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Abstract: Flotation deinking is one of the most widely used techniques for the separation of ink
particles from cellulose fibers during the process of paper recycling. It is a complex process influenced
by a variety of factors, and is difficult to represent and usually results in models that are inconvenient
to implement and/or interpret. In this paper, a comprehensive study of several machine learning
methods for the prediction of flotation deinking performance is carried out, including support vector
regression, regression tree ensembles (random forests and boosting) and Gaussian process regression.
The prediction relies on the development of a limited dataset that assumes representative data
samples obtained under a variety of laboratory conditions, including different reagents, pH values
and flotation residence times. The results obtained in this paper confirm that the machine learning
methods enable the accurate prediction of flotation deinking performance even when the dataset
used for training the model is limited, thus enabling the determination of optimal conditions for
the paper recycling process, with only minimal costs and effort. Considering the low complexity
of the Gaussian process regression compared to the aforementioned ensemble models, it should
be emphasized that the Gaussian process regression gave the best performance in estimating fiber
recovery (R2 = 97.77%) and a reasonable performance in estimating the toner recovery (R2 = 86.31%).

Keywords: deinking; flotation; paper recycling; machine learning; support vector regression

1. Introduction

The flotation process has been used in mineral processing plants to separate valuable
minerals from ore. In this process, three phases are combined in the flotation pulp: solid
(mineral particles), liquid (water) and gaseous (air). Mineral particles are separated from
the pulp based on the difference in their surface hydrophobicity. The ones that are easily
wetted by water are called hydrophilic, while particles with a limited affinity for wetting are
called hydrophobic [1,2]. Flotation is a key process in many paper recycling plants as well
and was introduced successfully to the paper recycling industry in the 1980s. Generally,
the deinking process is based on the separation between hydrophobic inks and hydrophilic
paper fibers. In modern paper recycling plants, the process of removing unwanted particles
from the pulp can have as many as three times more steps than in the mineral processing
industry due to the fact that a higher quality product is needed to compete with virgin
paper [3]. Given that the heterogeneity of the feed would affect the different steps of the
recycling process, and those steps can change the quality of the paper, it is necessary to
control the operating parameters in all steps.

A variable that can affect the final quality of the product but which will not affect the
reduction of plant capacity or require significant operating costs is called a practical control
variable. Variables that have a significant impact on the process but at the same time cause
disturbances in the process and must also be optimized are considered non-practical control
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variables [4]. There are a number of possible control variables for deinking plants and many
researchers have investigated their influence on the deinking process [3,5–10]. In addition
to chemical additives, such as sodium hydroxide, sodium silicate, hydrogen peroxide and
surfactant, the pulp temperature in the phase of disintegration, i.e., pulp formation and in
the flotation phase, pulp formation time and flotation time, flotation consistency and pH
value in the flotation are considered as process variables. Process variables that are often
not adjustable in practice such as pulp consistency, flotation air flow rate and foam height
are not considered as good modeling variables. The deinking process in industrial practice
is continuous, with a constant flow of input, acceptance and rejection, and the quality of
the recycled paper is the main control variable in the deinking process [3].

Predictive modeling is based on analyzing relationships between input variables to
make predictions about continuous output variables. In supervised machine learning,
these relationships are learned from the data, during a training process. The trained model
can then be applied to previously unseen input data not used during the training process,
thereby allowing the inference of implicit properties about the modeled process from
the data. Recent research in the literature has focused on machine learning applications
that have been developed to estimate and adjust parameters in flotation processes. Only
a limited number of studies report the application of machine learning to ink removal
processes. Artificial Neural Networks (ANNs) are used to model and predict flotation
behavior in industrial paper recycling process [4], while Labidi et al., 2007 [11] propose a
model to predict the deinking efficiency based on an ANN. Verikas et al., 2024, developed
a method for monitoring ink removal based on neural network color image analysis [12].
ANNs were used by many authors to model and simulate the quality characteristics of
pulp and paper [13] and the macroscopic mechanical properties of minerals [14]. Multi-
variate Nonlinear Regression (MNLR), Radial Basis Function Neural Networks (RBFNNs)
and Recurrent Neural Networks (RNNs) were used to predict flotation performance [15].
Chehreh Chelgania et al., 2018 [16] used SVR to model coal flotation.

