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Abstract: This paper investigates the factors influencing the probability of fatality in various types
of maritime accidents, including grounding, capsizing, sinking, man overboard incidents, and fatal
falls, with a focus on several contributing factors—alcohol consumption, meteorological conditions,
and visibility. Through comprehensive analysis, the alcohol consumption was examined in order
to show how it impairs judgment and physical abilities, significantly increasing the risk of fatal
outcomes in these accidents. The paper explores the interplay between alcohol consumption and
other contributing factors, such as time of day (daytime/night) and weather conditions, providing
a comprehensive understanding of how these variables collectively influence fatality rates in EU
maritime transportation. The findings underscore the critical need for stringent alcohol regulations
and enhanced safety protocols to mitigate the heightened risks associated with alcohol-impaired
maritime operations.
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1. Introduction

Alcohol consumption is a critical issue in maritime transportation, significantly im-
pacting the safety and wellbeing of seafarers and passengers alike. Alcohol as a major
contributor to human error is a critical risk factor that needs to be managed. The maritime
environment, characterised by long hours, social isolation, and high stress levels, makes sea-
farers particularly vulnerable to alcohol dependence. This dependence not only endangers
the individuals but also poses severe risks to the overall safety of maritime operations.

The International Maritime Organisation considers alcohol consumption to be a sig-
nificant contributing factor in maritime accidents, responsible for 15–20% of maritime
accidents globally. This critical factor impairs visual functions, psychological stability, and
cognitive abilities, which can have catastrophic consequences. Despite the implementa-
tion of international and national regulations, and strict alcohol policies, alcohol-related
accidents continue to persist in maritime transport.

In light of these challenges, this paper aims to identify the effects of alcohol consump-
tion on board maritime vessels, examining the alcohol levels in the circle of individuals
influencing the occurrence of accidents. Additional influential factors during the accidents
(darkness and meteorological factors) were taken into consideration.

It is important to note that the issue extends beyond crew members to passengers,
especially on cruise ships where alcohol consumption is common because of beverage
packages. In recent years, several accidents have involved alcohol-affected passengers. For
example, in a 2015 accident near Toronto, a passenger fell overboard and subsequently lost
his life with a blood alcohol content of 190 mg/100 mL [1]. Additional factors contributed
to his death, including darkness, but it remains uncertain whether he would have survived
without the influence of alcohol. In 2020, a fatal accident in Norway involving a pilot and a
passenger occurred. Their recreational craft crashed into the shore at 36 knots, resulting in
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critical injuries and their deaths later that day. The AIBN stated that alcohol impairment,
high speed, and nighttime conditions were contributing factors. Alcohol likely impaired
attention and decision making, with fatigue and poor night vision potentially contributing
as well [2].

In cases of accidents where alcohol is the primary contributing factor, crew members
under the influence are responsible in 90% of instances. A notable example is the grounding
of the M/V Wakashio off the southeast coast of Mauritius, which resulted in significant
hull damage and a fuel oil spill that contaminated the coastline. The accident was likely
caused by the master and chief officer navigating without detailed charts and altering the
passage plan to receive a smartphone signal, reflecting a lack of awareness regarding safe
navigation practices. Alcohol was identified as a contributing factor, impairing the crew’s
decision making and risk assessment, which led to the grounding [3]. Another alcohol-
related accident occurred in December 2021, when the UK-registered cargo ship Scot Carrier
collided with the Danish vessel Karin Høj in Sweden, causing the Karin Høj to capsize,
which tragically resulted in the loss of two crew members. The investigation revealed
that the second officer on the Scot Carrier had consumed alcohol and was influenced by
alcohol, resulting in fatigue; moreover, he was distracted by a tablet during his watch,
which contributed to the accident [4]. Thus, this paper aims to identify the effects of alcohol
consumption on board maritime vessels by examining alcohol levels among individuals
involved in accidents. Additional factors, such as darkness/visibility and meteorological
conditions, were also considered. Based on data collected from almost 40 maritime accidents
where alcohol was a contributing factor, a prediction model using real data is presented to
assess the probability of fatality.

2. Literature Overview

This section provides an overview of scientific literature regarding the effects of alcohol
on maritime accidents. The literature reviewed in this section reveals the significant impact
of alcohol on maritime safety.

Komulainen’s (2024) [5] analysis of maritime accidents in the Baltic Sea highlights
the significant impact of alcohol on safety and security on board passenger vessels. The
findings reveal that alcohol consumption is a major contributing factor to many maritime
accidents, pointing out the need for stringent alcohol regulations and effective monitoring
to ensure the safety of maritime operations.

Gug et al. (2022) [6] investigated the effects of alcohol on the navigational and decision-
making abilities of ship navigators. The paper shows that even low levels of alcohol
consumption can impair cognitive functions and motor skills, leading to decreased perfor-
mance in ship manoeuvring and an increased risk of accidents.

Hasanspahić et al. (2021) [7] examined the role of the human factor in marine accidents.
The paper categorised causal factors and discovered the ones that were the most common.
The findings showed that the causes of maritime accidents were primarily dependent on
two main human factor categories and confirmed that by influencing these two categories,
the number of accidents could be reduced.

Wang et al. (2021) [8] explored the relationship between the severity of maritime
accidents and influencing factors. The obtained results show that the marine accident
severity is positively associated with sinking accidents, strong wind, heavy sea, strong
current, and/or good visibility. With respect to ship types, fishing vessels, yachts and
sailing vessels, and other ship types are the ship types most involved in accidents of higher
severity. The severity level is higher for ships having incomplete or invalid seafarers’
certificates, inadequate ship manning, incomplete or invalid ship certificates, and/or an
age of over 30 years.

Shi et al. (2021) [9] reviewed the development of research on maritime accidents
involving human factors by using a structured analytic technique. The authors identified
research gaps: inadequate fundamental exploration of nonlinear interaction and intervening
mechanisms, lack of application-based conceptualisation of maritime-specific analytical
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frameworks, and methodological limitations regarding data collection and quantitative
analysis.

Lee (2020) [10] examines the specific context of Korea to understand how alcohol affects
maritime safety. Lee’s research highlights several significant accidents attributed to alcohol
consumption, discussing both the immediate and long-term impacts on maritime operations
and safety culture. The study also assesses the effectiveness of Korean regulations and
enforcement practices.

