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Abstract: In visual Simultaneous Localization and Mapping (SLAM), operational efficiency and
localization accuracy are equally crucial evaluation metrics. We propose an enhanced visual SLAM
method to ensure stable localization accuracy while improving system efficiency. It can maintain
localization accuracy even after reducing the number of feature pyramid levels by 50%. Firstly,
we innovatively incorporate the principal direction error, which represents the global geometric
features of feature points, into the error function for pose estimation, utilizing Pareto optimal so-
lutions to improve the localization accuracy. Secondly, for loop-closure detection, we construct a
feature matrix by integrating the grayscale and gradient direction of an image. This matrix is then
dimensionally reduced through aggregation, and a multi-layer detection approach is employed to
ensure both efficiency and accuracy. Finally, we optimize the feature extraction levels and integrate
our method into the visual system to speed up the extraction process and mitigate the impact of the
reduced levels. We comprehensively evaluate the proposed method on local and public datasets.
Experiments show that the SLAM method maintained high localization accuracy after reducing the
tracking time by 24% compared with ORB SLAM3. Additionally, the proposed loop-closure-detection
method demonstrated superior computational efficiency and detection accuracy compared to the
existing methods.

Keywords: visual SLAM; principal direction projection; loop-closure detection; features pyramid

1. Introduction

Simultaneous Localization and Mapping (SLAM) enables unmanned devices, like
autonomous vehicles and drones, to perceive their surrounding environment. In practical
applications, the key performance indicators for SLAM include the mapping consistency, lo-
calization accuracy, and operational efficiency, which are also the focus of ongoing research.

Depending on the primary sensor, SLAM can be broadly divided into Visual SLAM
(V-SLAM) [1] and LiDAR SLAM [2]. Visual SLAM is typically favored in environments rich
in visual features, while LiDAR SLAM excels in structured environments and performs
well even under low-light conditions. Among the cutting-edge visual SLAM methods, ORB-
SLAM3 [3] and DVI-SLAM [4] stand out. In LiDAR SLAM, widely used methods include
graph optimization-based LOCUS 2.0 [5] and filter-based Point-LIO [6]. As mentioned,
SLAM is widely applied across various devices. Autonomous vehicles rely on SLAM for
localization and mapping in dynamic environments to ensure safe navigation, particularly
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in low-speed or enclosed areas, such as mining sites [7], where SLAM plays a crucial
role. Single drones or multi-drone collaborations can utilize SLAM to autonomously
explore and map unknown terrains [8], which is vital for search and rescue missions in
environments where satellite navigation is unavailable. In robotics, such as indoor service
robots [9] and construction robots [10], SLAM enables navigation in both indoor and
outdoor environments. With advanced decision-making and control technologies [11],
SLAM allows these robots to perform complex and diverse tasks. Visual SLAM, compared
to LiDAR SLAM, is more cost-effective and has higher practical value, making it a consistent
area of research focus.

Visual SLAM has continuously developed, with major SLAM systems differing pri-
marily in pose estimation and image processing approaches [12]. Pose estimation methods
include filter-based and keyframe-based approaches. Regarding image processing, there
are two main methods: direct and feature-based. Mono-SLAM [13] is one of the earliest
SLAM systems, employing Shi–Tomasi points and an Extended Kalman Filter (EKF) for
pose estimation. Subsequent method improvements have largely retained the fundamental
principles of Mono-SLAM. Filter-based methods use only current frame information, which,
while computationally efficient, results in limited accuracy. Keyframe-based Bundle Adjust-
ment (BA) is widely used in visual systems, with PTAM [14] and SVO [15] employing BA for
estimating the pose between successive frames, offering higher accuracy compared to filter-
based methods. Direct methods do not require feature extraction; they utilize photometric
information. In Reference [16], Zubizarreta et al. introduced the concept of reusing existing
map information in direct V-SLAM, achieving improved localization accuracy. Widely used
features in feature-based SLAM include oriented FAST and rotated BRIEF (ORB) [17,18],
scale-invariant feature transform (SIFT) [19], speeded-up robust features (SURF) [20], and
Self-supervised interest point (SURPOINT) [21]. ORB SLAM3 [3] is an advanced and
comprehensive visual SLAM system based on ORB features. It supports monocular, stereo,
and RGB-D cameras and can be tightly coupled with an Inertial Measurement Unit (IMU)
to enhance environmental adaptability. Additionally, ORB SLAM3 offers map reuse, loop
closure, and re-localization capabilities to ensure mapping consistency. Compared to ORB
SLAM2 [22], ORB SLAM3 features multiple improvements, such as utilizing an atlas to
retain all maps, enabling map merging after loop closure, and enhancing loop-closure
detection by verifying the local consistency of co-visible frames, thus improving recall. In
Reference [3], the authors compared mainstream V-SLAM and Visual Inertial Odometry
(VIO) methods, such as DSM [16] and VINS-Fusion [23], demonstrating that ORB SLAM3
is one of the most accurate and robust methods.

The emergence of event cameras has introduced new approaches to the front-end of
SLAM systems. Chen et al. [24], unlike pure stereo event-based visual localization [25],
designed a tightly coupled system based on stereo event cameras and IMU, enabling stable
operation in challenging environments. Event-based visual SLAM demonstrates impressive
performance in high-speed motion scenarios but also induces issues, such as sparse data.
Additionally, neural networks are playing an increasingly important role in V-SLAM. In
Reference [26], the authors proposed a semantic SLAM method for dynamic scenes, where
they designed a static semantic keyframe selection strategy based on segmentation results
to mitigate the impact of dynamic objects. Wang et al. [27] integrated visual, inertial, and
semantic information for final localization. Peng et al. [4] proposed a deep SLAM network
that directly integrates visual and IMU data. Incorporating neural networks provides more
robust feature-extraction capabilities than traditional SLAM methods, making them more
adaptable to complex environments, such as low-texture scenes. However, neural-network-
based methods rely heavily on training data, have high computational requirements, and
involve a more complicated system. The methods above are primarily based on point
features. Alamanos et al. [28] innovatively combined point and line features in ORB-LINE-
SLAM, improving the localization accuracy in challenging environments. In Reference [29],
the authors used vertical line features and point features to achieve promising results in
underground parking lots. Combining line features enhances geometric constraints but
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also introduces challenges, such as the instability of line features and increased complexity
in matching.

During the operation of visual systems, the proportion of the target’s appearance in
the image is unknown. A more effective method for extracting target features is to generate
an image pyramid composed of images at different scales, scanning the target layer-by-
layer [30]. The image pyramid is extensively used in feature extraction to adaptively
extract features from objects at different scales within the image [31]. Higher-level features
exhibit lower repeatability, offering limited benefits in localization accuracy, but they
are still advantageous for feature matching and orientation estimation [32]. In practical
applications, the number of pyramid levels and the scale factor are related to feature
selection and the image size. The most time-consuming part of the front-end process in
ORB SLAM3 is the multi-level feature extraction based on the image pyramid. Taranco
et al. [33] designed a high-performance hardware accelerator for ORB feature extraction.
In engineering applications, ORB feature extraction is often processed in parallel using
multithreading to improve the runtime efficiency.