Szmigiel et al., 2024 [17], reviewed the research over the last ten years. They presented
the work of many authors who approached different challenges in this mechanism using
different models that have been developed and adapted for a specific flotation problem.
They identified different categories of models, such as “Predictive Models for Evaluation
and Recovery”, “Models Developed to Evaluate the Importance of Flotation Parameters”
and “Analysis of Flotation Foam Images with Machine Learning”. The last category
was divided into “Image Extraction of Foam”, “Size Bubbles and Distribution Analysis”,
“Flotation Performance Predictions and Feature Importance Analysis Based on Ash Images”
and “Ash Image Analysis and Predictions for Ash Content in the Coal Flotation Process”.
Generally, researchers have presented potential solutions for the mineral beneficiation
process using machine learning and artificial intelligence techniques, but limited efforts
were made for the prediction of grade and recovery in the flotation of other materials.

In this study, an attempt has been made to estimate Fe grade and cellulose recovery
in the froth flotation products in laboratory conditions. This study performs a compar-
ative analysis of different machine learning methods for the prediction and modeling
of deinking flotation performance. To the best of our knowledge, there are no previ-
ously reported studies that use Gaussian Process Regression (GPR) and Regression Tree
Ensembles for this purpose.

The remainder of this paper is organized as follows. In Section 2, a brief overview of
machine learning techniques used in this paper is given. The dataset developed for model
training and testing is also presented in Section 2, while experimental results are discussed
in Section 3. Concluding remarks are given in Section 4.
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2. Materials and Methods
2.1. Machine Learning Techniques for Prediction of Flotation Deinking Performance
2.1.1. Support Vector Regression

Support Vector Machines (SVMs) are a supervised machine learning method originally
developed for solving binary classification problems. While the output variable is discrete
in classification, it is continuous in regression (real number). Therefore, it is not possible to
give an exact prediction as in classification, and an error (deviation) ε is introduced [18].
SVM for regression problems is usually denoted as Support Vector Regression (SVR).

Suppose a training dataset D = {(xi, yi), i = 1, . . . , N} which consists of N training
pairs, where xi ∈ Rn is the n-dimensional vector denoting the model’s inputs and yi ∈ R are
the observed responses to these inputs (model’s outputs). The goal of SVR is to determine
a function f (x) that deviates from yi by a value not greater than ε for each training data
point xi.

f (x) = ⟨ω, x⟩+ b; ω ∈ Rn, b ∈ R (1)

where ω is the weight, b is the bias and ⟨ω, x⟩ denotes the dot product. Values ω and b are
determined from the training data by maximizing the margin 2/∥ω∥, or equivalently by
minimizing 1

2∥ω∥2, where the factor 1
2 is used for mathematical convenience only [19]:

argmin
1
2
∥ω∥2 + C

N

∑
i=1

(ξi + ξ∗i ); subjectto


yi − f (xi) ≤ ε + ξi
f (xi)− yi ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0

(2)

where constant C > 0 defines the amount of error larger than ε that is tolerated and ξi, ξ∗i ,
are the error tolerances. The solution of (2) is found using Lagrange multipliers with the
dual set of variables. To obtain the dual formula, a Lagrange function is constructed from
the primal function by introducing non-negative Lagrange multipliers αi, α∗i , ηi, η∗

i for each
training data point xi.

