyme for Food Applications" Applied Sciences 14, no. 19: 8924. https://doi.org/10.3390/app14198924
APA StyleMateus, A. R. S., Serrano, C., Almeida, C., Soares, A., Rolim Lopes, V., & Sanches-Silva, A. (2024). Beyond Thymol and Carvacrol: Characterizing the Phenolic Profiles and Antioxidant Capacity of Portuguese Oregano and Thyme for Food Applications. Applied Sciences, 14(19), 8924. https://doi.org/10.3390/app14198924