Nævestad et al. (2018) [11] examined the safety culture in maritime transport in Nor-
way and Greece, focusing on unsafe behaviours, such as working under the influence of
alcohol. The study finds a strong correlation between alcohol consumption and unsafe
maritime behaviours, including increased accident rates. The authors suggest that enhanc-
ing safety culture and addressing alcohol abuse can significantly reduce the incidence of
maritime accidents.

Oluseye and Ogunseye (2016) [12] investigated the human factor issues responsible
for maritime accidents in Nigeria. The authors examined nine human-related factors that
are major causes of maritime accidents, namely poor crew interaction, crew fatigue, drugs
and alcoholism, unsafe vessel speed, commercial pressure from management, complicated
work processes, gaps in working knowledge, faulty crew judgment, and deliberate unruly
behaviour; five of them—crew fatigue, drugs and alcohol, unsafe vessel speed, faulty crew
judgment, and wilful behaviour of crew members—were significantly related to safety
performance.

Chauvin et al. (2013) [13] analysed maritime collisions and identified decision errors
as the primary cause. They highlighted several factors contributing to accidents, includ-
ing poor visibility, misuse of instruments, loss of situational awareness, and inter-ship
communication failures. The paper also emphasised the role of leadership in planning
inappropriate operations and non-compliance with the Safety Management System (SMS).
Additionally, the analysis categorised accidents into three classes, with a particular focus
on collisions in restricted waters, poor visibility in open sea, and overall deficiencies in the
socio-technical system.

Österman (2012) [14] identified several performance-influencing factors in maritime
operations, with a particular focus on the impact of alcohol. The paper demonstrates
that alcohol consumption significantly affects decision-making processes and physical
coordination, increasing the likelihood of accidents. The paper emphasises the need for
strict alcohol policies and continuous monitoring to ensure maritime safety.

Helander et al. (2009) [15] addressed the reliability issues of alcohol testing in maritime
safety programs. The paper identifies failures in current testing procedures and suggests
improvements to ensure accurate and reliable results.

Kim et al. (2007) [16] conducted experiments using ship handling simulators to study
the effects of alcohol on navigational performance. Their findings indicate that alcohol
consumption significantly impacts various aspects of ship handling, including coordination,
reaction times, and decision-making abilities.

Ritze-Timme et al. (2006) [17] examined the performance of 21 captains navigating a
container vessel. Their performance was assessed before and after alcohol consumption.
The paper concluded that none of the participants, under the influence of alcohol, was
capable of operating the simulated ship adequately.

Psaraftis (2002) [18] emphasises the importance of proactive safety measures in the
maritime industry. The author argues that reactive approaches, which respond to accidents
after they occur, are insufficient for ensuring long-term safety. He highlights that proactive
strategies, such as stringent regulations, monitoring, and effective training programs, are
crucial. While the paper broadly addresses maritime safety, it underscores the need for
preventive measures against factors like alcohol consumption, which can impair judgment
and lead to accidents.

Howland et al. (2001) [19] explored the effects of low-dose alcohol exposure on
maritime cadets’ ship handling abilities. The paper reveals that even low levels of alcohol
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can significantly impair performance, suggesting that zero-tolerance policies might be
necessary to ensure safety in maritime operations.

3. Problem Background

Alcohol damages numerous physical and mental functions that are crucial for safe
operations on board maritime vessels. The occurrence of on-board alcohol consumption
is significantly high and contributes to a high number of fatalities in both commercial
and recreational maritime shipping [14]. It is crucial to understand the effects of alcohol,
its metabolism, and the consequences of its consumption, as well as the identification of
alcohol on board as a risk factor contributing to fatalities on maritime vessels.

3.1. Effects of Alcohol

Alcohol consumption significantly impacts various aspects of human physiology and
cognitive function. Even a small amount of alcohol can have notable effects on attention,
memory, and overall performance, highlighting the increased risks to safety and operational
efficiency at sea. By examining the health consequences of alcohol use, we underscore the
importance of stringent regulations and awareness in mitigating alcohol-related maritime
accidents. Alcohol consumption, especially excessive consumption, poses numerous health
risks, affecting the wellbeing of individuals. The liver, which is mainly responsible for
metabolizing alcohol, can suffer from fatty liver, hepatitis, and cirrhosis (a condition
characterised by irreversible scarring and liver failure). The pancreas is also vulnerable,
with chronic alcohol use leading to pancreatitis (an inflammation disrupting digestion
and blood sugar regulation). Another common consequence of heavy drinking is higher
blood pressure, which increases the risk of heart disease, stroke, and other cardiovascular
issues [14,19].

Cognitive functions, which are critical for crew members and seafarers, involve the
ability to perceive and react, processing and understanding, decision-making processes,
and the production of appropriate responses to the environment [20].

Alcohol can result in the impaired performance of seafarers due to impaired physical
and mental functions, which are crucial for the safe and efficient operation of a vessel
(As mentioned, in study [17] the performance of more than 20 captains was examined.
Their performance was assessed before and after alcohol consumption. The findings point
to the fact that none of captains under the influence of alcohol was capable of operating
the simulated ship adequately.). Such impaired performance was demonstrated in many
maritime accidents with alcohol as a contributing factor. For example, in December 2021,
the collision between the general cargo vessel Scot Carrier and the split hopper barge Karin
Høj resulted in the capsize of the barge with two fatalities in Sweden. As mentioned, the
subsequent investigation of the accident revealed that one of the main causes of the accident
was that the watchkeeper was impaired from the use of alcohol and was also distracted by
the use of a tablet during his watch [4].

Alcohol also impairs attention and the ability to concentrate on specific tasks. This
is critical for crew members who must maintain high vigilance for extended periods.
Impaired attention can lead to missed signals or delayed reactions, increasing the risk of
accidents [21].

The ability to react immediately in the case of danger is crucial. To stop a large
merchant vessel requires long distances and time for course changes. Moreover, many
vessels must maintain a minimum speed to stay manoeuvrable. The advanced technical and
electronic devices on board require high levels of capability and concentration. The complex
process of acquiring information and providing appropriate manoeuvres in water traffic
demands targeting foresight, attention, concentration, and a sense of responsibility. All of
these important characteristics can be impaired even by low blood alcohol concentrations.

Both short- and long-term memory can be impaired and affected by alcohol. In the
case of impairment of short-term memory, it is difficult to retain the information necessary
for immediate tasks, leading to errors in everyday activities. For example, crew members
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might struggle to remember navigational data or operational procedures, which can impair
the safety of the vessel and crew. On the other hand, long-term memory impairment affects
the ability to recall past experiences and learn from them. This can result in an inability to
learn from past mistakes or experiences, which is crucial for improving performance and
safety practices [22].