ω = ∑N
i=1(αi − α∗i ) · xi

b = yi − ⟨ω, xi⟩ − ε, 0 < αi < C (3)

b = yi − ⟨ω, xi⟩+ ε, 0 < α∗i < C

The function used to predict new values then becomes:

f (x) =
N

∑
i=1

(αi − α∗i ) · ⟨xi, x⟩+ b (4)

where the bias b is defined in (5).
When the linear model is not adequate, the Lagrange dual formulation can be extended

to nonlinear functions by replacing the dot product ⟨xi, x⟩ with a nonlinear kernel function
⟨xi, x⟩ = φ(xi) · φ(x), where each data point xi is mapped to a higher-dimensional space
using the transform Φ : xi → φ(xi) . The solution to the optimization problem for the
nonlinear case becomes:

ω = ∑N
i=1(αi − α∗i ) · φ(xi)

f (x) = ∑N
i=1(αi − α∗i ) · k(xi, x) + b (5)

Common kernel functions are the linear, polynomial, sigmoid and radial basis function
(RBF). The RBF kernel is used in this paper [20]:

k⟨xi, x⟩ = exp
(
−γ∥xi − x∥2

)
(6)

where γ > 0 is the regularization parameter which determines the trade-off between the
fitting error minimization and the smoothness of the estimated function.
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2.1.2. Regression Tree Ensembles

Linear regression represents a global model, where a single formula describes the
relations between the inputs and the outputs of the model over the entire data space. When
there are many features interacting in nonlinear ways, it is very hard to design a single
global model. An alternative approach is to divide the data space into smaller partitions,
where the modelling of these interactions is easier to achieve. These partitions can be
further divided into even smaller regions, until finally one obtains the data space cells
where simple models can be applied. This is called recursive partitioning [21].

Regression trees use the tree to represent the recursive partition. It splits the input data
space in partitions and assigns a prediction value to each partition. The terminal nodes of
the tree, denoted as leaves, represent these partition cells. In order to determine to which
leaf the input data belong to and to assign it the prediction value, the algorithm starts from
the root node and asks successive binary questions. Depending on the outcome of the
question, the sub-branch of the tree is chosen. Eventually, the algorithm arrives at the leaf
node, where the prediction is made. This prediction is found as an average of all training
data instances which reach that leaf node [21].

Suppose a training dataset D = {(xi, yi), i = 1, . . . , N} which consists of N training
pairs, where xi ∈ Rn is the n-dimensional vector denoting model’s inputs and yi ∈ R are
the observed responses to these inputs (model’s outputs). Suppose further a division of the
input data space into M partitions Ri; i = 1, 2, . . ., M, where the response is modelled as a
constant ci in each partition:

f (x) =
M

∑
i=1

ci I{x ∈ Ri} (7)

where I{x ∈ Ri} is a binary function that takes the value 0 or 1 depending on the outcome
of the question at the tree’s split point [21,22]. The constant ci can be determined as the
average of the responses yi in the region Ri.

The greedy algorithm is used in order to determine the split point [21,23], which is
very efficient, but might lead to poor decisions, especially in the lower tree branches, due to
unreliable estimates based on the small number of samples. To overcome this issue, more
regression trees can be combined in an ensemble, which represents a predictive model
composed of a weighted combination of multiple regression trees. Different algorithms
exist for ensemble learning, such as bagging, random forests and boosting [21].

Boosting, which is an ensemble technique where the predictors are created sequentially,
is used in this paper. The rationale behind this is that each subsequent predictor learns
from the mistakes committed by the previous predictors [21,22]. When gradient boosting
is applied to regression tree ensembles, the first regression tree is the one that maximally
reduces the loss function for the selected tree structure and the given training dataset. The
residual (prediction error) is then calculated, which represents the mistake committed by
the predictor model (the first regression tree). At the next step, a new tree is fitted to the
residuals of the first tree. At each step, a new tree is added to the model, which is fitted
to the residuals of the previous one. The residual values are usually multiplied by the
learning rate (value less than 1) to avoid overfitting. The final model obtained by boosting
is simply a linear combination of all trees (usually hundreds or thousands of trees).

The main idea of boosting is that, instead of using a complex single regression tree,
which is easily over fitted, a much better fit is produced if many simple regression trees
are trained iteratively, each of them improving the prediction performance of the previous
ones [22]. Boosting algorithms play a crucial role in dealing with bias variance trade-off.
Unlike bagging algorithms, which only control for high variance in a model, boosting
controls both the aspects (bias and variance) and is considered to be more effective.