These methods mentioned above for accelerating feature extraction impose high hard-
ware requirements, hindering their applicability and scalability. While ORB features exhibit
desirable performance and the effectiveness of the image pyramid has been validated, due
to performance constraints, low-performance intelligent devices, like drones, primarily use
FAST features at the front end [34]. For instance, Geneva et al. [35] developed a computa-
tionally efficient visual–inertial odometry system by integrating FAST with optical flow
techniques. This approach is particularly suitable for visual localization in drones due to
its low computational requirements. Neural-network-based methods require the design of
complex systems and the collection of large amounts of data, making their implementation
challenging in most applications. We hope to propose an efficient method that enhances the
runtime efficiency of visual SLAM systems while maintaining stable localization accuracy.

Loop-closure detection can provide spatial constraints between previous and current
frames, effectively improving mapping consistency. Recent research primarily focuses
on detecting loop closure in visual SLAM by constructing descriptors (hand-engineered
features). These descriptors can be classified into local and global feature descriptors [36].
Local feature descriptors, such as SIFT, effectively represent image details and are robust to
changes in viewpoint and scale. Global descriptors, such as Histograms of Oriented Gradi-
ents (HOGs) [37], primarily capture global image information and are highly adaptable to
lighting conditions. The Bag-of-Words (BOW) model, which represents feature descriptors
using visual words, is one of the effective methods for image feature representation [38].
Loop-closure detection based on local features generally combines BOW. After calculating
the corresponding word for the local features, the word frequency is counted and weighted,
followed by similarity computation. BOW-based loop-closure detection requires offline
vocabulary training, making it inconvenient, and its performance is heavily influenced by
the training data. If the training and application data differ significantly, detection accuracy
decreases. Furthermore, dictionaries typically have large sizes to enhance adaptability to
different scenes, which poses efficiency challenges. Unlike BOW, Wang et al. [39] proposed
a novel approach for loop-closure detection based on salient regions, SRLCD, matching
directly in the frequency domain. Salient regions can also be considered a type of local
feature. Among global descriptors, the Gradient Orientation Histogram [37] and Grayscale
Histogram [40] are widely used. Dalal et al. [37] employed the Gradient Histogram as
an image feature, combined with SVM, achieving significant success in human detection,
demonstrating the potential of global features in image detection. Li et al. [36] also used the
Gradient Orientation Histogram as a descriptor for image representation and introduced
image block division and clustering to enhance the local description. The proposed method
also incorporated an online incremental vocabulary method based on BOW, offering better
environmental adaptability. However, until the vocabulary accumulates to a certain extent,
the method cannot detect accurately, and the complexity of computing feature descriptors
introduces additional time consumption and performance uncertainty. Tao et al. [41] di-
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rectly employed a combination of the Grayscale Histogram and key region covariance for
loop-closure detection, achieving higher computational efficiency.

Moreover, neural networks can directly extract image features, replacing hand-engineered
features in loop-closure detection. Neural-network-based loop-closure detection methods
have garnered significant attention. Chen et al. [42] used Convolutional Neural Networks
(CNNs) to extract image features, combined with spatial and sequential detection for loop-
closure detection, achieving good adaptability to viewpoint changes and high detection
accuracy. Gao et al. [43] selected multiple image blocks in the image using key points,
such as SIFT, and employed an unsupervised deep learning network, a stacked denoising
auto-encoder (SDA), to extract feature representations for similarity computation to achieve
loop-closure detection. Samadzadeh et al. [44] incorporated deep neural networks (DNNs)
for feature extraction and matching in the loop-closure-detection stage, which improved the
accuracy of loop-closure detection. In Reference [45], the authors considered the low-latency
characteristics of Spiking Neural Networks (SNNs) and proposed a lightweight and fast
place-recognition method called VPRTempo. Neural networks can also extract high-level
image features, such as semantic features, which can be applied in loop-closure detection.
Cheng et al. [46] replaced traditional image features with semantic vectors and calculated
vector similarity to filter candidate keyframes. Li et al. [47] computed the similarities of
GIST features, semantic features, and appearance features separately and then performed
loop-closure detection using a weighted fusion approach. High-level semantic features
and hand-engineered features provide complementary information. Arshad et al. [48]
combined feature similarity with semantic similarity to make final loop-closure judgments,
enhancing the adaptability to dynamic object interference and viewpoint changes. In
Reference [49], the authors designed a Semantic-Visual Word to improve the robustness of
the loop-closure-detection algorithm. Combining semantic and BOW models or removing
dynamic objects based on semantic information [50] can lead to higher accuracy.

For loop-closure detection based on local features, extracting thousands of feature de-
scriptors is expected to ensure detection performance, which is computationally expensive.
Moreover, during use, BOW is often combined, requiring pre-training of the vocabulary,
which poses challenges for practical applications. The performance of neural-network-
based loop-closure detection methods is strongly related to the quality of training data,
and there is no significant advantage in computational efficiency. Furthermore, integrating
high-level features, such as semantics, increases the complexity of SLAM systems. There-
fore, we focus on proposing a precise and efficient loop-closure-detection method that
integrates global features to enhance the applicability and operational efficiency of visual
SLAM systems.

Based on the current issues and research purposes, we propose an innovative method
to enhance the applicability and computational efficiency of SLAM systems. The multi-level
extraction of ORB features is time-consuming, affecting the real-time performance of the
system. The proposed method optimizes the number of feature extraction levels while
maintaining the approaching image extraction depth. In order to address the issue of the
decreased positioning accuracy caused by adjusting the number of levels, we have added
the global structural information of the feature points to maintain the positioning accuracy.
Specifically, the principal direction error of feature points is combined with reprojection
error for pose estimation. This approach ensures fast computation and maintains the
localization accuracy of the SLAM system. The loop-closure-detection method based on
the BOW model requires prior training and is highly dependent on training data, which
could not be conducive to practical applications. Therefore, we directly utilize the grayscale
and gradient information of images to construct two-dimensional descriptors for selecting
loop-closure keyframes. Directly using two-dimensional descriptors for the similarity
calculation incurs high computational and storage costs. We first aggregate the two-
dimensional feature descriptors into two one-dimensional feature vectors for subsequent
similarity calculations to improve the operational efficiency. The aggregation process is
computationally fast and reduces the data volume by sacrificing some detail resolution.
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For images that are either excessively dark or bright, we apply a weighted function to
the feature vectors, aiming to ensure the accuracy of the similarity calculations. The final
loop-closure keyframes are obtained through a multi-layer detection consisting of a coarse
and a fine selection, achieving high accuracy and fast runtime.

The main contributions of this work are summarized as follows:

1. We integrate the principal direction error of feature points with reprojection error for
pose estimation, using Pareto optimal solutions to ensure result quality. This approach
maintains localization accuracy while reducing the number of ORB feature extraction
levels, thereby improving system efficiency.