Executive functions include the processes of planning, decision making, and problem
solving. Alcohol disrupts these cognitive processes, leading to poor judgment, failures in
decision making, and improper problem solving. Such impairment can result in emergen-
cies at sea, where quick decision making is crucial for the safe operation of the vessel. For
example, if the officer is under the influence of alcohol, he/she might misjudge weather
conditions or fail to navigate through challenging waters, increasing the risk of collisions or
groundings. Alcohol can also have an impact on social interactions and leadership abilities,
which are essential for crew management and coordination during operations [23].

Alcohol consumption often affects psychomotor functions, such as coordination, bal-
ance, and reaction time. These impairments can decrease the ability to operate devices
and machinery, navigate the vessel, and perform other tasks that require precise motor
skills. For example, an intoxicated individual might struggle with maintaining balance on a
moving vessel or operating complex machinery accurately, leading to operational failures.

Chronic alcohol consumption can lead to significant impairments in motor skills,
making recovery and rehabilitation more challenging. Long-term consumption can cause
permanent damage to the nervous system [24].

3.2. Alcohol Content and Its Effects

Blood alcohol content (BAC) represents the concentration of alcohol in the blood,
measured as “weight by volume”. BAC can be measured as milligrams of ethanol per
millilitre of blood (mg/mL), which is equivalent to grams per litre (g/L). Sometimes,
BAC can be measured as percentage by volume. For example, 0.05 g/100 mL = 0.05% =
0.5 mg/mL = 0.5 g/L.

On the other hand, breath alcohol concentration (BrAC) represents the concentration
of alcohol in the breath. For the purposes of this paper, while investigating the alcohol
content of seafarers on board maritime vessels, BAC was selected as the primary variable.
Consequently, it was necessary to convert BrAC to BAC for consistency. BrAC measure-
ments are typically reported in investigation reports where the individuals involved were
alive, while BAC values are obtained from deceased seafarers.

Alcohol inhibits the central nervous system, and as the blood alcohol concentration
(BAC) increases, its effects intensify, leading to various physical and mental changes. The
metabolization of alcohol varies based on individual body constitution, consumption
circumstances (including food and drink intake), and daily physical condition changes.
Drunkenness is an acute intoxication symptom caused by alcohol ingestion, affecting the
central nervous system. This intoxication results in ataxia (e.g., staggering and slurring),
autonomic symptoms (e.g., facial flushing and sweating), and a general decline in central
nervous system functions (e.g., impaired attention and judgment). As BAC increases,
significant consciousness disturbances occur [19].

Table 1 outlines the amounts of alcohol consumed, BAC levels, and states of general
intoxication.

Table 1. Amounts of alcohol consumed (BAC) and its effects.

Stage (BAC %) State of Intoxication

Euphoria (0.02–0.05) feeling of invigoration, reddening skin, cheerfulness,
minor impairment of judgment and coordination

Slight intoxication (0.05–0.10)

slight tipsiness, active hand movements, without
inhibition, higher body temperature/rapid heartbeat,
increased impairment of judgment, memory
and coordination
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Table 1. Cont.

Stage (BAC %) State of Intoxication

Early drunkenness (0.10–0.15)
generosity, quickness to anger, louder voice, wobbliness
when standing, possible slurred speech, reduced
reaction time

Drunkenness (0.15–0.30)

major loss of coordination/staggering, rapid breathing,
repetition when speaking, nausea/vomiting, severe
impairment of motor skills and judgment, blurred
vision, confusion and dizziness, blackouts

Stupor (0.30–0.40)

inability to stand properly, confusion, incoherent speech,
significant risk of loss of consciousness, danger of
respiratory depression (slow and shallow breathing),
possible risk of coma

Coma (0.40–0.50)

unresponsiveness even when shaken, incontinence
(urination and bowels), deep and slow breathing, coma,
respiratory arrest, potential failure of the central nervous
system, death

Source: Authors, based on [14,23].

While the fundamental process of metabolizing alcohol is the same for everyone,
genetic, biological, and environmental factors can influence how quickly this process
occurs.

Factors influencing the metabolization of alcohol differ, from genetic differences to
environmental and cultural factors:

• Genetic differences—These are the primary enzymes responsible for metabolizing
alcohol—alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Ge-
netic variations in these enzymes can affect how quickly alcohol is metabolized [5].

• Cultural and environmental factors—cultural norms on drinking can influence toler-
ance and the adaptation of the body to alcohol. Populations may have developed a
higher tolerance for alcohol during the years of consumption.

• Diet and lifestyle can also impact how alcohol is processed, based on different types of
diets [25].

• Body composition—generally, individuals with more body mass have a lower BAC
after consuming the same amount of alcohol than those with less body mass [26].

• Gender—the effects of alcohol consumption differ significantly between men and
women, largely due to biological and metabolic variations. For instance, women tend
to reach higher blood alcohol concentrations (BAC) than men after consuming the
same amount of alcohol, due to lower body water content and hormonal differences.
Additionally, women may experience more severe alcohol-related health consequences,
such as liver damage, at lower consumption levels [27].

• Regular consumption—people who consume alcohol regularly may develop a higher
tolerance; so, they may have lower BAC levels than occasional drinkers after consum-
ing the same amount of alcohol [19].

The rate at which alcohol is metabolized by the liver (about 0.015 BAC per hour)
remains relatively consistent for all people [28]. The initial BAC after drinking and the
subjective effects of alcohol can vary widely among individuals due to the factors mentioned
above.

3.3. Statistics on Alcohol-Influenced Maritime Accidents

In recent years, the prevalence of alcohol-related maritime accidents has raised signifi-
cant concerns within the maritime industry and regulatory bodies. The statistics indicate
that a substantial portion of marine incidents involve crew members or operators under
the influence of alcohol, which contributes to navigational errors, collisions, and fatalities
at sea.
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Figure 1 shows the impact of alcohol consumption on accidents in the maritime sector
over the period from 2019 to 2023. It illustrates both the total number of reported accidents
(accidents in chosen regions, incidents not involved) and those specifically related to alcohol
consumption. The data reveal a steady increase in both categories, reflecting the growing
concern about alcohol consumption as a critical factor in maritime incidents. In 2019, there
were 850 reported accidents in total, with 140 of them being alcohol-related. By 2023,
these numbers had risen to 1027 total accidents and 185 alcohol-related cases, showing an
upward trend.
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Moreover, the chart also includes the number of fatalities linked to alcohol-related
accidents, with a marked increase over the years, from 12 alcohol-related fatalities in 2019
to 22 in 2023; the data underscore the growing probability of fatal outcomes in incidents
where alcohol is involved. These findings reflect global patterns reported by sources such as
the EASA, U.S. Coast Guard, and maritime safety organisations [29–31]. The chart visually
supports the argument that alcohol consumption in the maritime sector significantly raises
the risk of both accidents and fatalities, highlighting the need for stricter regulations and
prevention measures in this industry.

