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Abstract: Most decision-making models, including the pairwise comparison method, assume the
honesty of the decision-maker. However, it is easy to imagine a situation where the decision-maker
tries to manipulate the ranking results. This problem applies to many decision-making methods,
including the pairwise comparison method. This article proposes three simple algorithmic methods
for manipulating data using the pairwise comparison method. The proposed solutions try to mimic
the behavior of a dishonest decision-maker who, acting under time pressure, chooses a simple strat-
egy that leads to pushing through a given alternative. We also test the susceptibility to detection
of the proposed manipulation strategies. To this end, we propose a convolutional neural network
architecture, which we train based on generated data consisting of the original random pairwise
comparison matrices and their manipulated counterparts. Our approach treats the pairwise com-
parison matrices as two- or three-dimensional images specific to the decision situation. In the latter
case, the matrices are initially transformed into a three-dimensional map of local inconsistencies, and
only data processed in this way are subjected to analysis using neural networks. The experiments
indicate a significant level of detection of the proposed manipulations. In numerical tests, the effec-
tiveness of the presented solution ranges from 88% to 100% effectiveness, depending on the tested
algorithm and test parameters. The measured average computation time for the single case analyzed
oscillated below one millisecond, which is a more than satisfactory result of the performance of the
built implementation. We can successfully use the neural networks trained on synthetic data to
detect manipulation attempts carried out by real experts. Preliminary tests with respondents also
indicated high effectiveness in detecting manipulation. At the same time, they signaled the difficulty
of distinguishing actual manipulation from a situation in which an expert strongly prefers one or
more selected alternatives.

Keywords: pairwise comparisons; manipulation; neural network; machine learning; AHP

1. Introduction

When it comes to decision-making, especially in high-stakes situations such as medical
diagnoses, financial investments, political elections, or major sports tournaments, it is
essential to ensure the fairness and transparency of the process [1]. Manipulation of
the decision-making process can have serious consequences that can negatively affect
individuals [2], society, organizations [3], or tournament results [4]. Prejudice, external
pressures, bribery, or multiple factors can influence decision-makers, leading to suboptimal
outcomes or harm. In political elections, propaganda, disinformation, or bribery can
manipulate voters and influence elections [5], leading to long-term societal consequences.
In the context of sports, various forms of cheating, including doping, collusion, and match-
fixing [6], as well as coordinated fights [7], are considered unethical and have a negative
financial impact on individuals who place bets.
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We can take various measures to prevent manipulation and ensure transparency [1]
and objectivity in decision-making. For example, the number of decision-makers can be
increased to make manipulation more difficult [8], or the decision-making processes may
be subject to external oversight (or review) to ensure compliance with ethical and legal
standards [9]. Another critical aspect is data-driven decision-making, where objective
and reliable data support decision-making. By analyzing these data, decision-makers can
identify patterns and anticipate and evaluate alternatives more objectively, reducing the
influence of biases and external pressures.

Researchers have proposed many methods to reduce subjectivity and increase trans-
parency, ensuring the decision-making process is open, visible, and not manipulable [10,11].
Many of them are based on well-defined mathematical models [12-14]. Szybowski et al. [14]
defined a form of optimal manipulation for a pair of alternatives. Knowing it allows one to
estimate the difficulty of the manipulation for a particular model.

In this study, we would like to consider the problem of manipulative behavior for
one of the most popular decision-making methods, the quantitative pairwise comparison
method, and its best-known multiple criteria implementation, the AHP (Analytic Hierarchy
Process). It is a commonly used approach that breaks down complex decisions into smaller,
more manageable components, allowing decision-makers to evaluate alternatives based on
multiple criteria [15]. The quantitative pairwise comparison method emerged at the begin-
ning of the XX century and is attributed to Thurstone [16]. It has inspired many researchers
such as Miller [17] and David [18]. Saaty’s seminal paper [19], published in 1977, in which
he proposed the AHP method, contributed to its growing popularity. It continues to inspire
and be the research subject for those involved in the study of decision-making methods.
The research concerns synthesis and aggregation of weights [20,21], inconsistencies and
inconsistency indexes [22,23], incompleteness [24-26], preference representation using dif-
ferent representations such as interval, fuzzy, or grey numbers [27-29], and exploring new
areas and methods including BWM [30], MACBETH [31], and HRE [32]. In this context,
outranking decision-making methods such as PROMETHEE and ELECTRE [33] or hybrid
solutions [34,35] are worth mentioning.

Using multiple-criteria decision-making methods (MCDM) can be particularly chal-
lenging when bribery and corruption are prevalent. Bribery, corruption, and manipulation
can undermine the integrity of the decision-making process [36], leading to decisions based
on personal or financial interests rather than on the merits of the evaluated alternatives.
This can have severe consequences for stakeholders” welfare and the sustainability of
the decision. As a response to this intricate issue, researchers and practitioners have em-
braced innovative methodologies to scrutinize, comprehend, and alleviate the influence
of manipulation.

This paper delves into the intersection of pairwise comparisons, bribery, and the
utilization of neural networks, presenting a comprehensive framework to prevent and
combat corrupt practices. Moreover, in acknowledgment of the constraints of traditional
methods in curbing bribery, there is a burgeoning interest in harnessing advanced tech-
nologies. Neural networks, machine learning tools, and a subset of artificial intelligence
have showcased remarkable pattern recognition and decision-making capabilities. This
paper explores the integration of neural networks as a preventive measure against bribery
to create proactive systems capable of identifying and deterring corrupt activities before
they escalate.

