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Abstract: A metamaterial-based non-uniform dipole array antenna is presented for high gain 5G
millimeter-wave applications with a wideband characteristic. Initially, a non-uniform dipole array
is designed on a 0.202 mm thick Rogers RO4003C substrate, offering a wide operating bandwidth
ranging from 23.1 GHz to 44.8 GHz. The dipole array antenna emits unidirectional end-fire radiation
with a maximum gain of 8.1 dBi and an average gain of 6.7 dBi. Subsequently, to achieve high gain
performance, a 5 × 7 metamaterial structure is designed in the direction of the antenna radiation.
The implemented metamaterial structure is optimized for the operating frequency, enhancing the
directivity of the antenna radiation and resulting in a gain increment of more than 3 dBi compared
to the dipole array alone. The developed metamaterial-integrated dipole array antenna offers an
operating bandwidth (S11 < −10 dB) of more than 21 GHz (63.92%), ranging from 23.1 GHz to
44.8 GHz, covering the most commonly used 5G millimeter-wave frequency bands (n257, n258, n259,
n260, and n261). Furthermore, the presented antenna yields a stable high gain with a peak gain of
11.21 dBi and a good radiation efficiency of more than 64%. The proposed antenna is an excellent
option for millimeter-wave 5G systems due to its overall properties, particularly its high gain and
end-fire radiation characteristics, combined with a wide operating bandwidth.

Keywords: mm wave antenna; dipole array; end-fire radiation; metamaterial; high-gain antenna

1. Introduction

In recent years, there has been a noticeable increase in research and development
in the high-frequency domain, specifically the millimeter-wave (mmWave) frequency
band [1–3]. This surge is a part of a continuous pursuit to surpass the limitations of data
transmission speed and network capacity, with a particular focus on the development of the
next-generation mobile communication system, 5G. 5G promises not only superior speed
compared to existing 4G LTE (Long-Term Evolution) systems but also lower latency and
higher data rates over a wider frequency range [4,5]. 5G technology is designed to support
various data-intensive applications such as autonomous vehicles, artificial intelligence, and
the Internet of Things (IoT), all of which require high-speed internet connections [6]. The
recent and upcoming 5G millimeter-wave applications are demonstrated in Figure 1.

One of the core technologies of the 5G network is New Radio (NR) technology, which
utilizes the millimeter-wave frequency band ranging from 24 GHz to 86 GHz [7]. This
frequency band, largely unused by previous generations of mobile communication systems,
offers a very wide bandwidth that theoretically enables gigabit-level ultra-high-speed data
transmission [8–10]. The use of such a wide bandwidth solves potential capacity issues
faced by future wireless communications, providing a foundation for uninterrupted con-
nectivity and ultra-fast data services to users [11]. Many countries have already considered
or chosen the 26/28 GHz band for the construction of 5G networks, playing a crucial role
in accelerating the global standardization and commercialization of 5G services [12,13].
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crucial role in accelerating the global standardization and commercialization of 5G ser-
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Figure 1. Representation of mm wave device connection in 5G-NR environment. 

However, utilizing the millimeter-wave band comes with several challenges. Nota-
bly, the mm wave frequency band experiences relatively high propagation losses due to 
physical limitations such as attenuation by atmospheric molecules. To overcome these is-
sues, communication systems require technical solutions such as high-gain antennas [14–
16]. Recently, innovative antenna design methods have been proposed to enhance the per-
formance of the millimeter-wave antenna [17–28]. A quasi-Yagi array antenna with a 
folded dipole driver is proposed for 5G mm wave applications in [17],while a series-fed 
antenna array is proposed in [18] for high antenna gain. However, the antennas in both 
[17] and [18] suffer from narrow operating bandwidths. In [19], a partially reflective sur-
face (PRS) is utilized with a Fabry–Perot cavity antenna to achieve high gain operating at 
the 60 GHz band, but this antenna occupies a larger space because of its double substrate 
layers with additional foam layers in between the substrate layers. Additionally, a log-
periodic dipole array with director cells [20], planar segmented techniques [21], metasur-
face layers [22], slot antennas with substrate-integrated waveguides [23], defected ground 
antennas with metallic vias [24], and clover-type antenna array techniques are utilized in 
the literature to enhance the performance the of millimeter-wave antennas [25]. However, 
these antennas either suffer from a large overall antenna volume [21–23] or very low an-
tenna gain [24–26]. 