3.4. Legal Framework and Policies

The legal framework for alcohol limits on board maritime vessels is generally stan-
dardised as all crew members and shipping companies are required to comply with the
International Convention on Standards of Training, Certification and Watchkeeping for
Seafarers (STCW, 1978) [32]. This convention sets the minimum qualification standards
for masters, officers, and watch personnel on maritime merchant ships. The STCW was
adopted in 1978 by the International Maritime Organisation (IMO). Initially, the STCW
Convention only recommended alcohol limits as a maximum of 80 milligrams of alcohol
per 100 millilitres of blood for the watchkeepers on duty. As it was not possible to enforce
these recommendations, it led to inconsistent application across member states [32].

In 2010, the Manila Conference introduced the Manila Amendments to the STCW
Convention, setting mandatory alcohol consumption limits for seafarers, replacing the
original recommendations. These limits aimed to enhance maritime safety by addressing
the risks of alcohol impairment and aligning with those for drivers in many European
countries, simplifying compliance for international shipping companies. The limits were
set at:

• 25 micrograms of alcohol per 100 mL of breath;
• 50 mg per 100 mL of blood;
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• 67 mg per 100 mL of urine [33].

National regulations may set stricter limits than those prescribed by the STCW Con-
vention. Furthermore, seafarers must adhere to the drug and alcohol policies established
by the shipping companies they work for. This section provides an overview of the inter-
national regulations and shipping company approaches regarding BAC limits on board
maritime vessels. For example, in the EU, each country can implement stricter regulations,
but they must comply with the minimum standards set by the IMO. For example:

France has a more stringent limit—0.02% BAC for seafarers.
Norway is not an EU member but is closely aligned with the EU through the European

Economic Area (EEA) and sets the limit of BAC for professional seafarers at 0.02% [34].
In the United States, a BAC limit is set by the USCG of 0.04% for individuals operating

a commercial vessel. For recreational ships, the limit is less strict—0.08 BAC, which is
similar to the limit for operating an automobile on land [35].

Regulations in Asia can differ in various countries, but each country must follow the
guidelines set by the IMO. While the majority of countries follow the STCW Convention on
the alcohol limits in blood or breath, India, as well as Singapore, set stricter rules regarding
BAC limits at 0.04% [36].

Shipping companies may implement stricter alcohol policies, with various levels of
BAC based on the type of cargo and vessel. Some companies permit a BAC of up to 0.04%
during off-hours; on the other hand, others prefer a zero-alcohol policy. Companies like
Maersk, Hapag-Lloyd, and COSCO enforce zero-alcohol policies, while MSC and ONE set
a BAC limit of 40 mg per 100 mL. Captains and senior officers are responsible for enforcing
these rules and often use on-board alcohol test meters to check the BAC of crew members.
Seafarers who violate the policy face disciplinary actions, including dismissal.

4. Materials and Methods
4.1. Data Collection

For the research purposes, we compiled data from multiple maritime accident investi-
gation reports, ensuring a representative selection of cases where alcohol was a confirmed
contributing factor. Reports were sourced from various organisations investigating the
maritime accidents:

• Marine Accident Investigation Branch (MAIB)—UK government organisation autho-
rised to investigate marine accidents in UK waters and also accidents involving UK
registered ships worldwide.

• Agencija za istraživanje nesreća u zračnom, pomorskom i željezničkom prometu
(AIN)—Croatian agency for the investigation of accidents in air, sea, and railway
traffic.

• Marine Accident and Incident Investigation Committee (MAIC)—responsible for the
investigation of all types of marine accidents involving ships under the Cyprus flag,
anywhere in the world; or maritime accidents that occur within Cyprus’s territorial
and internal waters.

• Danish Maritime Investigation Board (DMAIB)—an independent body under the Min-
istry of Industry, Business and Financial Affairs of Denmark. The DMAIB investigates
accidents on Danish and Greenlandic ships and accidents on foreign ships in Danish
and Greenlandic water.

• The Marine Casualty Investigation Board (MCIB)—the Irish government agency for
investigating all types of marine casualties related to, or on board, Irish registered
vessels worldwide and other vessels in Irish territorial waters and inland waterways.

• The Marine Safety Investigation Unit (MSIU)—an accident investigation body estab-
lished to investigate maritime accidents involving Maltese-registered ships anywhere
in the world and foreign-flagged ships operating in Maltese waters.

• The Hellenic Bureau for Marine Casualties Investigation (HBMCI)—competent for
investigating maritime incidents and casualties and for conducting of reports for the
vessels floating under the Hellenic (Greek) flag and other vessels within the Hellenic
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territorial waters or within the Hellenic Search and Rescue region, provided that SAR
services were delivered by Greek Authorities, as well as any casualty or incident that
involves the substantial interests of Hellas.

• Państwowa Komisja Badania Wypadków Morskich (PKBWM)—an agency of the
Polish government investigating maritime accidents.

• The Transportation Safety Board of Canada (TSB)—an independent agency investigat-
ing occurrences in the air, marine, pipeline, and rail modes of transportation.

• The National Transportation Safety Board (NTSB)—an independent federal agency
investigating accidents and significant events in the US for each transportation mode.

• Japan Transport Safety Board (JTSB)—investigates maritime (and also rail and air)
accidents and contributes to preventing them, mitigating the damage caused by the
accidents in order to increase safety.

• Statens haverikommission (SHK)—the Swedish independent governmental authority
under the Ministry of Defence that investigates all types of serious civil or military
accidents and incidents to increase safety.

• United States Coast Guard (USCG)—body responsible for preparing and publishing
investigation reports in accordance with the federal statutes and regulations of the US.

Each of these organisations specialises in the thorough investigation of maritime
incidents and accidents. Within the databases, vessels of all types were selected (containers,
tankers, bulk carriers, and RO-RO, as well as passenger and small vessels). Accidents of
the following types were investigated:

• Collision;
• Crush incident;
• Fatal fall;
• Grounding;
• Man overboard;
• Sinking.