Section 3 provides a theoretical background for pairwise comparisons and machine
learning. The following fundamental terms are described: the pairwise comparison (PC)
matrix (Section 3.1), inconsistency (Section 3.2), error measurement (Section 3.3), and
machine learning (Section 3.5). In Section 4, three simple manipulation methods in the
pairwise comparison method are described in detail, and the results of their use in the form
of a colored matrix are presented for each of them. The following Section 5 explains the
use of the selected types of neural networks. Section 6 presents the aggregated results of
the conducted experiments, while Section 7 offers a discussion of the results. The final
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section (Section 8) summarizes the completed work and outlines future directions for
further investigation.

2. Motivation

It is widespread among those concerned with decision-making methods to believe
that decision-makers, sometimes equated with experts, are honest. i.e., they express their
opinions according to their most profound conviction and knowledge within a defined
decision model. Hence, even when inconsistencies appear in judgments, they are most
often explained by simple human frailties. This somewhat romantic assumption comes
from decision-makers usually being experts in the field. Consequently, it is inappropriate
for an expert to say something incompatible with their knowledge. Interestingly, in the case
of electoral systems and social choice methods, expectations of decision-maker honesty are
much lower. This is perhaps because the decision-makers are equated with the politicians,
and the general perception is that both honesty and integrity among politicians are low
(for example, a survey conducted during the 2010 general election in the UK found that
58% of respondents thought the honesty and integrity of elected politicians were low or
very low [37]). Nevertheless, these two approaches have resulted in quite a lot of work on
the manipulation of electoral systems ([12], pp. 127-169, [38]) and a relatively moderate
number of studies on the manipulation of decision-making methods, including the method
of pairwise comparison of alternatives. By addressing the topic of manipulation in the
pairwise comparison method, we want to enter this gap.

Research on manipulation within decision-making methods often concerns group
decision-making (GDM). In such a context, it is easier to identify strategic behaviors that
may suggest a desire to influence the outcome directly. Liang et al. [39] propose a consensus
model that takes into account possible manipulations and uses several heuristics to identify
them, such as an overly strong preference for the chosen alternative or a decision-maker’s
different preferences compared to the rest of the group. An approach to prevent priority
manipulation using minimum adjustment and maximum entropy methods in GDM in
social networks is presented in the paper [40]. Wu et al. [41] study a framework prevent-
ing manipulations during consensus-finding processes in social network GDM. Xiong
et al. [42] propose a consensus framework using historical data and employing several
heuristics to help identify manipulation.

Interestingly, manipulations can involve both preferences and trust relationships.
Detecting a manipulation entails a penalty that reduces the influence of a given expert
or group (cluster) of experts on the outcome. Li et al. deal with consensus finding and
potential manipulative behavior using the example of the social network WeChat [43].
Zhang et al. [44] established guidelines for identifying non-cooperative behaviors among
DMs and utilized social network analysis to manage these behaviors effectively. Pelta
and Yager [45] explore such behaviors during the aggregation process using optimization
techniques to counteract the adverse effects of manipulation behaviors. Yager [46,47]
delves into strategic preference manipulation behaviors primarily within the selection
process. Sasaki [13] defines a game-theoretical GDM model based on aggregating individual
judgments with strategic manipulation in mind. Quesada et al. [48] suggest using uniform
aggregation operators to manage non-cooperative behaviors. Xu et al. [49] introduce a
consensus model that handles non-cooperative behaviors and minority opinions. Although
there are statistical methods (not necessarily related to GDM) used to detect fraudulent
behavior in addition to GDM [50], most studies focus on group decision-making.

The question arises, however, of whether expert dishonest behavior can only be inves-
tigated and detected in the context of group decision-making. The answer is of course not,
and some indication may be the ways (heuristics) used in GDM to identify manipulative
behavior. For example, many authors agree that one of the characteristics of manipulation is
that the expert’s preferences are strongly oriented towards one particular alternative [42-44].
In a set of pairwise comparisons, such an inclination implies a significant advantage of one
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alternative over all others in a series of individual comparisons. Such inclinations can create
a kind of pattern or image in the data that can be attempted to be machine-recognized.

Following this observation, we propose a method for detecting such patterns using
neural networks in this study. In doing so, we are not limited to GDM. Hence, one can use
the presented solution in single- and multi-expert models. The neural network learning
process requires data. For this reason, we have proposed a few simple manipulation
algorithms for the artificial generation of such learning data. The primary mechanism
used in these algorithms is the “strong expert orientation to a given alternative” postulated
in [42-44] as one of the distinguishing features of the manipulations. The simplicity of the
algorithms is intended to allow the expert’s ad hoc behavior to be mimicked during the
working session.