2.1.3. Gaussian Process Regression

Suppose a training dataset D = {(xi, yi), i = 1, . . . , N} which consists of N training
pairs, where xi ∈ Rn is the n-dimensional vector denoting model’s inputs and yi ∈ R
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are the observed responses to these inputs (model’s outputs). Aggregating the column
vectors of inputs in matrix X and the responses in the vector y, a training dataset becomes
D = (X, y). The goal of GPR is to predict the value of response, given the new (unseen)
input vector and the training data, i.e., to determine the conditional distribution of the
responses given the inputs [24].

Consider a standard linear regression model with Gaussian noise [24]:

y = f (X) + ε = XTω + ε (8)

where X is the input matrix, ω is the vector of weights, y is the vector of observed responses
and f (X) = XTω is the function value which differs from the observed response y by
error ε, that follows an independent, identically distributed Gaussian distribution with
zero mean and variance σ2, i.e., ε~N

(
0,σ2). The weights ω and the error variance σ2 are

estimated from the data [24].
Applying the Bayes’ rule, the posterior distribution over the weights can be determined

as [24,25]:

p(ω|X, y ) =
p(y|X, ω )p(ω)

p(y|X )
(9)

where p(y|X ) is the normalizing term which is independent of weights ω and can be
neglected. Assuming a zero mean Gaussian prior of the weights p(ω) with the covariance
matrix Σ, i.e., ω ∼ N(0, Σ), one obtains the posterior distribution p(ω|X, y ) as a Gaussian
with mean ω and covariance matrix A−1 [24]:

p(ω|X, y ) ∼ N
(

ω =
1
σ2 A−1Xy, A−1

)
(10)

where A = σ−1XXT + Σ−1. To make a prediction for a new, unseen, test input x∗, one can
average over all possible parameter values, weighted by their posterior probability, i.e., the
distribution f (x∗) at x∗ is again Gaussian, with a mean given by the posterior mean of the
weights multiplied by the test input [24,25]:

p( f (x∗)|x∗, X, y ) ∼ N
(

1
σ2 x∗T A−1Xy, x∗T A−1x∗

)
(11)

When the linear regression model is not adequate, the input data points xi can be
mapped to a higher-dimensional space using the transform Φ : xi → φ(xi) . The model is
further derived, same as in the linear case, substituting x everywhere with φ(x). Equation (10)
then becomes [24]:

p( f (x∗)|x∗, X, y ) ∼ N
(

1
σ2 φ(x∗)T A−1 φ(X)y, φ(x∗)T A−1 φ(x∗)T

)
(12)

This model represents a GPR model. Hence, a Gaussian process is completely defined
by its mean function and covariance function. The choice of an adequate covariance func-
tion for a given dataset is very important. In our experiments, we use different covariance
functions, such as exponential, squared exponential, Matérn and rational quadratic. Each
of these covariance functions depend on the hyperparameters whose values also need to
be tuned. For some of the covariance functions, hyperparameters are easy to interpret and
can be used to also combine learning with automatic feature selection, i.e., to determine
which inputs (features) are relevant and to exclude all the irrelevant ones from the learning
process. For example, consider the covariance function [24]:

K
(
xi, xj

)
= βexp

−1
2

N

∑
n=1

( xi
n − xj

n

rn

)2
 (13)
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where rn denotes the length-scale of the covariance function along the input dimension n. It
is obvious that if rn is very large, the covariance function becomes independent of the n-th
input; therefore, it can be considered irrelevant and can be removed from the inference. Such
a covariance function implements automatic relevance determination (ARD). Exponential,
squared exponential, Matérn and rational quadratic covariance functions with ARD are
also considered in this paper.