Only accidents where alcohol was a contributing factor, and those in which a breath
or blood alcohol test was conducted, were included in the research. If the responsible
person was under the influence of alcohol and had died, but no toxicology report was
included in the autopsy, such a report was not a part of the research. For the analysis,
38 accident investigation reports were obtained from the period 2012–2024. In our paper,
we analysed a total of 38 maritime accident investigation reports. While this sample may
appear limited compared to broader studies, it is important to recognise the strict inclusion
criteria we applied. Out of more than 1000 closed and complete investigative reports, only
these 38 of these accidents explicitly identified alcohol as a major contributing factor and
provided BAC or BrAC information, which was crucial for our research objectives. This
selection, while reducing the overall number of reports, ensures that we are analysing the
most relevant cases. The necessity of detailed alcohol-related data in maritime accident
investigation reports further limited our inclusion of more cases. Therefore, our sample
size reflects the rarity of well-documented alcohol-related incidents within the available
databases from 2012 to 2024, across 13 different databases. (In our dataset, 97% of cases
involved males, with the only female case being a fatal accident in July 2018, where the
chief stewardess, with a blood alcohol concentration of 430 mg/100 mL, fell from her cabin
and sustained fatal neck injuries.)

4.2. Methodology

In this paper, we focus on predicting fatalities in maritime accidents by creating a
predictive model. The outcome variable in the predictive models is Y = fatalities, which
takes the value Y = 1 if the accident was fatal and Y = 0 if not. We consider the occurrence
of fatalities, i.e., the value Y = 1, as the target category (the so-called “hit”) of the outcome
variable, as it is more important for the practical use of the created models to correctly
identify critical accidents with fatalities.
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As explanatory variables in the predictive models, we used the variables listed in
Table 2 where the distribution of values for these explanatory variables is described. For
quantitative variables, we provide basic numerical characteristics of their central tendency,
variability, and shape, while for categorical variables, we state the distribution of their
frequencies. Along with the explanatory variables, the outcome variable is also included in
Table 2.

Table 2. Variables used in prediction models.

Variable Role Description Type of Variable Values Distribution

fatality outcome variable indicator of fatality in
accident

qualitative nominal
Y = 1 for fatality 9 (23.7%)

Y = 0 for non-fatality 29 (76.3%)

BAC input variable

blood alcohol content of
person under influence,
who caused the
accident/is responsible
for the process

quantitative
continuous ⟨0 ; ∞)

min = 0.058
max = 0.690
mean = 0.254
median = 0.221
st. dev = 0.160
skewness = 1.322
kurtosis = 1.140

weather input variable weather during the
accident qualitative ordinal

{1, 2, . . . , 10} where X = 1
refers to 1 light air (wind
0.3–1.5 m/s)
wave height 0–0.3 m and
X = 10 refering to
hurricane
(wind ≥ 32.7 m/s) wave
height over 14 m (values
resulting from a
combination of Beaufort
12-point scale for wind
speed and Douglas 9-point
scale for sea state)

X = 1: 7 times
(18.4%)
X = 2: 7 times
(18.4%)
X = 3: 10 times
(26.3%)
X = 4: 8 times
(21.1%)
X = 5: 0 times (0%)
X = 6: 6 times
(15.8%)
X = 7: 0 times (0%)
X = 8: 0 times (0%)
X = 9: 0 times (0%)
X = 10: 0 times (0%)

time of day input variable time of day when
accident happened qualitative nominal

X = 1 for night 24 times (63.2%)

X = 0 for day 14 times (36.8%)

Source: Authors.

The models created are very simple, as they use only three explanatory variables;
however, they achieve high accuracy in their predictions. We develop the predictive model
using three methods and two different approaches, resulting in four models for predicting
fatalities in maritime accidents:

• A simple logistic regression model using the three above-mentioned explanatory
variables, which allows a prediction of the probability of a fatality in an accident.

• A simple classification tree using the CART method with the three mentioned explana-
tory variables; this is used to predict the occurrence of a fatality in an accident.

• A logistic regression model using the specified explanatory variables and all two-way
and three-way interactions, enabling the prediction of the probability of a fatality in
an accident.

• A classification tree using the CHAID method with the three specified explanatory
variables and all two-way and three-way interactions; this is used to predict the
occurrence of a fatality in an accident.

These four models were selected for their interpretability and high performance
in predicting fatalities among several models created using machine learning methods.
The first two mentioned models were developed as simple yet highly effective models
for predicting fatalities in maritime accidents, considering three factors: alcohol content,
weather, and time of day. The other two models also incorporate possible interactions
between these factors, based on the hypothesis that, for example, a combination of higher
alcohol content and nighttime could increase the likelihood of a fatality in an accident,
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whereas the interaction of daytime and good weather could reduce the likelihood of a
fatality.

As shown in Table 2, non-fatal accidents and fatal accidents are represented in a
ratio of approximately 1:3. Therefore, in all the models, we use the oversampling method
to balance the samples of non-fatal and fatal accidents. This means that cases from the
smaller group of non-fatal accidents are given more weight in the model creation process
to roughly equalise the size of the non-fatal accident group with the fatal accident group.
This approach enables the creation of models with higher predictive performance.

The performance of the models is evaluated using a classification table and the evalua-
tion metrics calculated from it. The classification table is a four-field table that quantifies
the absolute and relative numbers of correctly and incorrectly classified cases. An example
of such a table is shown in Table 3.

Table 3. Classification table.

Predicted Y

0 1

A
ct

ua
lY 0 True Negative

(TN)
False Positive

(FP)

1 False Negative
(FN)

True Positive
(TP)

Source: [28].

• Accuracy = TP+TN
TP+FP+TN+FN represents the overall accuracy of the model, i.e., the

proportion of all correctly classified accidents, both fatal and non-fatal.
• Sensitivity = TP

TP+FN is the proportion of correctly classified fatal accidents among all
actual fatal accidents.

• Precision = TP
TP+FP is the proportion of correctly classified fatal accidents among those

accidents predicted as fatal.

Moreover, for all the models, we determine the value of AUC (area under the curve),
which represents the size of the area under the ROC curve that shows the dependence of
sensitivity on the false positive rate for different threshold values. The closer this value is
to 1, the better the model is as a classifier [37].