3. Preliminaries

When individuals make decisions, they usually compare possible alternatives and
choose the one that suits them best. For example, when buying an orange at a store, one
may opt for the larger one. When assessing products on a scale, the comparison involves
their weight against a one-kilogram standard. Comparing alternatives in pairs facilitates
the creation of a ranking system, helping to select the best alternative. In the pairwise
comparison method, every alternative is systematically compared against others. This
comparison results in a PC matrix where rows and columns correspond to alternatives
and individual elements indicate the outcomes of these comparisons. These matrices serve
as the basis for priority derivation methods, transforming them into weight vectors. The
i-th element of the vector represents the significance of the corresponding i-th alternative.
The reliability of this ranking depends on the consistency of the PC matrix. There is
a consensus that the less inconsistent the set of comparisons is, the more reliable the
assessment becomes. This section briefly overviews fundamental methods used to compute
priorities and estimates inconsistency for pairwise comparison matrices.

3.1. PC Matrices

In the PC method, a decision-maker, often an expert in a particular field, compares the
alternatives in pairs. The easiest way to show these comparisons is in the form of an n x n
square matrix:

C = [ci], O]

where n denotes the order of the pairwise comparison PC matrix (the number of alterna-
tives) and each ¢;; element in the matrix C indicates the result of the comparisons between
the alternatives a; and aj. The PC matrix C has to be reciprocal, so for every i,j € {1,...,n},
the reverse comparison 4; to 4; gives

1
Cjj = —. 2)
A7 g
Several methods allow us to calculate a ranking of n alternatives A = {ay,...,a,}
using C as an input. Let us denote the ranking value of 4; as w(4;) and compose the priority
vector as follows:

w = [w(a), ..., w(a,)]". )

Although there are many methods to calculate the priority vector w [51-53], we will
focus on two of probably the most popular of these [15]. The EVM (eigenvalue method) is
proposed by Saaty [19] and the GMM (geometric mean method) is proposed by Crawford
and Williams [54].

In the EVM [15], the priority vector w is calculated as a normalized principal eigenvec-
tor of C such that (||-||,, = 1 is the Manhattan norm) ||w| = 1:
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where @ is the principal eigenvector of C, i.e., it satisfies the following equation:
CW = Apigx . ®)

where A4y is the principal eigenvalue.

On the other hand, in the GMM, the priority of the i-th alternative is derived as a
rescaled geometric mean of the ith row. Thus, the priority vector w consists of rescaled
geometric means for all the rows of the matrix C:

1 17T
w=g¢g (HC1]> IRy (ch]> ’ (6)
j=1 j=1

where ¢ is a scaling factor such that ||w|| = 1 and in the GMM method, the scaling factor
1

isg = < 1 ( }1:1 cl-]-) "> . It is worth mentioning that the EVM and the GMM are

equivalent if n = 3 ([54], p. 393) but may differ for n > 4. The difference depends on the
inconsistency. It can be shown that it is smaller the smaller the value taken by Koczkodaj's
inconsistency index [55].

3.2. Inconsistency

It is commonly assumed that in the optimal scenario, experts comparing each pair of
alternatives assign c;j, a value corresponding to the actual priority ratio between the two
alternatives a; and a - It is, therefore, natural to expect that

cij = Zézl; @)
]

If ¢;j = cjkcxj holds for all i, j, k € {1,...,n}, the PC matrix C = [c;j] is said to be multi-
plicatively consistent. Otherwise, if this condition is not satisfied, C is considered inconsistent.

Each priority vector w induces exactly one consistent PC matrix C and vice versa:
a consistent PC matrix C induces exactly one vector w. Thus, for a consistent pairwise
comparison matrix, both methods mentioned, the EVM and GMM, result in the same
vector w.

Like the PC matrices themselves, their inconsistency is quantitative. Thus, one may
be tempted to quantify to what extent the PC matrix (decision data in the form of a set of
pairwise comparisons of alternatives) is inconsistent.

One of the most recognizable and frequently used indexes is Saaty’s consistency index
CI [19], defined as follows:

o Amax — 1
Additionally, Saaty also introduced the consistency ratio CR [19], defined as follows:
_ CI(C)
CR(C) = RI(C)’ )

where RI(C) is the average inconsistency for the entirely random PC matrix with the exact
dimensions as C. As proposed by Saaty, every PC matrix C for which CR(C) > 0.1 is
deemed too inconsistent to form the basis of a ranking.

Another consistency index used to determine inconsistency is the Geometric Consis-
tency Index [56], defined as follows:
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GCI(C) = (712)2(”1) Y In? <c,-]-zj§”f )>, (10)

i<j a;)

where w is derived using the GMM method (6). Both the CI and GCI depend on the
method of calculating the vector of weights. There are also indexes based on the pairwise
comparison matrix itself. An example of such a solution is the determinant inconsistency
index CI* proposed by Pelaez and Lamata [57], defined as follows:

0 n<3
CI*(C) = detC n= 3[ (11)
é Yy k=1 det Cijk n>3
ik

where det C;j. is the minor of a 3 x 3 sub-matrix C, defined as
detCyy = Sk 4 Sk _ o (12)
CijCik Cik
This approach first calculates the local inconsistency values determined by the det C;j.
Then, the global inconsistency value for matrix C is calculated as an arithmetic mean of
individual local inconsistency indicators.