2. We combine grayscale and gradient information to construct feature descriptors for
loop-closure detection, utilizing dimensionality reduction and a multi-layer detection
approach to ensure high speed and accuracy. It does not require the pre-training of
vocabularies or loading pre-trained vocabularies.

3. Experiments on public and local datasets demonstrate that the proposed method
outperforms the comparison methods in performance and real-time operation.

The rest of the paper is organized as follows: Section 2 presents our proposed method,
including the new method framework, improved pose estimation method, descriptor
construction, and multi-layer search strategy. Section 3 evaluates the proposed method
based on public and local datasets. Section 4 provides further analysis and discussion of
the experimental results, highlighting key conclusions. Finally, Section 5 concludes the
paper with a summary of the main contributions.

2. Materials and Methods
2.1. System Overview

As one of the most advanced visual SLAM methods available, ORB SLAM3 delivers sat-
isfactory performance across various applications. Our method adopts ORB SLAM3 as the
core framework, with several essential modifications. The overall flowchart of the method
is shown in Figure 1. The modifications focus on two main aspects: (1) incorporating the
principal direction information of feature points, which reflects their overall geometric
distribution, into the error calculation function during pose estimation, thereby maintain-
ing high localization accuracy even with a reduced number of ORB feature-extraction
levels. As shown in the yellow dashed box labeled a; and (2) replacing the BOW-based
loop-closure-detection method in ORB SLAM3 with our proposed loop-closure-detection
method based on aggregation descriptors, which eliminates the need for a training process,
improves application efficiency, and ensures both detection speed and accuracy, as shown
in the yellow dashed boxes labeled b and c.
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Figure 1. The visual SLAM framework. The main contributions of our work are highlighted within the
yellow dashed box. (a) Pose estimation incorporating principal direction information; (b) descriptor
extraction; (c) similarity calculation and loop-closure detection.
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Specifically, we provided a detailed description of the modifications to illustrate our
work. The process in Figures 2 and 3 serve as supplementary explanations of the detailed
components from the visual framework shown in Figure 1. In Figure 2, the principal
direction of the feature points in the current frame is calculated, and the feature points are
projected onto this orientation. The points in the world coordinate system are similarly
transformed into the pixel coordinate system and projected onto the principal direction.
During the camera pose estimation, the projection error along the principal direction
is minimized with the conventional reprojection error, resulting in improved estimation
accuracy. ORB features exhibit a certain degree of robustness to image noise [3]. By ignoring
variations in secondary directions, the primary direction information reduces the impact
of local noise, thereby enhancing noise resistance. Consequently, this method is designed
with scene generalization capabilities in mind, considering the operational efficiency of
the system.
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Figure 3 shows the workflow of our proposed loop-closure-detection method. Firstly,
the image is segmented, and grayscale and gradient features are extracted from each region
to construct a feature matrix descriptor. Then, the matrix is aggregated and dimensionally
reduced along both columns and rows (by summing) to obtain two types of aggregation
feature descriptors, thereby enhancing the efficiency of subsequent filtering and storage.
Loop-closure detection is then performed in two stages. The first stage aims to identify k
candidate frames quickly, using only one aggregation feature descriptor and calculating
the Manhattan distance, which is computationally simple. The second stage focuses on
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accurately identifying the final loop-closure frame by combining two aggregation feature
descriptors and employing a more complex correlation coefficient calculation to measure
similarity. This method also considers sensor generalization in its design. Based on global
image information, the method is insensitive to input image types, such as fisheye and
panoramic images, and does not require additional processing steps to accommodate
these variations.

2.2. Pose Estimation

In visual localization, camera pose estimation is performed by minimizing the repro-
jection error. The 3D points are projected onto the current frame based on the pose and
camera model of the camera, resulting in image points. The camera pose is iteratively
adjusted to minimize the error between the observed and projected image points. It is
assumed that these points are perfectly matched. The error eij for the 3D point pj in the
frame i is defined as follows [3]:

eij = uij −Π
(

Tcw
⊕

pj

)
(1)

where uij is the coordinate of the observed point in the pixel coordinate system and
Π : R3 → Rn represents the projection function of the camera. Tcw stands for the transfor-
mation from the world to camera coordinate.

⊕
is the transformation operation of SE(3)

group over R3 elements.
We adjusted the number of levels in the multi-level feature-extraction process to en-

hance the processing speed of the system. This adjustment introduces feature-extraction
and matching errors, which can ultimately lead to deviations in pose estimation. To main-
tain the accuracy of pose estimation, it is essential to incorporate additional information
constraints and reduce the influence of outliers.

The global distribution characteristics of the position points can be leveraged. The
principal direction, representing the direction with the most significant data variation and
maximum variance, reflects the distribution characteristics of the data. Incorporating the
projection error along the principal direction into the error calculation can improve pose
estimation accuracy. Specifically, we first centralize the matched image feature point xij
and compute the covariance matrix C. By decomposing the covariance matrix, we obtain
the principal direction. The position points pj in the world coordinate system are then
transformed into the pixel coordinate system and projected into the principal direction,
where we compare the projection error.

xc
ij = xij − u (2)

C =
∑n

j xc
ijx

c
ij

T

n− 1
(3)

C = VTΛV (4)

x′ij = vT
m ∗Π

(
Tcw

⊕
pi

)
∗ vm + u (5)

where u is the center of image feature points, n is the number of feature points, VT is the
matrix of eigenvectors, Λ is the diagonal matrix of eigenvalues, and vm is the principal
direction, the eigenvector corresponding to the largest eigenvalue. After obtaining the
projected point x′ij, the principal direction projection error e′ij is

e′ij = u′ij − x′ij (6)
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Given that multiple error functions are optimized simultaneously, an error upper
bound constraint ε is introduced to ensure the quality of the solution, constraining the
projection error along the principal direction.

e′ij
T ∗ e′ij < ε (7)

Thus, the improved error formula isargmin
(

∑n
i
∥∥eij

∥∥
Σ
+ ∑n

i

∥∥∥e′ij
∥∥∥

Σ́

)
e′ij

T ∗ e′ij < ε
(8)

In Equation (8), the reprojection error ∑n
i
∥∥eij

∥∥
Σ

is consistent with the formulation
in Reference [3], where n represents the number of feature points, and Σ denotes the
covariance matrix. The difference in our approach is that we additionally incorporate the
principal direction error ∑n

i

∥∥∥e′ij
∥∥∥

Σ́
into the error equation. We also apply constraints to the

error boundary to mitigate the influence of outliers. The final pose estimation is obtained
by minimizing the reprojection error and the principal direction error.