When describing the methods used to create the prediction models, three methods
were used in total: logistic regression and two decision tree methods, CART and CHAID.
These methods were chosen from various machine learning methods due to the inter-
pretability of their results. Compared to methods such as neural networks or the k-nearest
neighbours method, the chosen methods allow us to assess the significance of variables
and interpret the obtained model coefficients, as the goal of this paper is not only to create
a powerful simple model for predicting fatal accidents but also to interpret the obtained
results. For this reason, we also present a graph showing the ranking of variable importance
in the model for each method.

4.2.1. Logistic Regression

Logistic regression is a statistical method used to analyse the relationship between a
binary or multinomial dependent outcome variable and one or more independent input
variables. This technique models the outcome variable as a function of the input variables
through the logistic function, which converts the linear combination of predictors into a
probability value ranging from 0 to 1. If the outcome variable Y is binary and holds the
values Y ∈ {0, 1}, the probability is calculated for the hit category, which is usually denoted
by the value Y = 1 [38,39].

Let Y be a binary outcome variable, which takes the value Y = 1 with probability p
and Y = 0 with probability 1 − p. Let X1, X2, . . . , Xm be the input explanatory variables.
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The logistic regression model relates the log odds of Y being 1 to a linear combination of
the predictor variables:

log
p

1 − p
= β0 + β1X1 + β2X2 + . . . + βmXm (1)

Here, β0, β1, β2, . . . , βm are the parameters to be estimated, denoted by b0, b1, b2, . . . , bm
upon estimation. The logistic function is used to convert the linear combination of input
variables into a probability p of the hit value Y = 1:

p =
1

(1 + exp(−β0 − β1X1 − β2X2 − . . . − βmXm))
(2)

where the product is over all observations i; yi is the observed value of the outcome
variable (0 for non-fatal accident or 1 for fatal accident) for the i-th observation; and pi is
the predicted probability of Y = 1, i.e., the probability that the i-th accident is fatal.

The parameters of the logistic regression are estimated by the maximum likelihood
method, i.e., by maximising the log-likelihood function, given by:

ln L(β0, β1, β2, . . . , βm) = ∑(yiln pi + (1 − yi)ln(1 − pi)) (3)

The estimations of the parameters are often obtained using iterative methods, such as
the Newton–Raphson or Fisher scoring algorithms [31].

4.2.2. Classification and Regression Tree (CART)

The classification and regression tree (CART) methodology is a popular machine
learning technique that constructs decision trees for classification or regression tasks. This
method splits the data into subsets based on the values of the predictor variables, creating
a tree structure where each internal node represents a decision based on an input variable,
each branch represents the outcome of that decision, and each leaf node represents a
predicted class for the outcome variable [40,41].

In the context of classification, in the task of predicting fatality in maritime accidents,
the goal of CART is to predict the class of an outcome variable (fatal or non-fatal accident)
by creating a tree that recursively partitions the data. The algorithm starts with the complete
dataset and identifies the variable along with its threshold, which optimally splits the data
into two subsets, based on the impurity of the resulting subsets. Various metrics can be
used to measure impurity, with the Gini index and entropy being the most commonly
employed. The tree structure is formed by iteratively dividing the data into smaller subsets
according to the values of the input variables. This process continues until a stopping
criterion is satisfied, such as a minimum number of observations per leaf or a specified
maximum tree depth. In this paper, we set the maximum tree depth to 5, with a minimum
of 2% records in the parent node, 1% records in the child node, and a minimum change in
impurity of 0.0001 as the stopping criteria [40].

The Gini index, which assesses the likelihood of incorrectly classifying a randomly
selected data point from a node, is calculated as follows:

Gini Index = 1 − ∑ pi
2 (4)

where pi is the proportion of samples in class i at the node. The Gini index is minimised
when all the samples at a node belong to the same class.

Entropy, another measure of impurity, quantifies the amount of information or uncer-
tainty in a dataset and is computed as:

Entropy = −∑ pi·log pi (5)

where pi is the proportion of samples in class i at the node. Entropy reaches its minimum
when all the samples at the node are of the same class.
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The Gini index and entropy are the primary impurity measures used in the CART
algorithm. Some research indicates that the Gini index often performs marginally bet-
ter in classification tasks, whereas entropy may be more sensitive to variations in data
distribution.

A key advantage of the CART method is its ability to handle both categorical and
continuous input variables. CART models are robust against multicollinearity among input
variables and outliers in the dataset. They can also manage missing data by employing
surrogate variables for each predictor. However, one major drawback is the potential
for overfitting, where the model becomes overly complex and captures noise rather than
general patterns. To mitigate overfitting, CART models can be pruned. Pruning is a
process that involves removing branches that do not significantly enhance the model’s
performance. In this paper, the CART tree was pruned to enhance generalisation and
reduce overfitting [42].

4.2.3. Chi-Squared Automatic Interaction Detector (CHAID)

CHAID is a statistical technique used to create decision trees for classification and re-
gression tasks. This method identifies the optimal splits of the data based on the chi-squared
test of independence for categorical variables or the F-test for continuous variables [43,44].

The CHAID algorithm begins by identifying the input variable that has the strongest
association with the outcome variable. For categorical predictors, the association is eval-
uated using the chi-squared test of independence, while for continuous predictors, the
F-test is used. The steps involved are as follows. The dataset is initially split based on
each predictor variable. For categorical variables, each category forms a potential split. For
continuous variables, the data are divided into intervals. The next step is merging. For each
predictor, pairs of categories or intervals are merged if their p-value from the chi-squared
test (or F-test) exceeds a specified significance level. This merging process continues until
no further merging is possible without exceeding the p-value significance level. The last
step is selection. The predictor variable and corresponding split that result in the most
significant association with the outcome variable (identified by the lowest p-value) are
selected. This split maximises the difference between the resulting subsets with respect to
the outcome variable [43,44].

The CHAID tree is constructed by recursively applying the splitting criterion to each
subset until a stopping condition is met. The stopping conditions may include a minimum
number of observations per node, a maximum tree depth, or a p-value threshold. In this
paper, the CHAID tree was constructed using the following stopping criteria: maximum
tree depth 5; minimum records in parent branch 2% and in child branch 1% of cases in
training sample; minimum change in expected call frequencies for chi-squared test 0.001;
maximum iterations for convergence 100 [40].

Unlike CART, CHAID incorporates an automatic pruning mechanism during the tree
construction process. As the tree grows, nodes that do not contribute significantly to the
overall model (based on the p-value threshold) are not split further, effectively controlling
the complexity of the tree and reducing overfitting [45].