The threshold value below which the matrix C is considered sufficiently consistent
can be calculated empirically following the approach proposed by [19]. There are many
different inconsistency indexes for PC matrices. There are at least a dozen different in-
consistency indexes for pairwise comparison matrices, including Koczkodaj's index [58],
Kazibudzki’s index [59], Brunelli-Cavallo’s index [60], Kuo’s ordinal consistency indicator
[61], and others [22,62]. For a 3 X 3 matrix, monotonic increasing functional relationships
exist between multiple indexes, including Saaty’s CI and the GCI [63]. The properties of
inconsistency indexes are the subject of numerous studies [64-66].

3.3. Error Measurement

In real-life scenarios, PC matrices created by experts are inconsistent. Most often, the
value of the inconsistency index is insufficient to detect the pairwise comparisons that
correspond to a high level of inconsistency (the Koczkodaj inconsistency index may be an
exception [58]). For this reason, the concept of error is often considered [67].

To define an error indicator, let us consider a PC matrix C, where each entry Cij
represents an expert’s subjective comparison between alternatives a; and a;. The ranking

vector w, for C, is given as w = [w(ay), ..., w(an)]T (3); then, the error matrix [67] can be
defined as follows:

w(a;)
E(C) = |cij—=|, Vije{l,...,n} 13
(©) = |ajgs |, Vi€ (tem) 13)
High error values identify highly inconsistent comparisons and, thus, potentially erroneous
expert judgments. For a consistent PC matrix C, all elements of the error matrix are 1, i.e.,

(e;j = 1), where E(C) = [e;j].

3.4. Distance Measurement

When both the manipulated matrix and the original matrix are known, the distance
between these matrices can be taken as a measure of manipulation. Hence, we have adopted
three distance measures to describe the experiments performed. The first of them is the
incompeatibility indicator D¢y (A, B) introduced by Saaty [68]:

Dcmp(A/ B) = % (Z Z ai]'b]‘,'> ’ (14)

i=1j=1
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The second is the distance indicator Dsc (A, B) suggested by Agoston and Csato [69]

Dac(A,B) = % <i i:(aijbji - 1)>, (15)

i=1j=1

And lastly is algorithmic distance, proposed by Tekiele et al. [70]:

™=
Mx

DTBP(Ar B) = . (log ai]' - log bz]) (16)

1j

I
I
—

Obviously, the values of all indicators described above are inversely proportional to the
similarity of the matrices.

3.5. Machine Learning

Machine learning (ML) is a field of artificial intelligence (AI) concerned with algorithms
that can learn from the offered data without being explicitly programmed. The term itself
was coined by Samuel [71]. The primary branches of ML include the following [72]:

*  supervised learning, where models are trained to predict the values of output variables
(labels) based on the input variables (features) by presenting the model with labeled
instances. The function that maps features to labels can be implemented using a broad
spectrum of algorithms;

*  unsupervised learning, where the instances are unlabeled, and the models instead try to
learn patterns that can be discovered in the data;

*  reinforcement learning, where the data are not explicitly labeled and the algorithm only
receives a performance score to guide its actions.

As PC matrices can be treated as data instances, this paper mainly focuses on super-
vised learning. One of the most common challenges associated with this technique is to
obtain accurate predictions (the pairwise comparison method can also be used for score
prediction [73]) (label values), while maintaining the ability to generalize [74], i.e., to predict
the values of labels for yet unseen instances or, in other words, to avoid overfitting to the
training data.

The standard approach to supervised learning involves splitting the dataset into the
training set and the testing set at a particular proportion, e.g., 80:20. The algorithm is
trained using the former. Then, the prediction quality is verified for the latter, which the
algorithm has not yet seen. Various metrics can be used for this purpose, depending on the
task (classification or regression) and the character of the data.

Both the training set and the testing set should be representative of the entire dataset.
Hence, it is expected that shuffling be performed before the division. However, this can
still result in some bias; therefore, a common approach is to use k-fold cross validation,
where the algorithm is trained and tested for different splits of the initial dataset [75].
Convolutional neural networks (CNNs) represent a foundational element in deep learning,
exhibiting considerable capacity for processing and comprehending visual data. Inspired
by the hierarchical organization of neurons in the human visual system, CNNs emulate this
structure, enabling them to extract intricate features from images and other spatial data.
Critical components of CNNss are as follows [76]:

*  convolutional layers serve as the foundation of CNNSs, functioning as feature extractors
that capture patterns and structures from raw input data. These layers detect edges,
textures, and other salient features by convolving learnable filters across the input,
enabling the network to discern complex visual patterns.

*  pooling layers play a pivotal role in spatial downsampling, reducing the computational
burden while retaining essential information. These layers distill the most salient
features through operations such as max pooling and average pooling, facilitating
robustness and generalization.
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*  activation functions infuse nonlinearities into the network, empowering it to learn
intricate mappings between input and output. Activation functions like Rectified
Linear Unit (ReLU) enable CNNs to capture and model intricate relationships within
data by introducing complexity and expressiveness.

*  fully connected layers integrate the high-level features extracted by preceding layers,
culminating in decision-making or classification. These layers, analogous to the brain’s
association areas, synthesize abstract representations into actionable insights, guiding
the network’s predictions.

Training convolutional neural networks (CNNSs) is an iterative parameter optimization
process. During this process, the network learns to minimize the disparity between pre-
dicted outputs and ground truth labels. Through back-propagation and stochastic gradient
descent, CNNs adjust their internal parameters (weights and biases), gradually converging
toward an optimal configuration that maximizes predictive accuracy.

