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Abstract: Aiming to improve the efficiency of the online process in path planning, a novel searching
method is proposed based on environmental information analysis. Firstly, a search and rescue
(SAR) environmental model and an unmanned ground vehicle (UGV) motion model are established
according to the characteristics of a mining environment. Secondly, an online search area path-
planning method is proposed based on the gray system theory and the reinforcement learning theory
to handle multiple constraints. By adopting the multi-attribute intelligent (MAI) gray decision
process, the action selection decision can be dynamically adjusted based on the current environment,
ensuring the stable convergence of the model. Finally, experimental verification is conducted in
different small-scale mine SAR simulation scenarios. The experimental results show that the proposed
search planning method can capture the target in the search area with a smoother convergence effect
and a shorter path length than other path-planning algorithms.

Keywords: search and rescue (SAR); unmanned system; path planning; partially observable Markov
decision process (POMDP); gray system

1. Introduction

UGVs can replace humans in performing hazardous tasks with their superior speed,
mobility, and atmospheric independence [1]. In recent years, research into UGV control
has concentrated on navigation, SAR, area coverage, and military tasks. As an important
function of UGV, SAR has received significant attention in academia, with the key focus
areas including search area prediction [2,3], SAR force configuration [4], and rescue path
planning [5–7]. The complex structure of mining caves lacks environmental information,
and there is a risk of secondary explosions and collapses during the rescue process. To ad-
dress the above dilemma, UGVs (see more detailed information about mining UGVs in [8])
have been considered to replace humans in dangerous SAR missions due to their advan-
tages of low cost and high efficiency. Additionally, their path planning is a prerequisite for
subsequent rescue missions. Therefore, the path-planning problem derived from this has
always been an important topic in the field of UGV applications [9–11].

Previously, the research focus of SAR was on point-to-point path planning. According
to the difference in target information, it can be categorized as known and unknown target
path planning [12]. When in different application backgrounds, it can be classified as
indoor planning, outdoor planning, or maritime planning [13]. In addition, according to
the types of application platforms, robots can be classified as isomorphic path planners
or heterogeneous path planners [14–16]. What is noteworthy is that most of the above
methods plan paths based on precise or fuzzy target location information, which has high
dependence on the in-variance of the demand. However, path planning without the targets’
location information is more in line with the general scenario and more challenging.
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To address the dimension explosion caused by large amounts of data, most online
POMDP methods are based on forward-looking searches, and these technologies reduce
the complexity from different angles [17,18]. Among them, the most classic is PRIMAL [19].
These methods can usually be classified into three categories: Branch-and-Bound Prun-
ing [20,21], Monte Carlo Sampling [22–26], and Heuristic Search [27–30]. However, most
research using these methods has the following main shortcomings: (1) agents require
much training before completing path-planning tasks, namely offline learning, and spend
many resources on that; (2) it is also difficult for agents to respond when task maps differ
significantly from training maps.

When the environmental structure is unfixed, observations are discrete through the
sensor system’s data acquisition process. In order to study path-planning methods, mod-
eling the environmental information of mining caves is necessary. In addition, obviously,
a path-planning problem with real-time reactions to environmental uncertainty is NP-hard,
which has been proven by Ryan A. MacDonald and Stephen L. Smith using informative
path planning [31]. And the partial observable Markov decision process (POMDP) search
balances short-term tracking performance and the long-term final cost [32]. The envi-
ronmental information objectively exists in a stable state of change, in which the subject
generally lacks awareness. The external world is a generally steady resource, and stable
information is considered to not require storage [33]. Targeting the challenges above,
this paper proposes a gray Q-Learning (GQL) search area path-planning method using
UGV as the agent. This method combines the even gray model (EGM) prediction model,
the MAI gray decision process, and the Q-Learning (QL) action planning model. The main
contributions of this paper are as follows:

• A method for constructing an environmental model and an information feature mining
method based on EGM are proposed to address the lack of environmental information
in mining SAR.

• An agent-centered path-planning model based on the RL theory is proposed for
the online path-planning problem. The optimization reward function designed for
multiple scenarios effectively solves the conflict problem between paths, obstacles,
and traps.

• A heuristic decision-making strategy based on the gray system theory is proposed for
our SAR problem, which helps the model accelerate convergence towards the target
and improve the robustness of the intelligent agent decision-making process.