The CHAID method is advantageous due to its ability to handle both categorical and
continuous variables, its robustness to missing values, and its straightforward interpretation
of results. Moreover, CHAID is particularly effective for detecting interactions between
variables. However, CHAID trees can be sensitive to outliers and may produce splits that
are less intuitive than those from other tree methods. Additionally, the reliance on p-values
means that the results can be influenced by the sample size, with larger samples potentially
leading to more splits [46].

All calculations in this article were conducted using IBM SPSS Modeler, version 18.3.
Data preparation was partially carried out using IBM SPSS Statistics, version 28. A signifi-
cance level of 0.05 was used for all statistical tests.
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5. Results

In the following section, the factors contributing to the investigated accidents are iden-
tified, categorised, analysed, and quantified in order to prepare the dataset for the models
predicting fatalities in maritime accidents. Firstly, two simple models were used, based
on the impact of three key factors—alcohol consumption, weather conditions, and time
of day. Then, a logistic regression model was applied in order to estimate the probability
of a fatality occurring in an accident. Beyond these basic models, we developed models
incorporating interactions between variables for examination of the combined effects of
these factors on fatal outcomes. The first of these more complex models was also a logistic
regression model.

5.1. Contributing Factors Categorisation and Quantification

For our research on modelling and predicting the probability of fatalities in maritime
accidents where alcohol was a contributing factor, we considered several key elements.
Firstly, alcohol was identified as a contributing factor in each analysed accident. We then
examined the meteorological conditions present during each accident, specifically assessing
wind speed and sea state according to the Beaufort and Douglas scales. Additionally, we
considered the type of accident and visibility conditions, noting whether the incidents
occurred during daylight or nighttime hours. Detailed data for these factors are provided
in Appendix A.

The dataset consists of variables such as type of accident, blood alcohol concentra-
tion (BAC) levels, number of fatalities, meteorological factors during the accident, and
the visibility. These data were chosen for research due to their comprehensive nature,
capturing key aspects of incidents at sea that can influence the severity and outcome of
accidents. These data allow us to explore the potential correlations and causative factors
that contribute to fatal accidents.

Figure 2 shows the distribution of various types of maritime accidents. For our
research, a varied range of accident types were included in order to ensure a representative
sample. The analysis reveals that the 17 out of the 38 recorded accidents (approximately
45%) involved cases where the responsible person lost motor skills and coordination
after consuming alcohol, leading to fatality. This includes 7 incidents of fatal falls and
10 incidents of “man overboard” situations. We can observe that in cases of high BAC
levels, the accidents often resulted in fatalities (or severe consequences). For example, the
BAC amount in fatal falls ranged from 110 to 430, and in “man overboard” incidents from
122 to 346. These results strongly suggest that impaired judgment and loss of physical
control, stemming from alcohol consumption, are significant risk factors.
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5.2. Models Predicting Fatality in Maritime Accidents

In this section, the results of the models predicting fatality in maritime accidents
are presented, and the obtained results are interpreted. First, we introduce two simple
models based on the influence of three factors—alcohol, weather, and time of day—on the
occurrence of fatalities in accidents.

The logistic regression model can be used to estimate the probability of a fatality
occurring in an accident. The complete table of the model is shown in Table 4. The last
category, weather = 6, was chosen as the reference category for the input variable weather,
and the option night = 1 was chosen as the reference for the variable night. The reference
category for the outcome variable is fatality = 0; therefore, the given model applies to the
category outcome variable Y = 1 (fatality in an accident).

Table 4. Simple logistic regression model.

Variable B Std. Error Wald Sig. Exp(B)
95% Confidence Interval for Exp(B)

Lower Bound Upper Bound

Intercept −3.07 1.18 6.77 0.009
BAC 9.08 4.35 4.36 0.037 8777.90 1.74 4.42 × 107

Weather_1 21.58 8520.79 0.00 0.998 2.36 × 109 0.00 .
Weather_2 20.67 0.00 . . 9.43 × 108 9.43 × 108 9.43 × 108

Weather_3 1.82 1.08 2.86 0.091 6.17 0.75 50.83
Weather_4 1.70 1.01 2.81 0.094 5.47 0.75 39.94

Timeofday_0 −0.74 0.88 0.69 0.405 0.48 0.09 2.71

Column B shows the estimated regression coefficient, while the values in the Exp(B)
column can be used for interpretation. The BAC variable is statistically significant in the
model at a significance level of 0.05, with a positive regression coefficient B. The Exp(B)
value indicates that the higher the blood alcohol content, the higher the probability of a
fatality in the accident. More specifically, with other conditions unchanged (i.e., weather
and time of day), each additional unit of blood alcohol increases the probability of a fatality
in an accident nearly 8.778 times. Regarding weather, all the weather types (labelled
1 to 4) have positive regression coefficients, indicating that compared to the reference
weather category (labelled as 6), the probability of a fatality in an accident is several times
higher with other conditions unchanged (i.e., BAC and time of day). However, given the
significance of these variables in the model, only weather types 3 and 4 significantly differ
from weather type 6 in their impact on the occurrence of a fatality at a significance level of
0.10. At this significance level, the occurrence of weather type 3 increases the probability of
a fatality more than sixfold, and weather type 4 more than fivefold. Finally, if the accident
occurred during the day, the probability of a fatality is almost half compared to an accident
occurring at night with other conditions unchanged (i.e., BAC and weather). However, this
effect is not statistically significant at the 0.05 level. The order of importance of predictors
in the logistic regression model is shown in Figure 3.

In this model, the variable weather is considered the most important (importance = 0.55),
followed by the variable BAC (importance = 0.35), and night is in third place (importance = 0.10).

To determine the appropriate threshold value for classifying a fatality in an accident,
we created a histogram of the distribution of the predicted probabilities of a fatality, with
colour differentiation of the actual outcome variable values (Figure 4). The histogram is
normalised by colour for easier comparison of unevenly represented predicted probabilities.

As shown in Figure 4, it is clear that the threshold value should be set at 0.40. Therefore,
for an estimated probability lower than 0.40, the accident will be classified as non-fatal,
and otherwise, for an estimated probability of 0.40 or higher, it will be classified as fatal.
This shift in the threshold value from the original level of 0.50, which is most commonly
used, increases the proportion of true positive predictions and decreases the model error
due to the number of false negative predictions. This increases the model’s sensitivity
to the identification of accidents where a fatality is likely. We made this threshold value
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adjustment because we consider the error of incorrectly predicting a fatal accident (false
positive) as less serious if it does not occur, compared to predicting a non-fatal accident
when a fatality actually occurs (false negative). In our view, a false negative error has less
severe consequences. The classification table of the logistic regression model, along with
the evaluation metrics, is presented in Table 5.
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Table 5. Classification table and evaluation metrics of the simple logistic regression model.