Besides the above-mentioned techniques, metamaterial is also becoming popular 
among researchers to enhance the performance of millimeter-wave antennas [27–29] be-
cause of its capability to enhance the gain and bandwidth of antennas. In [27], a metamate-
rial layer is utilized 16 mm above the designed patch antenna to increase the antenna gain. 
Likewise, in [28,29], metamaterial is used to achieve high antenna gain. These reported 
works [27–29] achieve  high antenna gain; however, all of these works have the limitation 
of a narrow bandwidth. Additionally, the antenna in [27] suffers from a large antenna 
volume. 

In this work, a high-gain millimeter-wave antenna is proposed based on metamate-
rial. At first, an array of non-uniform dipoles is designed to provide a broad operational 
bandwidth within the millimeter-wave frequency range. The dipole array antenna pro-
vides a wider bandwidth and end-fire radiation characteristics with lower gain. To im-
prove the gain of the designed dipole array, a metamaterial array structure is proposed. 
By utilizing the proposed metamaterial structure, the gain is improved by more than 3 

Figure 1. Representation of mm wave device connection in 5G-NR environment.

However, utilizing the millimeter-wave band comes with several challenges. Notably,
the mm wave frequency band experiences relatively high propagation losses due to physi-
cal limitations such as attenuation by atmospheric molecules. To overcome these issues,
communication systems require technical solutions such as high-gain antennas [14–16].
Recently, innovative antenna design methods have been proposed to enhance the perfor-
mance of the millimeter-wave antenna [17–28]. A quasi-Yagi array antenna with a folded
dipole driver is proposed for 5G mm wave applications in [17], while a series-fed antenna
array is proposed in [18] for high antenna gain. However, the antennas in both [17] and [18]
suffer from narrow operating bandwidths. In [19], a partially reflective surface (PRS) is
utilized with a Fabry–Perot cavity antenna to achieve high gain operating at the 60 GHz
band, but this antenna occupies a larger space because of its double substrate layers with
additional foam layers in between the substrate layers. Additionally, a log-periodic dipole
array with director cells [20], planar segmented techniques [21], metasurface layers [22],
slot antennas with substrate-integrated waveguides [23], defected ground antennas with
metallic vias [24], and clover-type antenna array techniques are utilized in the literature to
enhance the performance the of millimeter-wave antennas [25]. However, these antennas
either suffer from a large overall antenna volume [21–23] or very low antenna gain [24–26].

Besides the above-mentioned techniques, metamaterial is also becoming popular
among researchers to enhance the performance of millimeter-wave antennas [27–29] be-
cause of its capability to enhance the gain and bandwidth of antennas. In [27], a metamate-
rial layer is utilized 16 mm above the designed patch antenna to increase the antenna gain.
Likewise, in [28,29], metamaterial is used to achieve high antenna gain. These reported
works [27–29] achieve high antenna gain; however, all of these works have the limitation of
a narrow bandwidth. Additionally, the antenna in [27] suffers from a large antenna volume.

In this work, a high-gain millimeter-wave antenna is proposed based on metamaterial.
At first, an array of non-uniform dipoles is designed to provide a broad operational
bandwidth within the millimeter-wave frequency range. The dipole array antenna provides
a wider bandwidth and end-fire radiation characteristics with lower gain. To improve the
gain of the designed dipole array, a metamaterial array structure is proposed. By utilizing
the proposed metamaterial structure, the gain is improved by more than 3 dBi. To validate
the proposed work, a prototype of the designed antenna is manufactured and tested. The
proposed method is also validated by the measurement results. The rest of the manuscript
is organized as follows: The antenna design methods and design procedure are explained
in detail in Section 2. The results of the proposed antenna are presented in Section 3 along
with the performance analogy of the designed antenna. Finally, the proposed work is
concluded in Section 4.
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2. The Design of the Metamaterial-Integrated Dipole Antenna
2.1. The Dipole Array Antenna Design