CNN s can be applied in various solutions, from recognizing handwritten digits to
identifying plant species; convolutional neural networks (CNNs) excel in assigning labels or
categories to images based on their content, enabling automated analysis and categorization.
Empowered to localize and identify objects within images or videos, CNNs revolutionize
tasks ranging from autonomous driving to surveillance and security, facilitating real-time
analysis and decision-making. By segmenting images into semantically meaningful regions,
CNN:s facilitate new avenues in medical imaging, environmental monitoring, and urban
planning, enabling precise analysis and interpretation. CNNs allow accurate and reliable
facial recognition systems, empowering applications such as biometric authentication,
surveillance, and personalized marketing.

4. Problem Statement

Let us consider a scenario where a decision-maker, an expert in a particular field,
must compare multiple alternatives while facing external pressures limiting the available
time for making judgments. In a typical situation, the expert creates a PC matrix C
((1)) and calculates the ranking vector w ((5) and (6)), such that w(a,) > w(a,), where
r,p € {1,...,n}. Assuming that the expert may have a personal interest in promoting an
alternative a, over a reference alternative a,, one possible solution is to create a matrix
C, keeping in mind that alternative 4, is intended to be better than 4,. In this paper,
we focus on an alternative approach—modifying the initial PC matrix C to the matrix
C' where w'(a,;) < w'(ap). To achieve this, we have developed several manipulation
algorithms based on the observation that increasing c,, generally increases w(a,) at the
expense of all other priority values. Discussing this strategy, it is worth noting that Csat6
and Petr6czy’s study revealed that the EVM (5) is not monotonic, meaning that increasing
cpr does not always increase w(a,). At the same time, this effect does not occur with
the GMM approach. However, Monte Carlo experiments showed that this phenomenon
is negligible [77]. Consequently, in practical scenarios, we can disregard this aspect for
moderately inconsistent PC matrices.

4.1. Naive Algorithm

The first manipulation algorithm is the simplest one. Assuming that the goal is to
increase the priority of alternative a,, we will try to increase all elements in the pth row of
the PC matrix C.

Let a be a positive real number such that & > min{max{c;;},n} wherei,j € {1,...,n}.
In the first step of the algorithm, we update all elements in the pth row (except c;,, which
must be 1) to a and all elements in the pth column to 1/«. Without loss of generality, we
may assume that p = 2. Thus, the initial form of C and the final form, denoted by C’, are
as follows:
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1 e Cin 1 1/a C1n
e 1 Con a1 «
C= =C
attack . :
Cy1 Cp -+ 1 cn 1/a - 1

The “naive” algorithm can be written compactly as follows:

Algorithm 1 Naive algorithm

1: function ATTACK(it takes matrix C and index p on input)
2. set the initial value for « and generate a list of indexes to modify

3: For each index and in the list to be modified, set as element c; the value of

« and, due to the reciprocity preservation, its inverse i.e. ¢;, set to al,

4: end function

Figure 1 shows the effect of the naive algorithm in the form of a colored PC matrix
(i-e., heat map) (the values in the heat map correspond to the ¢;; values. The color changes
continuously from purple (lowest value) to yellow (highest value)). It is visible that the 8th
row and column have been modified, while the rest of the values remain unchanged.

6182  42.29 . 71.95

2049 | 76553 X X 2049 | 76.53

(a) colored matrix C (heat map) (b) colored matrix C’ (heat map)

Figure 1. Pairwise comparison matrices for the naive algorithm (x = 9) are presented as a heat map.
Lighter colors indicate larger values, whereas darker colors indicate smaller ones.

4.2. Basic Algorithm

The basic manipulation algorithm is an improved version of the naive one in Section 4.1
and the row algorithm [78], but the main idea behind the manipulations remains the same.
The goal is to improve the ranking of alternative a, by increasing the values of all elements
in the pth row of C. Unlike the naive approach, the attack function accepts an additional
input argument, denoted as r, representing the reference alternative’s index.

Let « be a positive real number randomly selected from the right-side open interval
[1.1,5). Similar to the naive algorithm, the first step of the algorithm updates the value of all
elements in the pth row, except for the cp, element. The value of the c; is updated by the a
factor multiplied by the corresponding element in the rth row (c,; element). The reciprocity
constraint (2) is then applied to change all elements in the pth column. Compared with the
naive algorithm in the basic version, we update the value of c;i to the value ac/,. Without
the loss of generality, assuming p = 2 and r = n, the initial form of the PC matrix (denoted
by C) and the final form (denoted by C’) are as follows:
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attack
i1 C2 - 1 Cnl 1/ -+ 1

The following Figure 2 shows the effect of the basic algorithm in the form of a col-
ored PC matrix. The values in the 8th row have been updated with the values from the
9th row multiplied by the a factor (and similarly all reciprocal elements), while the rest
remain unchanged.

3.21 ECE]

122.93 | 442.96 . 60.16

25.4 9154 10441 1243

(a) colored matrix C (heat map) (b) colored matrix C’ (heat map)

Figure 2. Pairwise comparison matrices for the “basic” algorithm (x = 4.84) are presented as a heat
map. Lighter colors indicate larger values, whereas darker colors indicate smaller ones.