The remaining sections of this paper are organized as follows: Section 2 introduces the
constraints in the search area path-planning process used in Section 3. Section 4 provides a
detailed description of the algorithm, a GQL search area path-planning method for the mine
SAR problem. The proposed model is compared with the A* search algorithm [34], rapidly
exploring the random tree (RRT) algorithm [35] and QL algorithm [36]. The simulation
results and their discussion follow in Section 5, and the paper is concluded with a summary
and an outlook for future work in Section 6.

2. Constraints in Search Area Path Planning

Although the natural environment undergoes constant changes, subtle changes occur
in adjacent environments. Therefore, ground information is usually a stable resource that is
always continuous when there are no obstacles [33]. Environmental information objectively
exists in a stable state of change, but the subject generally lacks awareness of this fact. In
new environments, it is impossible to obtain environmental data, but the observations
with the scope measured by the sensor system describe the UGV’s understanding of the
environment. The assumptions are as follows:

Assumption 1. The SAR environmental information is described as the measured value of the
sensor system.

Assumption 2. The SAR environmental state always continues slightly.
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There may be multiple coupled constraints for point-to-point path planning with an
unknown target position, and the constraints that this paper focuses on are the resource
and time expenditure of the search target. Based on the above analysis, it is reasonable to
evaluate the efficiency of search area path-planning methods from the following aspects.

2.1. Probability of Detection (POD)

The POD calculates the similarity between the characteristic values of the current
position and the target position, as shown in (1), and describes the probability of a successful
search at the current position of the target.

POD =
1
4
(1 + e0.1(cT−ca))2

e0.1(cT−ca)
(1)

2.2. Relative Distance (RD)

The RD is defined as follows, and refers to the Euclidean distance between the agent’s
and target’s current positions in real time.

RD = |pt − pa| (2)

pt is the grid unit of the target, and pa is the grid unit of the agent.

2.3. Characteristic Distance (CD)

The CD is defined in (3) and it describes the ability of agents to approach targets
autonomously. The faster the characteristic distance converges, the higher the search efficiency.

CD = POD × RD (3)

3. SAR Environment Modeling
3.1. Environment Model

The environment is formulated as 2D grid worlds of size m × m ∈ N2 with a cell size
of c and a set of all possible positions M. The buildings and walls that the UGV cannot
occupy are given by the set

W =

{[
xW

i , yW
j

]T
:
[

xW
i , yW

j

]T
∈ M

}
(4)

The traps where the UGV will be punished are given by the set

B =

{[
xB

i , yB
j

]T
:
[

xB
i , yB

j

]T
∈ M

}
(5)

The environment can be described by functions f1, f2, . . . , fe, and the eigenvector at
position p ∈ M is

Fp = ( f1(p), f2(p), . . . , fe(p)) (6)

The state of the target is described through its position:

ptarget =
[
xtarget, ytarget

]T ∈ M − W (7)

The target tends to appear in positions within the feature interval, such as

Flow ≤ Fptarget ≤ Fup (8)

The UGV moves within the limits of the grid world, and the state of the UGV is
described through the following:

• Its position;
• Its operational status , either inactive or active;
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• Its field of view (FOV), the grid world size with the cell size, and the set of all
possible positions.

The distance that the UGV walks in a mission’s online time slot δt is equivalent to the
cell size c. The position of the UGV evolves according to the motion model given by

p(t + 1) =
{

p(t) + a(t), φ(t) = 1
p(t), otherwise

(9)

The evolution of the operational status φ(t) of the UGV is given by

φ(t + 1) =
{

0, φ(t) = 0 ∨ p(t) = ptarget
1, otherwise

(10)

The end time point T is defined as the time slot when the UGV reaches its terminal
state without actively operating.The following constraints restrict the UGV mobility model:

p(t) /∈ W, (a)
t ≤ T, (b)
φ(0) = 1, (c)

(11)

3.2. Optimization Problem

Using the environment model, the central aim of the UGV path-planning problem is
to search the position of the target, given as H, while adhering to mobility constraints (8)
and (11). The optimal problem is given over joint actions ×a(t) by

max×a(t) H
s.t.(8)(11)

(12)

4. Search Area Path-Planning Model for Mine SAR

Considering practical applications, the model work is performed as a two-step map-
ping process based on the visual and position sensors. Due to the state transition of the
agent with the Markov property, the POMDP can provide a general framework [18]. Based
on the above processes, the workflow of the gray online method is shown in Figure 1.