The array dipole antenna and its performance parameters are explained in this subsec-
tion. The initial dipole antenna is designed on a 32 mm × 10 mm Rogers RO4003C substrate
with a thickness of 8 mils, a dielectric constant εr = 3.55, and a loss tangent δ = 0.0027. The
dipole array antenna without the proposed metamaterial structure is depicted in Figure 2,
and its design parameters are listed in Table 1. In this work, a partial ground plane is
utilized instead of a full ground plane, as the end-fire radiation characteristic is targeted.
Usually, with the full ground plane, the antenna offers a broadside radiation pattern [15].
In the proposed design, the half of the dipole array at the front side is connected to a
feedline, and the other half of the dipole array at the back side is connected to the partial
ground plane. The proposed antenna offers end-fire radiation with a very wide operating
bandwidth, as shown in Figure 3. The designed dipole array yields a wide bandwidth,
ranging from 23.2 GHz to 45.3 GHz. With a peak gain of 8.02 dBi and an average gain
of 6.59 dBi, the proposed dipole array provides unidirectional end-fire radiation. In the
simulation software, instead of an ideal port, a millimeter-wave connector is designed and
connected to the antenna, as can be seen in Figures 3b and 4. With this actual connector
model, the results of the antenna after fabrication can be realized.
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Figure 2. The dipole array antenna: (a) a view of the individual sides and (b) a partially transparent
view of the substrate.

Table 1. The design parameters and the optimal values of the dipole array antenna.

Parameter Value (mm) Parameter Value (mm) Parameter Value (mm) Parameter Value (mm)

SL 32 f 2 0.3 h3 1.3 p4 0.65
Sw 10 L 3.2 h4 1.1 q1 1.4
FL 14.4 H 8.3 p1 1.8 q2 0.7
GL 15.3 h1 3.2 p2 1.17 q3 0.6
f 1 0.5 h2 1.5 p3 1 q4 0.45
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Figure 4. The surface current distribution of the dipole array at different operating frequencies.

The surface current distribution of the dipole array antenna at different operating
frequencies is also shown in Figure 4. It can be observed from the current distribution
graph that the lower resonances are generated by the longer arms. At 26 GHz, the lower
arms show a high level of current density. Similarly, the shorter arms are responsible for
the higher band resonances. At 28 GHz, the middle arms show increased current density.
Meanwhile, at 38 GHz, the highest current density is observed in the shortest arm of the
dipole array.

A parametric study of the array dipole antenna is presented in Figure 5 only for the
parameters P1 and P4 to show the controllability of the reflection coefficient of the designed
antenna. It can be observed from the parametric study graph in Figure 5 that by controlling
the P1 parameter, the resonance at the lower band can be controlled, and by controlling
the P4 parameter, the upper operating frequency band can be controlled. Similarly, by
controlling the other parameters of the dipole, the resonance of the antenna can be changed
or improved.
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2.2. Metamaterial Unit Cell Design

The metamaterial structures have the ability to interact with the electromagnetic
waves of any antenna and change the antenna’s radiation performance [30]. As the dipole
antenna alone offers a very low average gain of 6.7 dBi with a maximum peak gain of
8.1 dBi, a novel metamaterial structure is proposed to enhance the gain of the designed
dipole antenna by boosting radiation directivity. Initially, a unit cell is developed for the
targeted frequency spectrum. Afterwards, the unit cell is copied and translated to design
the proposed metamaterial structure. The simulation setup and results of the designed
unit cell, along with its dimensions, are presented in Figure 6. The dimensions of the
developed unit cell are shown in Figure 6a, and the parametric values are listed in Table 2.
Additionally, the working principle of the metamaterial is illustrated in Figure 6b, where ni
and n0 represent the refractive index in the substrate and air, respectively. Snell’s law states
the relation between ni and n0, as presented in Equation (1):

nisin(θi) = n0sin(θ0), (1)

where θi is the angle of incidence and θ0 is the angle of refraction. This relationship clarifies
how the artificial material guides electromagnetic waves, resulting in energy convergence.
Whenever ni > 1, the energy transmitted through the material will be converged in air,
resulting in highly directional radiation that consequently increases the gain of the antenna
with end-fire radiation characteristics [31,32]. On the other hand, to increase the perfor-
mance of the antenna with broadside radiation, the value of the refractive index should be
zero or near zero [33].

Table 2. The design parameters and the optimal values of the metamaterial unit cell.