It is important to emphasize that, when working with limited datasets, as in our
case, selecting the right machine learning algorithms is crucial to maximize the model
performance and generalization. The use of deep learning approaches was therefore
avoided as the available data were not sufficient to train reliable deep learning models.
Using regression tree ensemble approaches, such as random forests or boosting, aggregates
decisions from multiple regression trees, helping to reduce the variance that might arise
from small data samples and reducing overfitting. On the other hand, GPR relies on strong
prior assumptions about the function being learned (encoded through the covariance
function). These priors are especially valuable with limited data as they guide the model in
the absence of sufficient empirical data. Finally, SVR handles nonlinear relationships in the
data by using the kernel trick, which is particularly useful in cases of limited data, where
simple linear models may not capture the underlying complexity, but adding too many
parameters (like in neural networks) could lead to overfitting. SVR has a regularization
parameter C that helps to balance the model complexity and the margin of error. When
dealing with limited data, this regularization prevents the model from overfitting to noise
or small fluctuations in the data, which is crucial when the data are scarce.

2.2. Dataset

Experimental specimens were obtained using IQ ECONOMY+ A4, 80 g/m2 white
paper and the HP LaserJet Q2610A toner. The paper was mechanically cut in a paper
shredder, soaked in distilled water, and mixed to obtain cellulose fiber specimens. The
toner was printed on precoated Q CONNECT A4 universal laser transparency film with
polyvinyl alcohol [26] and disintegrated in a mechanical stirrer to obtain plate-shaped
particles for toner specimens. The specimens of cellulose fibers and toner particles were
further mixed to form a pulp, transferred to the Denver 1,6-L flotation cell and floated
at the conditions specified below in Tables 1 and 2. The parameters which may have a
significant effect on the deinking process, but are not used as the practical control variables,
are summarized in Table 2.

Table 1. Ranges of deinking parameters used as the input model variables.

Process Control Variables Range of Process Control Variables

Flotation pH 3–12

Surfactant in flotation cell:
Oleic acid 0.1–7 kg/t

Oleic acid + CaCl2 0.125–1.5 kg/t + 30 kg/t

Flotation time 1–20 min

The concentration of oleic acid, with or without CaCl2, as a surfactant in flotation, pH
value and retention time in flotation were used as parameters of the input model. The pH
value is an important control parameter because it affects the function of surfactants in
deinking flotation, particularly fatty acid soaps. The calcium concentration has been shown
to affect the performance of deinking systems. The recovery of cellulose fibers and optical
properties represents the trade-off between economy and quality that must be reconciled in
any deinking operation, and flotation retention time is a consistent determinant of deinking
performance [4,6]. The recovery of toner and the recovery of cellulose fibers were used as
parameters of the output model [6]. Samples were extracted from the foam at 1, 2, 4, 10 and
20 min, and in order to calculate toner recovery in the rejected stream (Et) and cellulose
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fiber recovery in the acceptable stream (Em), float and sink products were filtered through
the Buchner funnel, dried at room temperature and weighed, while the dried froth filter
pads were then heated at 550 ◦C in a muffle furnace to determine the ash content by x-ray
fluorescence (XRF), for Et calculation. The printability of the prepared sink filter pads and
hand sheet after deinking was checked via printing in a controlled environment using the
monochrome laser-jet printer, HP 1018.

Table 2. Optimization variables for flotation deinking.

Optimization Variables Range of
Optimization Variables Adopted Value

Pulping pH 7–10
[5,27–32] 8

Pulping time 4–60 min
[6,31,33–37] 35 min

Pulping
temperature

35–60 ◦C
[4,9,27,33,35,38] 45 ◦C

Pulping
consistency

8–18 wt %
[9,33–37,39] 10 wt %

Flotation
temperature

20–45 ◦C
[4,27,35,40–43] 22 ◦C

Flotation
consistency

0.5–1.5%
[6,11,28,29,31,35–37,41,42] 1 wt %

Agitation speed 1000–1400 rpm
[11,27,28,31,41,44] 1000 rpm

Airflow rate 225–775 L/h
[9,11,35,43] 260 L/h

For each experiment, 100 experiments were performed, i.e., 100 pairs of input/output
model parameters were created. Since a limited data set is used, 90% of all data were
randomly selected for training the model and the remaining 10% were used for testing the
prediction ability of the created model [44]. This ensures that the model has enough data to
learn from, and using a cross-validation approach will allow a small amount of data to be
used to train/test the model [10]. The data that were used for testing were not included in
the training dataset [44].