After incorporating the principal direction projection error, although both error com-
ponents share the same unit of pixel distance, it is inevitable that optimizing one objective
function may deteriorate the other. In practice, it is necessary to identify the Pareto optimal
solution. The specific description is as follows. Assume

f1(ξ) = ∑n
i

∥∥eij
∥∥

Σ
(9)

f2(ξ) = ∑n
i

∥∥∥e′ij
∥∥∥

Σ́
(10)

If there exists a solution ξ1 that satisfies the following formula:
f1(ξ1) ≤ f1(ξ2)
f2(ξ1) ≤ f2(ξ2)

( f1(ξ1) < f1(ξ2)) ∨ ( f2(ξ1) < f2(ξ2))
(11)

where ∨ denotes a logical OR. Then, ξ1 is considered to dominate the solution ξ2. Solutions
not dominated by others are referred to as solutions on the Pareto Frontier. The pose-
estimation process is executed multiple times, and after each execution, we obtain an
estimation solution and remove suspicious outlier feature points. Indeed, some of these
points might be accurate but classified as outliers due to estimation errors. This is one of the
reasons for employing the Pareto approach. All solutions on the front form a solution set,
from which the Pareto optimal solution is selected. We choose the solution on the Frontier
that minimizes f1(ξ) as the Pareto optimal solution.

The principal direction projection is shown in Figure 4. We first calculate the principal
direction of the feature points, then project the feature points onto the principal direction,
and finally use them in pose estimation along with the reprojection error.
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2.3. Descriptor Extraction

Unlike local feature descriptors, global features have a simpler computation process
with lower time complexity. Additionally, since they do not require storing many feature
points, the required storage space is minimal. Grayscale and gradient features are typical
examples of global features. Grayscale features effectively represent the overall brightness
of an image and are insensitive to global changes, such as illumination. Gradient features,
on the other hand, capture the texture information of an image, making them sensitive
to shape and texture while being robust to changes in viewpoint. This allows them to
complement grayscale features in describing local characteristics. We construct a feature
matrix descriptor by combining grayscale and gradient information. This method combines
grayscale and gradient information to construct a feature matrix descriptor. We reduce
feature dimensionality by aggregating the feature matrix to obtain two aggregation feature
descriptors in the column and row directions.

During the feature-extraction process, the image is vertically segmented into multiple
small regions Ri to ensure that the extracted features capture more detailed information.
Grayscale features are firstly extracted from each region, with the grayscale range redivided
into intervals—we used 64 intervals. Assuming the grayscale value of the image is I(x, y),
the grayscale feature can be represented as follows:

hg(g) = ∑(x,y) δ(I(x, y)− g) (12)

where δ is the Dirac function and g represents the grayscale index. The subscript g repre-
sents that the h vector is a grayscale feature vector.

Next, convolution kernels are applied to compute the gradient information of the
image region Ri in both the X and Y directions. The gradient, including magnitude
and direction, is then calculated based on the results from these two directions. The
gradient direction intervals are redefined, and the gradient magnitude is used for weighting.
Assuming the gradient direction of the image is D(x, y) and the gradient magnitude is
G(x, y), the gradient feature can be expressed as

hs(θ) = ∑(x,y) δ(D(x, y)− θ)G(x, y) (13)

where θ represents the directional index and the subscript s represents that the h vector is a
gradient feature vector.

The grayscale and gradient features are combined to obtain a 2D feature matrix
Hgs(θ, g).

Hgs(θ, g) = ∑(x,y) δ(D(x, y)− θ)δ(I(x, y)− g)G(x, y) (14)

Directly using the feature descriptor matrix for similarity computation can result
in a high computational cost, especially as the number of features accumulates, making
the cost prohibitive. We employ aggregation-based dimensionality reduction to reduce
the feature matrix into feature vectors along the column and row directions to address
this. Aggregative dimensionality reduction methods are essentially a form of information
quantization. They offer fast computation speeds and achieve data volume reduction by
sacrificing some detail resolution. After dimensionality reduction, the aggregation feature
descriptor is expressed as

vr = ∑g Hgs(θ, g) (15)

vc = ∑θ
Hgs(θ, g) (16)

Figure 5 displays the process of generating the aggregation feature descriptor, which
primarily includes image segmentation, feature matrix construction, and aggregation-based
dimensionality reduction. The length of the feature vectors is related to the quantization
indexes of the grayscale and gradient direction, with longer vectors providing higher-detail
resolution. It is important to note that the two vectors have different units.
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2.4. Loop-Closure Detection

Loop-closure detection aims to determine whether the robot has returned to a previ-
ously visited localization. Without absolute localization, loop closure cannot be simply
judged based on position, as odometry errors accumulate over time. In visual SLAM,
loop-closure detection primarily involves three key components: (1) similarity calculation,
where the similarity between the current and previous keyframes is computed; (2) candi-
date frame selection, where keyframes that are likely to have loop closures are selected
based on similarity results; and (3) loop verification, which is critical as incorrect loop
closures can lead to severe localization errors, typically involving inliers and co-visible
frames. We focus on the first two aspects.

We employ a multi-layer detection approach to ensure both detection speed and accuracy.

2.4.1. Similarity Calculation

The primary requirement for the first detection layer is high computational efficiency
with a reasonable level of accuracy to filter out a coarse set of candidate frames. The
feature distance will be calculated using the Manhattan distance, characterized by its low
computational complexity, fast speed, and robustness against outliers, making it suitable
for this purpose. The calculation formula is as follows:

m = ∑n
i=1|v1[i]− v2[i]| (17)

where v1 and v2 represent the aggregation feature descriptors of the current frame and the
candidate frame, respectively, and n is the size of the descriptor.

The second layer of detection involves more refined processing. We first assess the
energy distribution of the current grayscale features to accommodate overly dark or bright
image data. We uniformly divide the vector into three segments and calculate the en-
ergy proportion of the first and third segments. When this energy proportion p exceeds
95%, we have sufficient reason to consider the current image excessively dark or bright.
We apply a weighting function to the features for such images, amplifying local differ-
ences. Inspired by Contrast Limited Adaptive Histogram Equalization (CLAHE), we
perform energy proportion and weighting function calculations in each well-segmented
small area to better preserve local information. We then use the correlation coefficient to
calculate similarity. Although this computation is relatively complex, it offers superior
discriminative performance.

p =
∑n/3

i v[i]
∑n

i v[i]
(18)

The weighting function K is defined as follows and is represented in vector form as w:

K(i) =
k√

1 + ( i
i0
)

2
= w[i] (19)
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The correlation coefficient for calculating similarity is as follows:

r = ∑n
i=1 (v1[i]− v1)(v2[i]− v2)√

∑n
i=1(v1[i]− v1)

2∑n
i=1(v2[i]− v2)

2
(20)

where, v denotes the mean of the descriptors, and the range of r is [−1, 1]. The correlation
coefficient reflects the linear relationship between features, making it suitable for feature
selection [51]. In our work, we adopt the discrete form of the correlation coefficient. Unlike
the Manhattan distance used in the first layer of detection, the correlation coefficient is
dimensionless and unaffected by the units of feature vectors. This makes it particularly
advantageous for calculating the similarity between two aggregated feature vectors with
different units. Additionally, the correlation coefficient captures the directional differences
between features rather than just absolute differences, offering higher-detail resolution and
better adaptability to different scenes. Choosing the correlation coefficient for the similarity
calculation in the second layer of detection is a more rational and robust design compared
to conventional distance-based methods.