Environment

Excution
Terminater

Planning
Terminater

Obstacle
Avoidance

Sensor

UV
Action

Target
Calculation

Target
Search

Target
Result

Observation

Grey System
Module Reinforcement

Learning
Navigator

Figure 1. The workflow of the gray online method.

4.1. Local Path-Planning Reward Function

The state space s(t) ∈ S of search area path-planning problem consists of the envi-
ronment and the agent. Meanwhile, the states in the observation space Ω are given as
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fmap = finformation × fposition : Environment → Ω and fposition ∈ N2 and finformation ∈ R.
Observations o(t) (5 × 5 FOV in mission) are defined through the tuple

o(t) =
(

M(t), V(t), W(t), B(t), ptarget(t), {φ(t)}
)

(13)

A security controller is introduced into the system to implement an obstacle avoidance
constraint (a). The security controller evaluates the point Vi,j(t) in the map and determines
whether it can be reached. If not, it treats this point as ∅.

Vij(t) =
{

∅, (xi, yj) ∈ W
Vi,j(t), otherwise

(14)

In addition, a safety controller evaluates the agent’s action a(t) and determines
whether the action should be punished. Based on the conclusion, the corresponding
safety penalty value β is offered:

β(t) =
{

−1, p(t) + a(t) ∈ B
0, otherwise

(15)

The reward function R : S × A × S → R of the POMDP is defined as

r(t) = τ × Φ(t) + β(t) + ε (16)

The agent reaches a new state s(t + 1) which may depend on the state s(t) and action
a(t), and updates value Q.

4.2. Environmental Data Prediction Process

In order to highlight the attribute of the uncertain information, the environment data
are treated as gray numbers [37], that is, more attention is paid to the nature of the data
than the values. Therefore, it is necessary to preprocess the data. However, the prediction
system with limited information may be affected by interference. Firstly, for the information
system with the gray attribute, the gray number and buffer operator [38] are combined
to describe the data of the information system. Secondly, the data analyzed by the gray
algorithm are preprocessed by the even gray model (as shown in Figure 2).

Environmental data 

predict point 

Even Grey ModelTarget Map Obstacle Map

Data Maps

decision point 

planning part

multi-attribute grey 
decision-making method

Figure 2. Environmental data prediction processing.

The FOV data sequence d(0)(k) is described by generating the function G(o(k)), and its
one time accumulating generation operator(1-AGO) sequence D(1) can be calculated as

D(1) =
(

d(1)(1), d(1)(2), . . . , d(1)(n)
)

(17)
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Thus, the sequence Z(1)

Z(1) =
(

z(1)(1), z(1)(2), . . . , z(1)(n)
)

(18)

can be obtained from
z(1)(k) =

1
2

(
d(1)(k) + d(1)(k − 1)

)
(19)

So, the even gray model of the environmental data prediction process is

d(0)(k) + az(1)(k) = b (20)

in which −a is the development coefficient and b is the gray actuating quantity. The predic-
tion sequence is the basis for the subsequent algorithm to determine the optimal decision.

4.3. The Multi-Attribute Gray Decision Process

This paper presents a multi-attribute gray decision-making method to find solutions
in exploration and development to enable UGVs to independently complete search tasks.
In the new model, the following constraints of the observation space are regarded: feature
constraints, update constraints, exclusion constraints, and attraction constraints. Four data
maps are formed from the constraints, and the target map and the obstacle map constitute
a complete observation space.

The feature constraint U(1) = (u(1)
ij ) is regarded as an interval number, and is a

moderate-type objective with the upper limit Gmax and lower limit Gmin assumed.
When u(1)

ij ∈
[

Gmin, 1
2 (Gmax + Gmin)

]
, the lower effect measurement function for a

moderate objective is

r(1)ij =
2
(

u(1)
ij + Gmin

)
Gmax − Gmin

(21)

When u(1)
ij ∈

[
1
2 (Gmax + Gmin), Gmax

]
, the upper effect measurement function for a

moderate objective is

r(1)ij =
2
(

Gmax − u(1)
ij

)
Gmax − Gmin

(22)

The update constraint U(2) =
(

u(2)
ij

)
is a benefit-type objective; the more significant

the effect sample value, the better. The effect measurement function for the benefit-type
objective is

r(2)ij =
u(2)

ij − 5
2

maxi maxj

{
u(2)

ij

}
− 5

2

(23)