2.3. Performance Measure

As a measure of performance, the Mean Squared Error (MSE) was used, which defines
the mean squared deviation between the observed and predicted values of the output
parameter [44]:

MSE(y, f (x)) =
1
N ∑N

i=1(yi − f (xi))
2

(14)

where yi represents the observed value of the output parameter and f (xi) is the predicted
value obtained using the trained model. MSE is always non-negative, with values closer to
zero defining better models [44].

Besides the MSE, the coefficient of determination R2 was also used as a measure of
performance, defined as [44]:

R2(y, f (x)) = 1 − ∑N
i=1(yi − f (xi))

2

∑N
i=1(yi − y)

2 (15)

where y denotes the mean of y. Values of R2 closer to one define better models. While MSE
is an absolute measure of fit, R2 represents a relative measure of fit [44].
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The problem with the evaluation of any machine learning-based model is that it
may result in adequate prediction on the data used for training the model but might not
generalize well and fail to predict future unseen data. Cross-validation might be used to
overcome this problem by dividing the data into two subsets: one for training a model
and the other for model validation. The machine learning methods used in this paper
were evaluated using 10-fold cross-validation, where the dataset is randomly partitioned
into 10 subsets, 9 of them being used for training the model and the remaining one for
model validation (testing). The cross-validation procedure is repeated 10 times, with
each of the subsets used exactly once for validation, and the 10 obtained results are then
averaged to produce a single estimation [44]. The optimal hyperparameters of the models
were determined using the grid search, which exhaustively tries every combination of the
provided hyperparameter values to select the best model [45].

3. Results

SVR was implemented using LIBSVM library [46] with the linear and RBF kernel
functions. The optimal hyperparameters of the SVR model (C in case of the linear kernel;
γ and C in case of the RBF kernel) are determined using the grid search. An example
of hyperparameter tuning for the RBF kernel for estimation of cellulose fiber recovery in
the sink product (Em) is shown in Figure 1a, in case the surfactant is oleic acid, and in
Figure 1b, in case the surfactant is oleic acid + CaCl2. Hyperparameter C determines the
tradeoff between the model complexity and the amount of error that can be tolerated. In
general, a lower C tolerates a larger error at the cost of model accuracy, whereas a larger C
increases the model complexity but enables better prediction. Note that in both subfigures,
the model performance is extremely sensitive to the value of hyperparameter γ, which
must be chosen very carefully. When γ is too large, the area of influence of the support
vectors is too narrow, so the overfitting appears. On the other hand, when γ is too small,
the hyperplane becomes too flat, again leading to poor performance on the test dataset.
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Figure 1. Optimization of the hyperparameters γ and C in SVR with the RBF kernel for estimating
cellulose fiber recovery in the sink product (Em) when the surfactant is (a) oleic acid and (b) oleic
acid + CaCl2.

Ensembles of regression trees were realized using random forests and boosting. In
case of random forests, the hyperparameters to be optimized were the number of trees
and the minimum leaf size. A grid search was used for the optimization. An example of
hyperparameter tuning for the estimation of cellulose fiber recovery in the sink product
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(Em) is shown in Figure 2a in case the surfactant is oleic acid, and in Figure 2b, in case
the surfactant is oleic acid + CaCl2. In general, more trees usually lead to better estimates;
however, note that after 100 trees in Figure 2a and 50 trees in Figure 2b, the MSE mostly
stabilizes and there is no point to further increase the number of trees, since this would
increase the model complexity. The minimum leaf size determines the smallest number
of observations a node is allowed to have. If a child node should be created by splitting
with fewer observations than the minimum leaf size, the node is not split. Note that the
most accurate models are obtained for the smallest minimum leaf sizes (equal to two in our
experiments). However, this leads to deeper trees; so, better performance comes at the cost
of increased complexity.
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Figure 2. Optimization of the hyperparameters minimum leaf size and number of trees in random
forests for estimating cellulose fiber recovery in the sink product (Em) when the surfactant is (a) oleic
acid and (b) oleic acid + CaCl2.