Parameter Value (mm) Parameter Value (mm) Parameter Value (mm)

u1 1.08 u3 0.495 u5 0.27
u2 0.252 u4 0.18 u6 0.09

Additionally, the characteristic responses and material properties are displayed in
Figures 6c and 6d, respectively. The fundamental parameters of a metamaterial unit cell are
the effective permittivity (ϵ) and permeability (µ). These parameters can be expressed by
Equation (2) and Equation (3), respectively [34].

ε =
n
z

(2)
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µ = nz (3)

Here, n represents the refractive index, and z is the impedance of the metamaterial.
The parameters n and z can be easily calculated using Equations (4) and (5) [35,36] from the
characteristic responses shown in Figure 6c, where the electromagnetic wave transmission
(S21) and reflection (S11) characteristics are presented. Furthermore, k is the free-space wave
impedance, d is the thickness of the virtual homogeneous slab which stands in for the actual
geometry, m = 0, 1, 2, 3, . . ., and R01 = (z − 1)/(z + 1).

z = ±

√√√√ (1 + S11)
2 − S2

21

(1 − S11)
2 − S2

21

(4)

n =
1

k0d

{
Im

[
ln
(

s21

1 − s11R01

)]
+ 2mπ − iRe

[
ln
(

s21

1 − s11R01

)]}
(5)
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Figure 6. The properties of the metamaterial unit cell: (a) a schematic diagram with the design
parameters, (b) the gain enhancement mechanism, (c) the characteristic response, and (d) the material
properties.

It can be observed from the material properties of the designed metamaterial unit
cell, as shown in Figure 6d, that the meta-cell provides a non-resonant mode within the
frequency range of 20–44 GHz by exhibiting a stable ε value around 8.2, while µ remains
stable around 4.2. In this scenario, the refractive index of the metamaterial can be estimated
from Equation (6), and the refractive index value is more than 1 within the targeted
frequency band.

ni =
√
εi.µi (6)

Hence, the refractive index remains consistently above 1 within this specified region,
and the directivity of the antenna is enhanced as per Snell’s law, as previously explained.
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2.3. The Dipole Array Antenna with the Proposed Metamaterial Structure

After achieving a good response from the metamaterial unit cell for the targeted
frequency band, the proposed metamaterial structure is employed at the top side of the
dipole array, at both the front and back side, as presented in Figure 7, to enhance the
performance, particularly in terms of high gain. The dipole array antenna is evaluated with
a different number of unit cells for the best gain performance. Figure 8 contains the gain
response of the dipole antenna with a different number of metamaterials. While Figure 8a
shows the gain response of the variation in the cells in the horizontal position, Figure 8b
presents the gain response of the varying cell numbers in the vertical arrangement. It can
be observed from the gain graphs that the proposed 5 × 7 metamaterial structure offers the
best gain performance, with a maximum gain of 11.21 dBi. The minimum and maximum
gain responses of different metamaterial cell arrangements along with their corresponding
frequency responses are presented in Table 3.
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Table 3. Gain and frequency responses for various configurations of metamaterials.

Metamaterial
Arrangement

Gain (dBi) Frequency
Response (GHz)

Metamaterial
Arrangement

Gain (dBi) Frequency
Response (GHz)Min. Max. Min. Max.

3 × 7 5.12 10.3 23.5–40.1 5 × 5 6.5 10.39 23.3–40.9
5 × 7 7.28 11.21 23.1–44.8 5 × 7 7.28 11.21 23.1–44.8

7 × 7 6.4 10.63 23.5–40.6 5 × 9 7.72 11.43
23.2–36.4
36.5–39.6
40.7–44.8
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3. Antenna Results and Discussion

The performance parameters of the proposed metamaterial-based array dipole antenna
are presented in this section. All of the antenna performance parameters, including the
reflection coefficient, radiation characteristics, radiation efficiency, and gain, are suitable
for wideband 5G NR millimeter-wave applications. The fabricated antenna prototype
is shown in Figure 9a, while Figure 9b contains the measurement setup in an anechoic
chamber [37] used for the antenna’s radiation characterization. The S-parameters of the
proposed metamaterial-based dipole antenna are measured in a normal environment using
the Keysight E8364B PNA network analyzer. The far field is measured in an anechoic
chamber, as shown in Figure 9b, while a horn antenna with standard performance is used
as the transmitting antenna, and the proposed antenna receives the signal as a receiver.
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Figure 9. Photographs of the presented metamaterial-integrated dipole array antenna: (a) the
fabricated prototype and (b) the radiation characterization measurement setup.