The exclusion constraint U(3) =
(

u(3)
ij

)
is a benefit-type objective. The effect measure-

ment function for this objective is

r(3)ij =
u(3)

ij

maxi maxj

{
u(3)

ij

} (24)
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Attraction constraint reflects the agent’s preference for the map after starting. If the
agent has no preference, the map should be searched evenly. The attraction constraint
U(4) =

(
u(4)

ij

)
is a cost-type objective. The effect measurement function for this objective is

r(4)ij =
u(4)

ij

mini minj

{
u(4)

ij

} (25)

Furthermore, the decision weight of the k-th objective is ηk(k = 1, 2, 3, 4). The uniform
effect measurement matrix of the decision strategy sij ∈ S under the k-th objective is

R(k) =
(

r(k)ij

)
. The synthetic effect measurement of decision strategy sij is

rij =
s

∑
k−1

ηkr(k)ij (26)

The synthetic effect measurement matrix is R = (rij). Using the synthetic effect
measure matrix, effect values of different significance, dimensions, and characters can be
comprehensively considered to determine the optimal decision strategy.

5. Experimental Verification and Result Analysis
5.1. Simulating Scenarios and Experimental Setup

The environment of the simulated case models and randomly selects three scenarios
based on the mining SAR environment model. In order to verify the ability of the UGV
agent to avoid obstacles online, the scene is randomly set by a map generation code (based
on the code in [19]), and only kept consistent in the comparative experiment. Because the
experiment involves online path-planning verification, the UGV does not conduct offline
learning in advance. All algorithms in this paper are coded and implemented in Python ver-
sion 3.9. The training environment for this model is Intel Core i7-4710MQ CPU @2.50 GHz
four cores Chinese-made laptop.

5.2. Simulation and Comparison Experiment

The model is compared with the A* search algorithm, RRT algorithm, and QL algo-
rithm, while the rolling online algorithm is used to supplement the traditional algorithm.
The comparison results are shown in Figure 3. In order to adapt to a four-way proxy,
the A* search algorithm combines a linear function and the Manhattan distance as the
heuristic function. The RRT algorithm selects the nearest node to join the tree after obstacle
judgment. The QL algorithm combines the average rolling algorithm to complete the test,
which is different from the proposed method. All algorithms only search online on the
map without being trained beforehand. From Figure 3, it can be seen that the A* search
algorithm cannot adapt to real-time scenarios, and the agent is easily trapped in deadlock
situations, resulting in its inability to complete tasks. Due to the lack of a target decision
process, the generalization ability of the RRT algorithm could be improved in different sce-
narios, and the algorithm often cannot continue due to stuttering during runtime. The QL
algorithm and the proposed method can complete planning and produce coverage search
paths, but the proposed method performs better when searching for the target.
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 3. The planning results of different algorithms in three scenarios (from top to bottom: A*
algorithm, RRT algorithm, QL algorithm, and our algorithm). The orange arrow in the figure
represents the search path. The green arrow represents the movement of the target. The yellow star
represents the final capture position.

Statistical analyses are conducted on the path-planning results for final coverage,
repeated coverage, and step size to evaluate the above algorithms. Table 1 shows the
quantitative evaluation results. It shows that the search path produced by the proposed
method performs better when searching for the target. In addition, the algorithm is
evaluated from the perspective of searchability. As shown in Figure 4, the proposed
method has the fastest convergence speed. This indicates that the agent in the proposed
method catches the target preferentially. Traditional path-planning algorithms are prone to
becoming stuck in local optima, especially when dealing with autonomous navigation tasks
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in unknown maps. In contrast, reinforcement learning algorithms have more substantial
autonomous planning capabilities. Our improved algorithm has a faster convergence speed
in the autonomous planning process and can effectively handle searching for dynamic
targets in unknown maps.

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 4. Comparison of changes in CD values between different algorithms. (a–c) Numerical
statistical results of CD of four algorithms in Scenario 1, Scenario 2, and Scenario 3, measuring ability
to search for target.

Table 1. Quantitative evaluation of planning results for different scenarios.