4.3. Advanced Algorithm

This section describes the advanced algorithm, which extends the basic algorithm
(Section 4.2) by adding a stopping constraint. The goal is to improve the ranking of
alternative a, by increasing the values of as few elements as possible in the pth row and
column of matrix C.

The « factor in this algorithm has the same properties as in the basic algorithm. The cy;
element in the pth row and its reciprocal counterpart c;, in the pth column are updated
sequentially, except for the c,, element, as long as the ranking value (3) of the alternative
ay is lower than the ranking value of the reference alternative a, or all feasible elements are
updated. The updated value of the c,; element is equal to the corresponding c,; element
multiplied by the a factor. Unlike the basic approach, we stop updating the elements of the
matrix C when w(aj,) becomes more significant than w(a;).

Without loss of generality, we may assume that p = 2 and r = n. Thus, the initial
form of C, the intermediate form denoted by C***P, and the final form denoted by C’ are
as follows:

1 ¢ -+ 1 1/ema -+ ciy
e 1 C2n acpy 1 C2n 1
C= =C
first step
Cp1 Cp2 o1 Cnl Cn2 e 1

J next n — 2 consecutive steps
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1 ci2 -+ cin 1 1ema -+ ci
o e 1 Con acCy 1 g ,
c = e =C
. t. . last step . t. .
Cy1 Cp - 1 Cnl 1/ -+ 1

It is important to note that when the stopping criteria are met, the number of algorithm
steps may be lower than those (1 — 1 steps) shown in the example above.

Figure 3 shows the heat maps for the advanced algorithm. Some values in the 8th
row have been updated with the values from the 2nd row multiplied by the « factor (and
similarly all reciprocal elements), while the rest remain unchanged. The algorithm stopped
after the 7th iteration of making changes to the initial PC matrix C, promoting alternative
ag over alternative aj.

(a) colored matrix C (heat map) (b) colored matrix C’ (heat map)

Figure 3. Pairwise comparison matrices for the “advanced” algorithm (a« = 3.3) are presented as a
heat map. Lighter colors indicate larger values, whereas darker colors indicate smaller ones.

5. Detecting Manipulation Using Machine Learning

As mentioned in Section 3.5, the primary focus of the presented work is on supervised
learning methods. One of the most important tasks when building such models is to choose
the most appropriate algorithm for the data’s characteristics.

We can consider PC matrices as mappings in the form f : A x A — R, where the
domain of the function f is the Cartesian product of alternatives (or indexes of alternatives),
and the values are in the set of real numbers. In this sense, they are similar to raster
images understood as mapping a set of points (x,y) € R? into color space, e.g., the images
of handwritten digits in the MNIST dataset [79]. They can be seeded as 2-D images,
representing the comparison values, e.g., as shades of gray.

However, most ML algorithms transform the input object into a vector. This may
result in the algorithm’s inability to “see” certain phenomena in the data. For instance, if
the naive manipulation maximizes the values in a single matrix column, visually forming a
vertical line, this fact may not be apparent after the data have been flattened, as presented
in Figure 4.

Therefore, exploring ML algorithms that can detect 2-D relationships between values
seems reasonable. One of the most prominent classes in this category is convolutional
neural networks (CNNs) [76]. Compared to fully connected neural networks, these signifi-
cantly reduce the number of weights (parameters) by utilizing convolution kernels (also
called filters).
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Figure 4. A way to transform data for neural network processing. In this case, a two-dimensional
(2-D) PC matrix is flattened to a one-dimensional (1-D) vector.

6. Experiments and Results

This section explores the potential of using CNNs to detect manipulations in PC
matrices, describes the tuning process of the network structure, and presents the results of
the experiments. To test the neural network’s accuracy in detecting the use of the described
algorithms, we first conducted a training process and then a series of experiments. A
separate network was prepared to detect the use of each of the three attack algorithms. We
repeated the neural network training process on PC matrix C of different sizes n.

To ensure that the results of the described algorithms are comparable, we have chosen
the following standard input parameters:

e a—for the naive algorithm, it is equal to the size of the PC matrix C; otherwise, it is a
uniformly distributed random number between 1.1 and 5;

¢  r—index of the reference alternative, is always equal to the index of the highest ranked
alternative evaluated from the initial matrix C;

e  p—index of the alternative to be promoted, randomly selected and different from r.

All matrices used in the experiments were generated as follows:

* first, a ranking vector w (3) of length n was generated;

* next, the ranking vector w was transformed into a consistent PC matrix C using (7);

e finally, the matrix C was disturbed to ensure that its inconsistency (9) was greater
than 0.

To introduce disturbances, each value of the Cij element, where j > i, was multiplied
by a uniformly distributed random number chosen from the experimentally chosen interval
[0.5,2]. Subsequently, each c¢j; was modified using (2).

We generated and attacked 10,000 PC matrices for each n € {3,4,...,9} and for each
tested manipulation algorithm. A total of 420, 000 samples of different sizes were generated
and manipulated. Next, matrices were divided into two sets: one set, containing 20% of the
samples, was used to evaluate the model, and the other set, containing 80% of the samples,
was used to train the model.