In the case of boosting, the number of trees and the learning rate are optimized using
a grid search. An example of hyperparameter tuning for the estimation of cellulose fiber
recovery in the sink product (Em) is shown in Figure 3a, in case the surfactant is oleic acid,
and in Figure 3b, in case the surfactant is oleic acid + CaCl2. As in the case of random
forests, the MSE mostly stabilizes for more than 50 trees and there is no point to further
increase the number of trees, since this would increase the model complexity. The learning
rate is a number between 0 and 1, which multiplies the step magnitude in each gradient
step and defines how quickly the prediction error is corrected in the subsequent tree of
the model. In other words, shrinkage appears in each gradient step. A learning rate equal
to 1 means there is no shrinkage. Small learning rates cause sample predictions to slowly
converge towards the observed values and can improve the model’s generalization ability.
However, smaller learning rates require larger trees and might become computationally
expensive. The learning rate equal to 0.25 is the most optimal in our experiments.

GPR is realized with exponential, squared exponential, Matérn 3/2, Matérn 5/2 and
rational quadratic covariance functions. It is further combined with ARD to determine the
feature importance, as shown in Figure 4. The length scale is the parameter that estimates
the relevance of the input features to predict the model’s response. A small length scale
indicates a highly relevant feature and vice versa. The surfactant concentration for both
surfactants is the most important feature, whereas the flotation time has the smallest impact
on the overall model performance.
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Figure 4. Feature selection using ARD in GPR for estimating cellulose fiber recovery in the sink
product (Em) when the surfactant is (a) oleic acid and (b) oleic acid + CaCl2.

Tables 3 and 4 present the prediction results of the flotation deinking performance
using various machine learning techniques. The fiber recovery in sink product (Em) and
the toner recovery in foam product (Et) were used to estimate the performance of flotation
deinking in Tables 3 and 4, respectively. Oleic acid and oleic acid with addition of CaCl2
were used as the surfactants in both cases.
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Table 3. Estimation of fiber recovery in the sink product (Em); oleic acid and oleic acid + CaCl2 were
used as surfactants.

Models
Oleic Acid Oleic Acid + CaCl2

MSE R2 [%] MSE R2 [%]

SVR
Linear 101.33 63.72 104.24 71.02

RBF 20.31 93.56 30.97 93.37

Regression
trees

Random forests 51.31 88.19 44.47 92.06
Boosting 21.16 94.05 24.27 93.87

GPR

Exponential 24.06 94.87 27.67 93.34
Squared exponential 11.85 97.32 19.72 95.43

Matérn 3/2 14.03 97.66 19.73 95.95
Matérn 5/2 12.64 97.77 20.21 95.73

Rational quadratic 12.48 97.66 21.44 95.24

Table 4. Estimation of toner recovery in the foam product (Et); oleic acid and oleic acid + CaCl2 were
used as surfactants.

Models
Oleic Acid Oleic Acid + CaCl2

MSE R2 [%] MSE R2 [%]