3.1. Reflection Coefficient

The reflection coefficient characteristic of the proposed metamaterial-based array
dipole antenna is displayed in Figure 10. The proposed antenna offers a wide operating
bandwidth from 23.1 GHz to 44.8 GHz. With an Agilent E8364B network analyzer in open-
air, ambient settings, the S-parameters of the recommended antenna are measured. As seen
in Figure 10, the slight difference between the simulation and measurement results is caused
by cable/connector losses. A very broad impedance bandwidth of 63.92% (S11 ≤ −10 dB)
is provided by the recommended antenna between 23 GHz and 45 GHz. The proposed
bandwidth spans the whole n257, n258, and n259 frequency ranges as well as the n260 and
n261 frequency bands for 5G NR millimeter-wave communication, which is recommended
by the Third Generation Partnership Project (3GPP) and the ITU.
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Figure 10. The reflection coefficient of the metamaterial-integrated dipole array antenna.

3.2. Radiation Pattern

Figure 11 illustrates the radiation pattern of the proposed metamaterial-based non-
uniform dipole array antenna at different frequencies. While the 3D directivity pattern at
26 GHz, 28 GHz, and 38 GHz is presented in Figure 11a, the 2D polar radiation gain pattern
is presented in Figure 11b. It can be seen from both simulated and measured radiation
pattern graphs that the antenna offers an end-fire radiation characteristic. Due to the equip-
ment losses during measurement, there is a slight mismatch between the simulated and
measured results. The presented antenna yields a maximum gain of 11.21 dBi at 41 GHz,
with 30.7◦ and 43.4◦ half-power-beam widths (HPBWs) at the E and H planes, respectively.
The HPBW of the presented antenna at different frequencies is listed in Table 4, and the
gain plot of the proposed antenna with respect to frequency is presented in the subsequent
subsection, where the gain and radiation efficiency are explained. Additionally, the pro-
posed antenna shows a side-lobe level less than −6 dB within the operating frequency band,
which makes the proposed antenna suitable for the MIMO configuration for 5G technology.
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Figure 11. The radiation pattern of the developed metamaterial-integrated dipole array antenna:
(a) simulated 3D directivity at different frequencies and (b) 2D polar radiation pattern with gain scale.

Table 4. The HPBW of the proposed antenna at different operating frequencies.

Freq.
(GHz)

HPBW (◦) Freq.
(GHz)

HPBW (◦) Freq.
(GHz)

HPBW (◦) Freq.
(GHz)

HPBW (◦)
E Plane H Plane E Plane H Plane E Plane H Plane E Plane H Plane

22 73 87.2 28 54.1 74.4 34 42.4 47.6 40 31.6 45
24 54.6 75.9 30 60.3 72.8 36 38.3 45.2 42 28.1 42.9
26 51.7 76.8 32 50.7 59.1 38 35.2 50.2 44 24.9 43.7

3.3. Gain and Radiation Efficiency

The gain and radiation characteristics of the proposed antenna are demonstrated
in Figure 11, while the gain and the radiation efficiency are presented in Figure 12. It
can be seen from Figure 12a that without the metamaterial structure, the antenna gain is
quite low, especially at 28 GHz around 5 dBi, while the proposed metamaterial-integrated
antenna offers a stable high gain of around 8 dBi within the operating frequency band,
as presented in Figure 12b. Additionally, with the proposed metamaterial structure, the
antenna provides a high maximum gain of 11.21 dBi at 41 GHz. The proposed metamaterial
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structure enhances the directivity of the antenna’s radiation, resulting in a gain increase of
more than 3dBi compared to the dipole array alone. Due to antenna performance tradeoffs,
the metamaterial structure shows a discontinuous result at higher frequencies (34–36 GHz),
as depicted in Figure 6, which results in slightly lower radiation efficiency at that region, as
can be seen in Figure 12. The proposed metamaterial structure configuration is finalized as
it offers a significant gain enhancement. Overall, the proposed antenna also offers a good
radiation efficiency of more than 64% within the operating frequency band, as shown in
Figure 12b.
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3.4. Performance Comparison