Applying the weight vector to the similarity calculation, v = wT ∗ v, enhances the
adaptability of the method.

The luminance of an image inherently represents global information. These features
must be handled carefully during the detection to preserve this information. Therefore, the
weighted features should only be used to calculate similarity when the current frame and
the frame under consideration are either excessively dark or bright.

2.4.2. Candidate Frame Detection

This section will discuss the specific process of finding candidate frames. We adopt
a multi-layer detection method to achieve efficient and accurate detection. In the first
layer of detection, although there are two feature datasets, Sc and Sr, composed of column-
aggregation and row-aggregation features, the primary goal is preliminary filtering to
quickly narrow the detection range. It does not require precise results, so selecting one
feature dataset is sufficient. We use Manhattan distance to select k feature vectors with the
smallest distance from the feature set Sr, obtaining a candidate feature set Cr (#Cr = k).
The second layer of detection will perform refined screening among the k-selected frames.
This includes feature distribution judgment and more accurate similarity calculations.
The screening process will comprehensively use aggregation features vr and vc from each
segmented region to calculate similarity.

score =
∑n

i ri
vr ∗ ri

vc

n
(21)

where n is the total number of image segmentation regions and ri
vr and ri

vc are the similarities
of the aggregation features vr and vc, respectively.

The detection process is a progressively refined filtering procedure that comprehen-
sively considers feature types and precise similarity calculations, ensuring that the selected
candidate frames exhibit high relevance and consistency. The specific implementation steps
of the multi-layer detection method can be found in Appendix A. This appendix provides
detailed descriptions of implementing the primary function of the technique.

3. Results

This section evaluates the effectiveness of the proposed method through extensive
experiments. The experimental results are thoroughly analyzed to quantify the contri-
butions of the proposed method in detection performance, computational efficiency, and
localization accuracy, as well as to obtain accurate conclusions.
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3.1. Experimental Setup

The datasets used in this study include local datasets, EuRoC [52], KITTI [53], TUM [54],
and UMA [55]. The local data were collected using a vehicle equipped with four fisheye
cameras mounted on the front and rear bumpers and the left and right mirrors, capturing
around-view images in an underground parking lot of an industrial park. The images have
a size of 416 × 416 pixels and were equipped at a frequency of 10 Hz. Except for the local
dataset, all other datasets used in our work are publicly available. The experimental scenar-
ios encompass indoor and outdoor environments, with images collected from around-view
monitors, standard cameras, and fisheye cameras using vehicles, drones, and handheld
devices. These scenarios cover conditions of normal luminance, low luminance, and high
luminance. A detailed description is provided in Table 1. The diversity of experimental
scenarios and the richness of the image data allow for a comprehensive evaluation of
the effectiveness of the proposed method. Figure 6 shows some complex scenes in the
dataset, such as stitched and rotated images. All experiments have been run on an AMD R5
CPU with 16 GB memory. For each input image, it is vertically divided into eight regions.
When constructing the feature descriptor matrix, the grayscale values are quantized into
32 indexes, and the gradient direction are quantized into 64 indexes. To balance accuracy
and speed in the first layer of detection, the number of candidate frames is set to 10 (k = 10),
meaning that 10 candidate frames are selected for further processing in the second layer
of detection.

Table 1. Explanation of the datasets used in the experiment.

Dataset Explanation

Local dataset Indoor, underground, around-view images, collect by vehicle,
normal luminance

EuRoC Indoor, regular images, collect by drone, low/normal luminance
KITTI Outdoor, regular images, collect by vehicle, normal luminance
TUM Indoor, fisheye image, collect by handheld, low/normal luminance
UMA Outdoor, regular images, collect by handheld, high/low/normal luminance
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3.2. Detection Efficiency

First, we evaluate the computational efficiency of the proposed detection method. ORB
features combined with BOW2, already used and validated in ORB SLAM3, are currently
one of the most widely used loop-closure-detection methods. We will refer to this method
as BOW2 in the following text for brevity. We will compare and analyze computational
efficiency with this method. We only compare the detection time for more accurate results
without geometric verification. Since the proposed loop-closure-detection method has
special processing for overly dark and bright images and the UMA dataset contains such
images, we include the UMA dataset in the experiment. We select sequences with loop
closures from the KITTI and UMA datasets as experimental sequences. The experimental
results are shown in Tables 2 and 3 below, using mean and maximum values as evaluation
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metrics. The reduction is defined as the ratio between the decreased value in the proposed
method and the corresponding result from the comparison method. The experimental
results show that our proposed method outperforms the comparison method based on
both datasets.

Table 2. Comparison of running time (max and mean in ms) between the proposed method and
BOW2. The sequences are from the KITTI dataset.

Sequences 00 05 06 07

Max
BOW2 13.70 9.35 3.70 6.51
Proposed method 8.69 5.32 2.38 2.16
Reduction 36.6% 43.1% 35.7% 66.8%

Mean
BOW2 5.51 4.13 2.95 3.04
proposed method 4.35 2.52 1.05 1.04
Reduction 21.0% 43.8% 64.4% 65.8%

Table 3. Comparison of running time (max and mean in ms) between the proposed method and
BOW2. The sequences are from the UMA dataset.

Sequences Gattaca-1 Gattaca-2 Parking-1 Parking-2

Max
BOW2 6.47 17.03 6.03 7.16
Proposed method 3.64 11.36 6.01 6.07
Reduction 43.7% 33.3% 0.2% 15.2%

Mean
BOW2 3.13 5.72 3.26 3.50
Proposed method 1.85 5.36 1.71 2.01
Reduction 40.9% 6.3% 47.5% 42.6%

3.3. Detection Precision

When evaluating classification results, it is common practice to use the True Positive
(TP), False Positive (FP), False Negative (FN), and True Negative (TN) to describe the
relationship between the predicted and actual results, as shown in Table 4.

Table 4. Relationship between classification results and fact.

Results/Fact True False

True True positive (TP) False positive (FP)
False False negative (FN) True negative (TN)

Loop detection is a classification task, and commonly used evaluation metrics include
precision and recall. Precision represents the proportion of correctly predicted positive
samples out of all samples predicted as positive, while recall indicates the proportion of
correctly predicted positive samples out of all actual positive samples. By using these two
metrics, we can obtain a more comprehensive understanding of the different aspects of the
performance of the loop detection method. The formulas for these metrics are provided in
(22) and (23).

Precision =
TP

TP + FP
(22)

Recall =
TP

TP + FN
(23)

Since the publicly available datasets do not provide ground truth for loop-closure
frames, we used an automated tool to obtain the ground truth for this experiment. Figure 7
below shows a schematic of the KITTI experimental trajectory, with the red trajectory indi-
cating the acquired loop-closure ground truth. To enhance the diversity of the experiment,
we also included a local dataset collected in an underground parking lot. The data comprise
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around-view images primarily used for automated parking functions. The experimental
trajectory and loop-closure ground truth are shown in Figure 8, with the red trajectory
representing the loop-closure ground truth.
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Figure 8. Experimental trajectory and loop-closure ground truth in local datasets.