Scenario Algorithms Step Coverage (%) Repeated Coverage
(%)

Scenario 1

A* - 9.81 -
RRT 68 31.31 1.40
QL 143 57.94 9.35

Ours 45 21.50 0

Scenario 2

A* - 5.96 -
RRT 80 37.16 0
QL 66 30.73 0

Ours 40 15.60 3.21

Scenario 3

A* - 9.95 -
RRT 56 27.01 0
QL 73 32.23 2.37

Ours 42 20.38 0

5.3. Policy Evaluation

According to the planning results of sub-section A, the improved algorithm is smaller
than the conventional QL planning algorithm in terms of running step size. In addition,
the QL algorithm has a high repetition coverage rate. The target decision algorithm can
play a good role in assisting with decision making. To evaluate whether the corresponding
parameters of the target decision algorithm can effectively assist in the decision problem
when the target position is uncertain, 20 simulation experiments were carried out in the
mine SAR scenario in Figure 5. Figure 5 shows that the median set of step size of the
guidance scheme is smaller than that of the average scheme. In addition, the step sizes of
guidance schemes is concentrated below 200, and the data fluctuation is not significant.
In contrast, the step sizes of the average scheme are discretely distributed between 225 and
375, resulting in significant data fluctuation. The above results illustrate that the guided
solution has a better adjustment effect on the target decision algorithm.

The search results under different schemes are shown in Figure 6. In the early and
medium stages, all schemes remain explored and developed to obtain the best search
path. In the later stage, however, the average scheme will still maintain a high probability
of exploration, reducing data use. The above results indicate that improved policy has
advantages from the perspective of action selection.
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Figure 5. A comparison of the step size values of UGV agents successfully searching for targets
under different scheme settings. The black line in the figure represents the edge value, the blue line
represents the quartile value, and the red line represents the median value.

(a) Average scheme (b) Guided scheme

Figure 6. The results of path planning for different schemes. The orange arrow in the figure represents
the search path. The green arrow represents the movement of the target. The yellow star represents
the final capture position.

5.4. Reward Function Evaluation

The data for different solutions are shown in Table 2. Figure 7 shows the performance
of planning operation steps under different reward function solutions. The same curve
trend can be observed between the unimproved and improved solutions, indicating that
these two solutions play a role in solving obstacle avoidance and goal orientation. However,
the convergence speed of the improved solution is faster. Meanwhile, the search path-
planning results under different schemes are shown in Figure 8. During the learning
process, the learning speed of the unimproved solution is slower, resulting in inaccurate
planning multiple times. The improved solution provides more accurate results than the
unimproved one during the learning process. It reduces the repetitive path rate of the agent
and improves the efficiency of online planning. This proves that the reward function is
goal-oriented for the intelligent agent, enabling it to learn gradually.
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Table 2. The principle parameters of the target-tracking algorithm.

Solution Parameter Value

Improved Solution

learning rate 0.8
reward decay 0.9

ϵ greedy 0.9

Φ(t) 5
0

β(t) −1

Unimproved Solution

learning rate 0.4
reward decay 0.8

ϵ greedy 0.9

Φ(t) 1
0

(a) Unimproved (b) Improved

Figure 7. A comparison of different solutions in Table 2 in terms of training effectiveness. (a) The
change process of training steps in the unimproved scheme. (b) The change process of training steps
in the improvement plan.

(a) Unimproved (b) Improved

Figure 8. The results of path planning for different solutions. The orange arrow in the figure
represents the search path. The green arrow represents the movement of the target. The yellow star
represents the final capture position.

6. Conclusions and Future Work

This paper studies the online path planning of mine SAR. Based on simulating an
SAR environment using the characteristics of a mining cave field, a path-planning model
for POMDP-based online search areas is proposed. The gray objective decision function
guides this model and plans the optimal search path through information analysis, making
it more flexible and intelligent. The comparative experimental results show that the model
can complete target search tasks online in different maps of the same region and generate
search paths to achieve faster convergence to dynamic target positions.
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The future potential trends that can be integrated with the planning issues of UGVs
will include, but are not limited to, the following:

• The interaction of UGVs with Cyber–Physical systems could enhance UGV’s adapt-
ability to dynamic environments and validate the effectiveness and feasibility of
path-planning algorithms through the use of 3D virtual reality models [39].

• The strategic application of human–machine interaction technology is not just a pos-
sibility, but a promising avenue that is poised to play a pivotal role in the rapid
advancement of UGV intelligence [40].

• Swarm Intelligence technology can expand UGVs’ application scope and significantly
improve its efficiency in completing tasks [41].

• Another important research direction to enhance the autonomy of UGVs is to com-
bine them with Internet of Things technology to improve their flexibility in different
locations [42,43].

Given the aforementioned topics, further in-depth research will be carried out within
the above-specified fields.
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