SVR
Linear 82.20 49.22 56.24 43.91

RBF 12.52 90.95 19.71 73.96

Regression
trees

Random forests 31.80 84.01 29.12 63.96
Boosting 7.33 93.90 7.95 88.33

GPR

Exponential 24.37 84.50 32.13 64.83
Squared exponential 45.43 69.07 40.45 55.48

Matérn 3/2 20.27 86.31 30.87 65.80
Matérn 5/2 21.62 84.51 38.05 55.83

Rational quadratic 21.57 84.94 35.98 60.88

The prediction results for Em in Table 3 show that GPR with all covariance functions
outperforms all other techniques by a large margin using both MSE and R2 as performance
measures for prediction. The best overall result for R2 is obtained using the Matérn 5/2
covariance function when oleic acid was used as the surfactant (R2 = 97.77%), whereas the
Matérn 3/2 covariance function yields the best performance when CaCl2 was added to
oleic acid (R2 = 95.95%). On the other hand, the squared exponential covariance function
gives the best estimation for both surfactants when MSE was used as the performance
measure. Boosting and SVR with the RBF kernel have comparable performances, which is
2–4% lower than GPR (measured by R2), while the performance of SVR with the linear
kernel is significantly worse, due to highly nonlinear dependencies between input data.
Based on the presented results, it is shown that GPR using the squared exponential
covariance function gave the best performance in the assessment of fiber recovery in the
sink product considering MSE as the performance measure. The prediction results for Et
presented in Table 4 are, in general, lower than for Em. However, boosting outperforms all
other machine learning techniques significantly for both performance measures, which is
especially evident when oleic acid with the addition of CaCl2 was used as the surfactant,
where the second-best results were 15% lower, measured by R2. The dataset is limited (only
100 observations) and it is obviously not enough to capture the complex dependencies
between the input features. However, boosting proved to be especially robust to our
small-sample problem. The reason might be that boosting, as an ensemble method, can
decrease the variance of a single estimate by combining more estimates from different
models. Moreover, boosting, unlike random forests, can also reduce the bias by focusing
on a weak single model and trying to decrease the prediction error in the next iteration,
resulting in a model with higher stability.
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4. Conclusions

A comprehensive comparative analysis of a variety of machine learning algorithms
for the prediction of flotation deinking performance in the process of paper recycling
is given in this paper. A dataset is created for training the models that assumes data
samples obtained under a variety of experimental conditions, including different reagents,
pH values and flotation residence times. The developed dataset is limited and includes
only 100 representative observations, as the aim was to prove that it was feasible to learn
reasonable models from “small data” and avoid running expensive, laborious and time-
consuming experiments. In this way, it is possible to determine the optimal experimental
conditions for the separation of toner particles and cellulose fibers in printed paper recycling
using flotation deinking, with only minimal costs and effort.

The obtained results indicate that boosting proved to be especially robust to the small-
sample problem under all analyzed conditions. On the other hand, GPR gave the best
performance in the estimation of fiber recovery in the sink product, with R2 = 97.77%, and
also a reasonable performance in the estimation of toner recovery in the foam product,
with R2 = 86.31%. Another major advantage of GPR is its low complexity in comparison to
ensemble models, such as random forests and boosting, which allows an efficient model
training and inference.

This study is limited to selected variables that have been reported to have a significant
effect on flotation. The scope of the database was limited to the laboratory scale. Machine
learning for the optimization of such variables in the real conditions of the flotation process,
as proposed in the paper, is only a theoretical approach at this time. Indeed, some machine
learning applications still largely remain a relatively new area of research in mineral
processing [10], especially in paper flotation.

Author Contributions: Conceptualization, V.D. and M.S.T.; methodology, V.D. and M.S.T.; valida-
tion, T.G. and V.D.; formal analysis, T.G., V.D., M.-I.Z. and M.S.T.; investigation, T.G., V.D., M.-I.Z.
and M.S.T.; resources, T.G., V.D., M.-I.Z. and M.S.T.; data curation, T.G., V.D., M.-I.Z. and M.S.T.;
writing—original draft preparation, T.G. and V.D.; writing—review and editing, M.-I.Z. and M.S.T.;
visualization, T.G., V.D., M.-I.Z. and M.S.T.; supervision, V.D. and M.S.T. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was partly funded by the Ministry of Education, Science and Technological
Development of the Republic of Serbia, within the funding of the scientific research work at the
University of Belgrade, Technical Faculty in Bor [grant numbers 451–03-65/2024–03/200131].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
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