Precision and recall are mutually exclusive metrics, with the ideal scenario being high
recall and high precision. An important metric for evaluating detection performance is the
precision–recall curve. The methods selected for comparison are BOW2 and SRLCD [39].
Wang et al. [39] proposed an intriguing loop-detection method, SRLCD, which differs from
feature-based methods, like BOW2. Their research suggests that salient regions in images
serve as excellent descriptors, aligning with human recognition processes. Moreover, their
method matches salient regions in the frequency domain, providing rotation and scale
invariance. We tested the proposed method and the comparison methods based on the
00 sequence from the KITTI dataset, which is lengthy and rich in loop-closure scenes, and
plotted the precision–recall curves. Figure 9 below shows the experimental results, with
the X-axis representing recall and the Y-axis representing precision. The dark purple curve
represents the proposed method, while the light purple and pink curves correspond to the
results of BOW2 and SRLCD, respectively.

The core idea of SRLCD is salient region recognition. Still, the local dataset consists of
around-view images that have been cropped and stitched, lacking distinct salient regions,
making SRLCD unsuitable for this scenario. Therefore, we compare only the proposed
method and BOW2 on the local dataset.

In addition to the precision–recall curve, another critical metric for evaluating detec-
tion performance is the maximum recall at 100% precision, which reflects the boundary
performance of the method. A higher recall at this boundary point indicates better detection
performance. The experimental results are shown in Figure 10 below, where the X-axis
represents the test sequences from KITTI and the Y-axis represents recall. The results demon-
strate that the proposed method achieves higher recall at the precision boundary than the
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comparison methods. Notably, in sequence 07, while the proposed method achieved higher
recall than SRLCD, it did not outperform BOW2.
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Figure 9. Precision–recall curves based on 00 sequence (left) and local dataset (right).
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Figure 10. Maximum recall at 100% precision.

To evaluate the detection performance of the proposed method in low-luminance
scenarios, we reduced the overall luminance of all image data to 15% of the original.
Figure 11 shows the image effects before and after luminance reduction. Since SRLCD
performs loop-closure detection based on salient regions and is sensitive to image contrast,
it is unsuitable for low-luminance scenarios. Therefore, this experiment only compares
the proposed method with BOW2. The experimental results are shown in Figure 12.
Overall, the detection performance of the proposed method shows a slight decrease but
still outperforms the comparison method.
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3.4. Trajectory Accuracy

This section primarily evaluates the localization performance and computational
efficiency of the proposed method. The metrics for evaluating localization performance
include the maximum value and root mean square error (RMSE), while computational
efficiency is compared using the average processing time. The first comparison method
is ORB-SLAM3, one of the most advanced visual SLAM methods. We also compare the
benefits with the method, which integrates line features, to evaluate the proposed method
further. As previously described, the principal direction information can represent the
geometric properties of feature points, while line features directly reflect the geometric
edges of the environment. For the second comparison, we selected ORB-LINE-SLAM [28],
one of the advanced SLAMs based on point and line features, where the line feature
descriptor used is the Line Band Descriptor (LBD). A comparison with it will further
explore the potential of principal direction information in enhancing localization accuracy.
We first assess the accuracy and effect of incorporating the principal direction information,
then evaluate computational efficiency, and finally, perform a comprehensive comparison
of the localization performance of the visual SLAM systems. The datasets used for testing
are KITTI, EuRoC, and TUM.

First, we evaluate the localization performance gain after incorporating principal
direction information with the same number of ORB extraction levels. The number of levels
is 8, with a factor of 1.2. The comparison method and proposed method all use the same
number of levels. To clearly display the results, we turned off loop-closure detection and
only compared odometry errors. We selected KITTI sequences 03 to 07. Each group of
results was run five times, and then, we averaged the Max and RMSE results, as shown
in Table 5. The experimental results show that the proposed method outperforms the
comparison method ORB SLAM3 based on all test sequences, with particularly significant
effects on sequences 05 and 06. The RMSE decreased by 12.62% and 23.06%, and the maxi-
mum values decreased by 22.55% and 24.37%, respectively. ORB-LINE-SLAM integrates
line features, which improve overall localization performance compared to ORB-SLAM3.
In sequence 03, ORB-LINE-SLAM outperforms our proposed method. In sequence 07,
the RMSE of our method is reduced by 16.15% at the maximum. In comparison, except
for sequence 03, the proposed method demonstrates superior localization performance.
Figure 13 shows a 2D trajectory comparison result, selecting the significant sequences 05
and 06. The solid trajectory represents the proposed method, while the dashed and dotted
trajectories represent the ground truth and ORB SLAM3. The dash–dot trajectory represents
ORB-LINE-SLAM. The results show that the proposed method is closer to the ground truth.
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Table 5. Average localization error (RMSE and Max in m) over five runs of the executions without
loop correction. Experimental sequences are selected from 03 to 07, from the KITTI dataset. The ratios
in the reduction represent ORB SLAM and ORB-LINE-SLAM.

Sequences 03 04 05 06 07

RMSE

ORB SLAM3 1.3514 0.2406 2.1088 2.1038 1.2341
ORB-LINE-SLAM 1.2060 0.2367 1.9920 1.9270 1.3885
Proposed method 1.3210 0.2172 1.8426 1.6187 1.1642
Reduction 2.25%/−9.54% 9.76%/8.24% 12.62%/7.50% 23.06%/16.00% 5.67%/16.15%

Max

ORB SLAM3 2.4148 0.4221 5.1520 4.0300 2.8769
ORB-LINE-SLAM 2.0625 0.4563 5.1518 3.9385 3.2673
Proposed method 2.3555 0.3876 3.9905 3.0479 2.6627
Reduction 2.45%/−14.21 8.16%/15.06% 22.55%/22.54% 24.37%/22.61% 7.45%/18.51%
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There is no definitive method for selecting the number of levels and factors of the
feature pyramid. Generally, it relates to the size of the image to be extracted and the
scale of the objects to be detected. A larger factor leads to faster image size decay, so the
number of pyramid levels is usually not very high. In ORB SLAM3, the number of levels is
8 with a factor of 1.2, which incurs a significant computational cost. In Reference [16], the
authors compared the effects of feature extraction with different numbers of levels, from 1
to 5, using the Matier dataset, with feature point accuracy and repeatability as evaluation
metrics. The results show that at levels 4 and 5, feature point accuracy and repeatability
decrease rapidly. The down-sampling rate chosen is 2 in Reference [16], and at the third
level (with level 1 as the starting level), where the effect is relatively good, the image size
becomes 1/16 of the original. The benefits brought by higher-level features are limited.
When the number of levels and factor are 8 and 1.2, respectively, the image at the highest
level will be less than 1/12 of the original (with level 0 as the starting level), within a
reasonable range. Considering the above discussion, we choose four levels as the final
experimental number of levels to balance efficiency and accuracy, with a factor of 1.54,
reducing the area of the top image to about 1/12 of the original.