The performance comparison of the proposed metamaterial-based millimeter-wave
antenna with similar available mm wave antennas from the literature is presented in Table 5.
The performance is compared in terms of the type of antenna design, antenna volume,
center frequency, bandwidth, radiation direction, peak gain, and substrate layers. Several
antenna designs are reported in the literature to boost the performances of millimeter-
wave antennas [17–27]. The reported antennas in [17,18,20,24–26] are designed on a single
layer, while [10,25] offer wide operating bandwidths. However, all of these antennas
suffer from very low antenna gain, especially the antennas in [24] and [25]. Similarly, the
antennas in [21–23] and [27] suffer from the requirement of multi-substrate layers and offer
narrow functional bandwidths. In contrast, our proposed metamaterial-based antenna
offers a very high antenna gain of 11.21 dBi with a wide operating bandwidth of 63.92%.
The performance parameters of the proposed antenna, high gain, wide bandwidth, and
especially the end-fire radiation characteristics, make it a strong contender for wideband
millimeter-wave 5G applications.

Table 5. Performance comparison of proposed metamaterial-based high-gain mm wave antenna.

Refs. Antenna Type Total Antenna Size
(λ × λ × λ)

Center Freq.
(GHz) BW (%) Radiation

Direction
Peak Gain

(dBi)
Substrate

Layers

[17] Quasi-Yagi 5.88 × 4.22 × 0.07 28 9.64 Broadside 9.8 Single
[18] Planar series-array antenna 6.07 × 1.74 × 0.015 26 15.38 Broadside 10 Single
[20] Log-periodic dipole array + director cell 2.49 × 1.51 × 0.05 30.5 58.46 End-fire 10.95 Single

[21] Multi-layer planar segmented antenna
(PSA) 1.213 × 1.213 × 0.113 28 21.6 Broadside 11.5 Double

[22] Metasurface-integrated dipole 2.76 × 2.76 × 2.78 30.5 21.5 End-fire 11 Single + 2 layers
of metasurface

[23] Dielectric-loaded stepped slot antenna +
substrate-integrated waveguide (SIW) 1.31 × 0.75 × 0.39 37.5 23.6 End-fire 7.2 Double

[24] Planar antenna with defective ground +
metallic vias 2.8 × 1.4 × 0.03 28 29.82 Omnidirectional 6.49 Single

[25] Ring-shaped patch with slotted ground 0.77 × 1.21 × 0.028 33 42.4 Omnidirectional 5.36 Single
[26] Clover antenna array 3.6 × 0.347 × 0.05 26 32.6 Broadside 9 Single

[27] Printed antenna + Metamaterial Layer 1.68 × 2.05 × 1.65 27.96 5.9 Broadside 11.94 Double + 1
foam layer

This work Non-uniform dipole array with
metamaterial 2.98 × 0.93 × 0.019 33.95 63.92 End-fire 11.21 Single
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4. Limitations and Future Work Directions

This antenna provides broadband operation with stable gain and end-fire radiation.
However, this work is limited to the exploration of a single-element design. For future
communications, multiple-input multiple-output (MIMO) configurations are essential. To
check the suitability of an MIMO configuration of the proposed metamaterial-integrated
antenna, a two-port MIMO antenna is designed, as shown in Figure 13. Subsequently, the
MIMO performance is studied. The distance between the two single antennas is kept as
low as 3.8 mm.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 15 
 

[21] 
Multi-layer planar segmented an-
tenna (PSA) 1.213 × 1.213 × 0.113 28 21.6 Broadside 11.5 Double 

[22] Metasurface-integrated dipole 2.76 × 2.76 × 2.78 30.5 21.5 End-fire 11 
Single + 2 
layers of 
metasurface 

[23] 
Dielectric-loaded stepped slot an-
tenna + substrate-integrated 
waveguide (SIW) 

1.31 × 0.75 × 0.39 37.5 23.6 End-fire 7.2 Double 

[24] 
Planar antenna with defective 
ground + metallic vias 2.8 × 1.4 × 0.03 28 29.82 Omnidirectional 6.49 Single 