The attack detection rate [%] (the percentage of the samples in which the learned
network was able to identify whether the matrix had been manipulated or not correctly) is
shown in Table 1.
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Table 1. Attack detection rate.
n Naive Algorithm Basic Algorithm Advanced Algorithm
3 64 99 88
4 78 99 92
5 89 99 93
6 96 99 93
7 98 ~100 92
8 99 ~100 92
9 ~100 99 90

In the context of binary classification (manipulation detection), a fundamental under-
standing of the concepts of false positives (FPs) and false negatives (FNs) is essential for the
evaluation and enhancement of predictive model performance. These concepts underpin
the metrics employed in model evaluation and serve as the basis for sophisticated analytical
techniques such as ROC (Receiver Operating Characteristic) analysis [80]. The numbers of
false positives and false negatives were determined for a series of different matrix sizes, with
a total of 4000 test matrices utilized per size for this purpose (Table 2).

Table 2. False positive and false negative numbers.

n Naive Algorithm Basic Algorithm Advanced Algorithm
5 FP: 86, FN: 354 FP: 0, FN: 40 FP: 235, FEN: 48
6 FP: 166, FN: 21 FP:1,FN: 16 FP: 179, FEN: 51
7 FP:72, FN: 5 FP:0, FN:9 FP: 148, EN: 76
8 FP: 29, FN: 5 FP: 0, FN: 2 FP: 146, FN: 57
9 FP: 11, FN: 2 FP:0, FN: 8 FP: 138, FN: 53

Moreover, we investigated the impact of introducing an upper threshold for the pair-
wise comparison values in the basic algorithm. The attack detection rate (for 7 x 7 matrices)
in such a scenario is shown in Table 3:

Table 3. Upper threshold impact on the attack detection rate.

Upper Threshold Value Attack Detection Rate [%]
9 70
20 79
50 86
100 93
200 97

Using the distance indicators ((14)—(16)) between the original and manipulated matrix
allow us to tracking the size of the resulting manipulation. In the case of the “advanced”
algorithm, this allowed us to detect a weak positive Pearson’s correlation between the
values of distance indicators (14) and (15), and the inconsistency value determined by
Saaty’s CI (Figure 5). This means that some cases of manipulation attack using this method
can be detected by observing the inconsistency level of the PC matrix.
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Figure 5. Weak positive correlation between inconsistency of manipulated matrix and distance indi-
cators comparing original and manipulated matrices measured for 9-by-9 matrices. The “advanced”
algorithm was used for manipulation.

To evaluate the model, we used preprocessed sample matrices. Our initial attempt
to train a neural network on bare matrices C and C’ yielded unacceptable results. Next,
we attempted to use the error matrix (13) in the preprocessing step to achieve better
results. However, the detection rate for the basic algorithm oscillated around 65%, which is
also unacceptable.

Finally, in the preprocessing step, we map a square matrix M C R? to a cube D C R3
using the transformation

Cii Cij Cik
D(C) = [di,j,k} , di,j,k = det Cii i Cik |/ A i,j,k c {1, - ,1’1} (17)
Cki Ckj Ckk

This transformation converts the original matrix C into its three-dimensional map of
local inconsistencies calculated in the same way as proposed by Pelaez and Lamata (12) [81].
Thus, in this approach, the object of neural network identification is not the PC matrix itself
but its representation, which is a three-dimensional distribution of local inconsistencies.
This approach comes across the heuristic according to which dishonest experts make
changes “on the fly” that are often not locally consistent [11].

Since our matrix representation is of dimension n x n x n, we used 3-dimensional
convolutional layers (Section 3.5). The concept of the architecture is a classical approach
used for CNNSs, with a block of convolutional layers followed by a densely connected
section. In subsequent layers of the convolutional block, the size of the feature maps
decreases. At the same time, the number of the filters grows, allowing further layers to
become more specialized in detecting more complex phenomena in the matrices. The
3-dimensional structures are then flattened and fed to a sequence of dense layers which, in
the end, yield the manipulation flag. To tune the network, we implemented an automated
process using the KerasTuner module to tune the hyperparameters (https:/ /keras.io/keras_
tuner/, (accessed on 1 December 2023)).

The following parameters were subjected to the tuning process:

e the number of hidden (convolutional) layers;
¢ the number of feature maps in each layer, parametrized by the index of the layer;
¢ the size of filters;
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¢ the learning rate (with logarithmic sampling);
¢  the optimization algorithm: stochastic gradient descent [82], the Nesterov accelerated
gradient (NAG) [83] and adaptive moment estimation (ADAM) [84].

As a result of the tuning process, two architectures were selected. Both of them were
parametrized based on the size of the input matrix. Figure 6 shows the design of the two
models for different values of n:

input | [(None, n, n, n, 1)]

Inputlayer output | [(None, n, n, n, 1)]

InputLayer input (None, n, n, n, 1)
output | [(None, n, n, n, 1)
ConvaD input (None, n, n, n, 1)
output | (None, n-2, n-2, n-2, 32) i
i Conv3D input (None, n, n, n, 1)
_ output | (None, n-2, n-2, n-2, 32)
Dropout input (None, n-2, n-2, n-2, 32) L
P output | (None, n-2, n-2, n-2, 32) i
i Dropout input (None, n-2, n-2, n-2, 32)
_ P output | (None, n-2, n-2, n-2, 32)
input (None, n-4, n-4, n-4, 32)
Flatten l
output | (None, x)] _
Conv3D input (None, n-2, n-2, n-2, 32)
_ output | (None, n-4, n-4, n-4, 16)
Dense |1MPUt (None, x) L
output | (None, 120) i
i input (None, n-4, n-4, n-4, 16)
Flatten
i output | (None, x)]
Drovout |MPut (None, 120)
P output | (None, 120) _
Dense |INPUL (None, x)
- output | (None, 1)
input (None, 120)
Dense
output | (None, 1)
(a)n =34 (byn=5—9

Figure 6. Design of neural networks used in the experiments.