The primary improvement proposed in this method is in the tracking component, so
the focus is on comparing the computational efficiency gains during tracking, including the
time taken for pose prediction and the overall tracking process. The test sequences selected
are sequences 03, 04, 05, 06, and 07 from the KITTI dataset, with loop closures in sequences
03 and 04. The experimental results are shown in Table 6. The results indicate that reducing
the number of levels in the feature pyramid can yield a 24.23% improvement in efficiency
compared to ORB SLAM3. The feature-extraction process operates at the pixel level and
involves grid partitioning, with the extraction time related to the image size. Level 0 has the
most prominent image size and, thus, the highest time cost. Adjusting the number of levels
aligns with theoretical expectations, bringing the expected benefits. ORB-LINE-SLAM does
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not demonstrate an advantage in terms of temporal efficiency. The maximum tracking time
reaches 359 ms, indicating that integrating line features imposes a significant computational
burden on the system. Additionally, incorporating principal direction information into
pose estimation increased the computation time by approximately 1 ms.

Table 6. Running time of pose prediction and total tracking (in ms). Experimental sequences are
selected from 03 to 07, from the KITTI dataset. The ratios in the reduction represent ORB SLAM and
ORB-LINE-SLAM.

Sequences 03 04 05 06 07 Mean

Pose pred
ORB SLAM3 1.924 1.653 1.868 1.770 1.833 1.8096
ORB-LINE-SLAM 20.311 15.015 18.865 16.424 20.987 18.320
Proposed method 2.925 2.247 2.950 2.655 2.754 2.7062

Total
tracking

ORB SLAM3 92.991 107.006 109.367 105.990 106.371 104.345
ORB-LINE-SLAM 345.445 347.838 359.972 347.946 358.183 351.877
Proposed method 73.294 81.968 81.852 79.478 78.274 78.9732
Reduction 21.18%/78.78% 23.40%/76.44% 25.16%/77.26% 26.41%/77.16% 24.23%/78.15% 24.23%/77.56%

Comprehensive tests are conducted to verify the positioning accuracy of the improved
visual SLAM. The datasets chosen are KITTI, EuRoC, and TUM, with detailed descriptions
of the dataset scenarios in Table 1. Pose estimation uses the improved pose estimation
method. The loop-closure-detection method uses the one proposed in our work, with geo-
metric verification also incorporated after loop-closure detection to prevent false detections.
The comparison method ORB SLAM3 uses BOW2 for loop-closure detection with default
parameters. The integration of line features significantly reduces the real-time performance
of ORB-LINE-SLAM, which is unacceptable for practical use. Therefore, in the comprehen-
sive experiments, we only use ORB-SLAM3 as the comparison method. The experimental
results are shown in Table 7. The results demonstrate that the improved system does not
decrease the positioning accuracy and even brings slight gains in most sequences.

Table 7. Average localization error (Max/RMSE in m) over five runs of the executions.

Dataset Seq. Length LC ORB SLAM3 Proposed Method

KITTI

00 3724 √ 4.112/1.211 3.299/1.286
01 2453 − 24.986/15.027 23.617/14.541
04 394 − 0.422/0.241 0.388/0.217
05 2206 √ 1.688/0.957 1.680/0.918

EuRoC

MH01 81 − 0.161/0.045 0.137/0.044
MH02 74 − 0.103/0.044 0.103/0.045
MH03 131 − 0.122/0.056 0.134/0.048
MH04 92 − 0.209/0.057 0.217/0.069

TUM

room1 146 √ 0.128/0.078 0.127/0.076
room2 142 √ 0.130/0.050 0.130/0.051

corridor1 305 √ 0.257/0.107 0.215/0.092
corridor2 322 √ 0.295/0.119 0.252/0.104

Seq.: the experimental sequences from dataset. Length: the length of trajectory in m. LC: loop closure. √: provide
loop closure.

In summary, to balance the computational efficiency and localization accuracy, we
made a trade-off in the number of levels in the feature pyramid based on previous research
and innovatively introduced principal direction information and Pareto optimal solutions
to ensure that localization accuracy was not decreased. The experimental results align
with expectations.

4. Discussion

In this study, we propose an enhanced visual SLAM method based on the principal
direction projection of feature points, improving the applicability and computational
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efficiency. We also integrate global image information, grayscale, and gradient direction
to construct feature descriptors for position recognition. Experimental results show that
introducing principal direction projection error for position estimation accuracy can achieve
satisfactory gains with the same number of levels. Using this method while reducing the
number of feature extraction levels improves computational efficiency while maintaining
positioning accuracy. The proposed loop-closure-detection method improves detection
efficiency and accuracy compared to the comparison method. In this discussion, we will
analyze the benefits of the method in terms of detection efficiency, detection accuracy, and
localization accuracy.

The second section of the experimental study evaluates the computational efficiency
of the proposed loop-detection method by comparing it with BOW2 [38]. To improve
computational efficiency, the proposed method optimizes two aspects. First, it reduces
the dimensionality of the data by aggregating the 2D feature matrix into a 1D feature
vector, reducing storage space and decreasing the complexity of distance calculations,
leading to higher efficiency. Second, a multi-layer detection strategy is employed, where
the first-layer-detection phase prioritizes speed by using a simple distance calculation
to identify candidate frames, and the second-layer-detection phase focuses on accuracy,
thereby improving the overall detection efficiency. Regarding the comparison method,
Reference [20] introduces a hierarchical vocabulary tree to enhance search efficiency, and
in practical use, an inverted index is often used to associate each word with the images
in which it appears. Typically, the number of extracted feature points ranges from 1000
to 2000, with each node in the vocabulary tree having ten child nodes and a tree depth
of 6. This setup requires many computations during the word calculation phase. Despite
the accelerated processing techniques used, the computational load remains significant.
Experimental results show that the proposed method outperforms the comparison method
regarding computational efficiency.

In the third section, we evaluated the gains in the detection performance of the
method. The detection performance of the proposed method is superior to SRLCD [39] and
BOW2 [38]. SRLCD uses salient regions for the loop-closure judgment, but unlike semantic
information, the detailed features of salient regions are not very prominent, limiting their
distinctiveness. Reference [39] also mentioned adding necessary verification modules,
but to make the results more intuitive during our experiments, we only compared the
detection methods and disabling verification modules, which is also why the precision
of SRLCD is limited. Regarding BOW2, in Reference [38], the authors constructed a
hierarchical dictionary structure through clustering to avoid the enormous computational
cost of directly comparing features with dictionary words one-to-one. While this provides
higher search efficiency, it also reduces discrimination. Moreover, for generality, we did
not conduct targeted vocabulary training for specific usage scenarios but used a general
vocabulary table trained on a large number of various types of images. These two points
are the main reasons affecting the detection performance of BOW2. Of course, SRLCD
and BOW2 mainly focus on local information, ignoring global information, which also
impacts performance. The method proposed in our work demonstrates superior detection
performance compared to the comparison methods, which we attribute to the following
principal reasons. Firstly, dividing the image into regions to capture more image features
indeed brings better effects, consistent with the conclusions in Reference [37]. Secondly,
the constructed feature descriptor uses a feature matrix that fuses image grayscale and
gradient features, considering both global and detailed information in the image. The
features can reflect the current usage environment without targeted training. Lastly, the
multi-layer detection approach ensures detection accuracy using a more distinctive distance
calculation method in the precise detection stage. In sequence 07 of Figure 10, the proposed
method does not demonstrate superior performance compared to BOW2. This is related
to image occlusion, as dynamic objects consistently appear in the loop-closure segment.
When the proportion of dynamic objects in the images exceeds a certain threshold, the
original grayscale and gradient features of the images are altered significantly, negatively
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impacting the detection accuracy of the proposed method. This also highlights a limitation
of the proposed method, as dynamic objects can interfere with the detection precision.