[25] Ring-shaped patch with slotted 
ground 

0.77 × 1.21 × 0.028 33 42.4 Omnidirectional 5.36 Single 

[26] Clover antenna array 3.6 × 0.347 × 0.05 26 32.6 Broadside 9 Single 

[27] 
Printed antenna + Metamaterial 
Layer 1.68 × 2.05 × 1.65 27.96 5.9 Broadside 11.94 

Double + 1 
foam layer 

This 
work 

Non-uniform dipole array with 
metamaterial 2.98 × 0.93 × 0.019 33.95 63.92 End-fire 11.21 Single 

4. Limitations and Future Work Directions 
This antenna provides broadband operation with stable gain and end-fire radiation. 

However, this work is limited to the exploration of a single-element design. For future 
communications, multiple-input multiple-output (MIMO) configurations are essential. To 
check the suitability of an MIMO configuration of the proposed metamaterial-integrated 
antenna, a two-port MIMO antenna is designed, as shown in Figure 13. Subsequently, the 
MIMO performance is studied. The distance between the two single antennas is kept as 
low as 3.8 mm. 

 
Figure 13. The 2-port MIMO configuration of the proposed metamaterial-integrated non-uniform 
dipole array. 

The simulated reflection coefficient (Sii) and transmission coefficient (Sij) results of the 
designed two-port MIMO antenna are presented in Figure 14a. It can be seen that with the 

Figure 13. The 2-port MIMO configuration of the proposed metamaterial-integrated non-uniform
dipole array.

The simulated reflection coefficient (Sii) and transmission coefficient (Sij) results of the
designed two-port MIMO antenna are presented in Figure 14a. It can be seen that with
the MIMO configuration, the antenna shows similar reflection coefficient characteristics
to the proposed single-unit antenna. Moreover, the proposed antenna with the MIMO
configuration offers very low mutual coupling (Sij) of less than −28 dB within the operating
frequency band.
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Other simulated MIMO performances metrics, such as the envelope correlation co-
efficient (ECC) and diversity gain (DG), derived from the S-parameters, are presented in
Figure 14b. The MIMO configuration shows a very low ECC value, while the DG is close
to the ideal value of 10 dB. Both the ECC and DG show good MIMO performance of the
proposed antenna. Overall, the MIMO configuration of the proposed antenna shows an
excellent performance, which makes it a viable candidate for 5G millimeter-wave MIMO
technologies.

5. Conclusions

In this article, a high-gain millimeter-wave antenna with wideband characteristics is
presented for 5G NR applications. The high-gain characteristic of the proposed metamaterial-
integrated antenna is achieved by using the developed metamaterial structure. Initially, a
non-uniform array dipole antenna is designed with a wide operating frequency band on an
8 mil thick Rogers RO4003C substrate. At this stage, the designed dipole antenna offers
a peak gain of 8.02 dBi and a wide operating frequency. Afterwards, to boost the gain of
the designed antenna, a metamaterial structure is proposed. The unit of the metamaterial
structure is created and optimized in CST 2023 simulation software for a targeted frequency
band from 22 GHz to 45 GHz. While the unit cell shows a promising performance for the
targeted band, a repeated structure of the designed metamaterial unit cell is integrated with
the designed dipole array in the direction of radiation. The proposed 5 × 7 metamaterial
structure enhances the directivity of the antenna’s radiation, resulting in a high gain of
more than 3 dBi compared to the dipole alone, which means that the gain of the initial
antenna is doubled by using the proposed metamaterial. To validate the proposed method,
a prototype of the presented antenna is fabricated and measured. The proposed antenna
offers a wide operating bandwidth (23.1 GHz–44.8 GHz), covering the whole spectrum of
5G NR technology, including the n257, n258, n259, n260, and n261 bands. Moreover, the
antenna offers a high antenna gain of 11.21 dBi with end-fire radiation characteristics. The
proposed antenna offers a good radiation efficiency of more than 64% within the functional
frequency band. Additionally, the proposed antenna shows a side-lobe level of less than
−6 dB within the operating frequency band, which makes the proposed antenna suitable
for the MIMO configuration in 5G technology. The overall performance of the presented
metamaterial-integrated antenna makes it a viable option for 5G NR millimeter-wave
applications.
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