It is worth noting that the network’s design is simple. However, the detection rate is
high, reaching 100% in some cases. For n = 5, the Flatten layer is unnecessary and is only
included for consistency within the model. For n = 3 and n = 4, the second convolutional
layer has been replaced with a Dense and a Dropout layer, and the Flatten layer has been
rearranged. The x value is automatically generated and depends on the value of #.

We also conducted a preliminary test of a neural network trained to detect manipu-
lations using a naive algorithm on actual data we collected. In the first survey, we asked
respondents to make pairwise comparisons of vacation destinations. In the second survey,
we asked them to “promote” the chosen alternative while suggesting that its victory in
direct comparisons would translate into its final score. CNN showed remarkable efficiency
in detecting manipulation. At the same time, however, it recorded a noticeable number of
false positives (FPs). This was because several people questioned had clear preferences for
the selected country, and the overall picture of these preferences was similar to the naive
manipulation pattern built. Such a result suggests that in practice, the investigator conduct-
ing the decision process should confirm in each such case through direct communication
with the expert that the strong preference for the chosen alternative is their honest and
sincere choice.

7. Discussion

The experiments show that convolutional neural networks can accurately identify the
manipulation methods described in Section 6 with high accuracy. These methods aim to
provide a straightforward approach that aligns with the manipulative actions of an expert
operating under time constraints and following the decision-making process [85]. We may
observe this dishonest behavior in contexts such as sports or other clearly defined decision-
making scenarios [86], where variables can be manipulated directly. The solution we present
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can be used in principle in any decision-making process using the pairwise comparison
method. The prerequisite is access to suitable computing software. Detecting potential
manipulation in practice can mean manually checking the data and having an expert decide
on them or automatically excluding the indicated data as suspicious. Adopting one strategy
or another depends on the person overseeing the decision-making process.

While conducting the experiments, we discovered that simple indicators such as
the error matrix (13) or inconsistency indexes (9) and (10) are insufficient for adequately
training the neural network. We think some features of the manipulation algorithms are
only detectable if more than two ranking values are compared simultaneously. Based on
this observation, we introduced the determinant factor (17). We have also investigated other
methods for transforming R? PC matrices to R? factors. However, we are still researching
their impact on detecting attacks by neural networks.

In the experimental setup, we used 2-D and 3-D convolutional layers with the same
number of hidden neurons and layers for both cases. We achieved the optimal results for
the 3-D models, although models with only one hidden layer can also produce acceptable
results. The detection rates for the 2-D network, which has a similar design as shown in
Figure 6, with the error matrix as a preprocessing step (Table 4).

Table 4. Attack detection rate (using 2-D approach).

n Naive Algorithm Basic Algorithm Advanced Algorithm
5 89 86 79
6 95 77 80
7 98 68 82
8 99 67 83
9 ~100 58 82

We used the (17) factor in the preprocessing step because the detection rate of the basic
algorithm falls below our threshold. It is exciting that in contrast to the other algorithms,
the naive algorithm (Table 1) exhibits an increasing attack detection rate as # increases. Our
interpretation is that in smaller matrices, pairwise comparison values are more often similar
to each other. Nevertheless, our primary focus was on the attack detection rate. In addition,
we calculated the number of false positives and false negatives (Table 2). Based on these values,
we believe there is an opportunity to improve the architecture of our networks.

The manipulation detection time for each algorithm increases depending on the
matrix’s size under consideration. In the small range of problem sizes studied, the increase
is more or less linear despite the amount of data growing quadratically or cubically. This
may be due to the relatively small size of the input data, which does not saturate the
computational capabilities of the hardware. Computation time measurements are included
in Table 5. The inconsistency of the matrices considered did not affect the results.

Table 5. Manipulation detection time in ps for three algorithms: “naive”, “basic”, and “advanced”.

n Naive Algorithm Basic Algorithm Advanced Algorithm
5 491 504 488
6 704 546 592
7 686 660 651
8 759 793 767
9 945 964 945
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8. Summary

Practice suggests that all known decision-making methods are susceptible to so-
phisticated manipulation, and decision-making methods based on quantitative pairwise
comparisons are no exception. In this work, we proposed a manipulation model and three
attack algorithms. We also analyzed the effectiveness of neural networks in detecting
attacks for different sizes of pairwise comparison matrices. At the preprocessing stage, we
considered various methods to ensure the optimal data format processed in subsequent
phases. Detecting manipulation is a significant challenge for researchers. In future research,
we plan to investigate this issue further, particularly in the context of different and more
complex manipulations for complete and incomplete pairwise comparison matrices. Fur-
ther investigation is required into the preprocessing step for more advanced manipulation
techniques, as well as the neural network models used to detect them. Therefore, this
matter will be a challenge for us in future research.
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