In the comprehensive experiments presented in the fourth section, we primarily
compare localization accuracy and computational efficiency. First, by incorporating the
principal direction projection error with the same number of pyramid levels, the RMSE
of localization results shows an improvement of up to 23.06% compared to ORB SLAMS.
Line features can effectively capture geometric information, especially in structured en-
vironments with abundant geometric edges [29]. When point features cannot effectively
represent the scene characteristics, integrating line features can provide better spatial
constraints. The experimental results demonstrate that point-line-based SLAM shows
improved performance compared to ORB-SLAM3. However, line features have instability
and complexity in matching, such as incomplete line segments and repeated parallel lines,
leading to less robust performance in certain scenarios. Additionally, the results indicate
that the proposed method, which incorporates principal direction information, outperforms
the method integrating line features. We attribute our improvement to the following critical
reasons: (1) the principal direction can characterize the global geometric features of feature
points and focuses on parts with significant data changes, effectively adding additional
structural information constraints. Moreover, diverse constraints can help avoid local
optima; (2) the Pareto optimal solution ensures optimal overall performance, enhancing the
quality of the results. Next, in the computational efficiency tests, compared to ORB SLAM3,
the proposed method achieves an average improvement of 24.23%, which is dependent on
the input image size. As detailed in Reference [18], the ORB feature-extraction process is
closely related to image size. Our method reduces the number of feature extraction levels,
decreasing the computational load associated with feature extraction. Since the first level
(level 0) has the largest image size and accounts for the majority of the computation time,
reducing the number of levels by half does not correspond to a proportional reduction
in the computational time. The integration of line features results in significantly higher
computational costs. It necessitates the simultaneous extraction and matching of both point
and line features, increasing the complexity of the entire process. The preprocessing of
line features, such as line segment merging and removal, contributes non-negligibly to the
computational burden. The increase in the computational cost raises the probability of
unreliable estimations, which limits the overall performance improvement of the system.
Finally, extensive multi-scenario testing on various datasets demonstrates that our method
improves the computational efficiency without compromising the localization accuracy.
Although reducing the number of pyramid levels might introduce feature-extraction and
matching errors, which could lead to pose estimation deviations, including principal direc-
tion information compensates for these potential inaccuracies. The experimental results
align with our expectations.

5. Conclusions

In visual SLAM, both operational efficiency and localization accuracy are crucial.
The research purpose of our work is to improve operational efficiency while maintaining
high positioning accuracy. We address two specific issues: (1) the multi-level feature
extraction in visual SLAM significantly contributes to the computational cost of the front-
end. (2) The BOW-based loop closure detection method requires pre-trained vocabularies,
limiting its practical use. Therefore, we propose an enhanced visual SLAM method that
incorporates principal direction information during pose estimation to ensure accuracy
and utilizes grayscale and gradient information to construct feature descriptors for loop-
closure detection.

Based on our research and experimental evaluation, we can obtain the following conclusions:

1. Incorporating principal direction information during pose estimation can improve the
estimation accuracy. When maintaining the same number of feature-extraction layers,
the RMSE of the position estimation can be reduced by up to 23% in the best case
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compared to ORB SLAM3 with only an additional approximate 1 ms of computation
time, providing satisfactory results.

2. Based on aggregated feature descriptors, the proposed loop-closure-detection method
outperforms comparative methods in both computational efficiency and detection
accuracy. It is adaptable to various image types, including around-view and fisheye
images.

3. The experimental data were collected from various devices with different image types
and application scenarios, demonstrating the strong generalization capability of the
proposed enhanced method across different sensors and environments. This aligns
well with the design purposes.

Certainly, the proposed detection method does have its limitations, with occlusion
being the most significant challenge. Large areas of occlusion can alter the global features
of an image, impacting the detection precision of the method. In future work, we plan
to mitigate the effects of dynamic occlusion by incorporating stereo-based joint detection
or image sequence-based methods. Integrating contextual information could also further
enhance the detection performance. We will further optimize the storage structure of
the aggregated descriptors to accelerate detection, particularly for long-term detection
tasks. Additionally, we will continue to focus on improving the operational efficiency of
SLAM systems.
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Appendix A

To provide a clearer presentation of the multi-layer detection algorithm, we have
detailed its implementation steps in Algorithm A1. The function firstLayerFilter primarily
narrows the range of candidate frames, using only one aggregated feature vector and a fast
similarity calculation method. The function secondLayerFilter utilizes all feature vectors
and a more precise similarity calculation to obtain the final reliable candidate frames.

Algorithm A1: Multi-layer detection algorithm

Input:
kf_db: keyframes database
cur_kf: current keyframe
Output:
n: the number of candidate frames
v: the vector of candidate frames
1: function firstLayerFilter (kf_db, cur_kf):
2: for each frame in kf_db:
3: dis←manhattanDistance (frame.vr, cur_kf.vr)–vr is row aggregation feature vector
4: if dis < distanceHeap.top( ):–Max-Heap. The maximum value is at the top.
5: distanceHeap.pop ()
6: distanceHeap.addDis (dis)
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7: end if
8: end for
9: return distanceHeap[1: k]
10: function secondLayerFilter (distanceHeap[1: k], &n, &v):
11: n← 0
12: for each frame in distanceHeap:
13: if the contrast of frame and cur_kf is too low:
14: frame.vr← weightFunction (frame.vr)
15: score_vr← similarityFunction(frame. vr, cur_kf. vr)
16: score_vc← similarityFunction (frame.vc, cur_kf.vc)–vc is column aggregation feature vector
17: if score_vr * score_vc > threshold:
18: n++
19: v.addFrame (frame)
20: end if
21: else
22: score_vr← similarityFunction (frame.vr, cur_kf.vr)
23: score_vc← similarityFunction (frame.vc, cur_kf.vc)
24: if score_vr * score_vc > threshold:
25: n++
26: v.addFrame (frame)
27: end if
28: end if
29: end for
30: function mian (kf_db, cur_kf):
31: distanceHeap← firstLayerFilter (kf_db, cur_kf)
32: secondLayerFilter (distanceHeap[1: k], n, v)
33: return n, v
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