Actual Y
Predicted Y

Total
0 1

0 24 6 30
1 5 24 29

Total 29 30 59

Accuracy (%) 81.4
Sensitivity (%) 82.8
Precision (%) 80.0

AUC 0.83

The model correctly classified more than 81% of all accidents. It accurately predicted
almost 83% of fatal accidents, and of the accidents predicted by the model as fatal, 80% were
indeed fatal. The AUC (area under the curve) value under the ROC curve is 0.83, indicating



Appl. Sci. 2024, 14, 9153 17 of 28

a reasonably accurate model. Then, a decision tree model using the CART technique was
created. The importance of the variables in this model is shown in Figure 5.
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The most important variable in the classification tree is BAC (importance = 0.80),
followed by weather (importance = 0.15), and the least important variable in this model is
night (importance = 0.05). The classification tree is shown in Figure 6.

Figure 6 presents the classification tree generated by the CART methods to predict
the likelihood of fatalities in maritime accidents. This decision tree illustrates the most
influential factors contributing to accident outcomes, with BAC as the primary variable.
The figure shows that accidents where the BAC exceeds 0.274 are always classified as fatal
(node 4), whereas accidents with BAC under 0.086 are always classified as non-fatal (node
1), indicating that high alcohol levels significantly increase the risk of fatalities.

This figure also shows that additional factors like weather contribute to fatal outcomes
in cases with moderate BAC levels (nodes 7 and 8).

The first condition for branching is set by the BAC variable with a threshold value
of 0.086. Accident cases where the responsible person had a blood alcohol level up to
this value are all classified as non-fatal (the predicted category is always marked by grey
colour in the tree). If BAC ≥ 0.274, every such accident is classified as a fatal accident.
Additionally, accidents are classified as fatal if BAC is ∈ (0.256 ; 0.261⟩, as are those with
BAC ∈ (0.086 ; 0.256⟩ combined with weather levels 1 to 4. In cases where the individual
had a high blood alcohol concentration, it can be asserted that a fatality always occurred.
The most common cause of death in such cases was a fatal fall, either on deck or in the
cabin. In cases of moderately high blood alcohol levels, fatalities also almost invariably
occurred. However, when the blood alcohol level was lower, fatalities were still present,
but these occurred because of the combination with additional factors such as adverse
weather conditions or poor visibility. Certainly, there are exceptions where, despite a high
blood alcohol concentration, no fatality occurred. These exceptions can be attributed to
extraordinary circumstances or favourable conditions that mitigated the risk, rather than
mere good fortune. Other cases were classified as non-fatal accidents, although in some
nodes, there are only a few cases. Table 6 is the classification table for the CART model.

The accuracy of this model in classifying all accidents is almost 97%. Sensitivity at a
level of over 93% means the proportion of fatal accidents correctly predicted by the model.
All accidents classified by the model as fatal were indeed fatal. The AUC value is very close
to one, indicating a high-performing model.

In addition to these simple models, we also created models with interactions between
variables to highlight the combined effect of factors on the occurrence of fatalities in
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accidents. The first of these models was again a logistic regression model. The complete
model is presented in Table 7.
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Table 6. Classification table and evaluation metrics for simple CART model.

Actual
Predicted

Total
0 1

0 30 0 30
1 2 27 29

Total 32 27 59

Accuracy (%) 96.6
Sensitivity (%) 93.1
Precision (%) 100.0

AUC 0.994

Table 7. Logistic regression model with interactions.

Variable B Std. Error Wald Sig. Exp(B)
95% Confidence Interval for Exp(B)

Lower Bound Upper Bound

Intercept −47.21 1191.83 0.001 0.98
BAC 420.82 6.24 4546.49 <0.01 5.77 × 10182 2.81 × 10177 1.185 × 10188

time_1 × weather_4 −46.27 1917.83 4335.87 <0.01 1.24 × 10−20 . .
BAC × weather_6 422.16 4.96 7249.96 <0.01 4.56 × 10188 7.60 × 10180 2.75 × 10188

BAC × time_0 × weather_3 421.13 0.00 . 1.27 × 10183 1.27 × 10183 1.27 × 10183

By the stepwise selection of variables, we identified the set of significant variables at a
significance level of 0.05. The importance of these variables in the regression model with
interactions is illustrated in Figure 7.
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Figure 7. Predictor importance in the logistic regression model with interactions.

The most important variable in this logistic regression model was BAC
(importance = 0.41), followed by BAC in combination with weather of type 6
(importance = 0.32). The third most important factor was the three-way interaction of
the variables BAC, time_0 (i.e., day) ((importance = 0.22), and the fourth variable in this
model, which is the interaction of time_1 (i.e., night) and weather of type 4 (importance
= 0.05). According to their coefficients in Table 7, we can conclude that BAC significantly
increases the probability of fatality in the accident by exp{420.82} multiple for each addi-
tional unit of blood alcohol, with other conditions (i.e., weather and time of day) unchanged.
Moreover, the combination of BAC, daytime, and weather of type 3 increases the probability
of fatality by exp{421.13} multiple for each additional unit of blood alcohol, compared to
other combinations of daytime or nighttime and weather types. Last but not least, the com-
bination of BAC and weather of type 6 increases the probability of fatality by exp{422.16}
multiple for each additional unit of blood alcohol compared to other weather types. Finally,
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the combination of nighttime and weather of type 4 is notable because it decreases the
probability of fatality by exp{−46.27} multiple.

Table 8 presents the classification performance of the logistic regression model with
interactions of variables. This model correctly classifies 88.1% of all accidents; among them,
79.3% of the fatal accidents were identified correctly by the model. If an accident was fatal,
the model correctly classified it in almost 96% of cases.

Table 8. Classification table and evaluation metrics for logistic regression model with interactions.

Actual
Predicted

Total
0 1

0 29 1 30
1 6 23 29

Total 35 24 59

Accuracy [%] 88.1
Sensitivity [%] 79.3
Precision [%] 95.8

AUC 0.93

The final model was the CHAID tree with interactions of variables (Figure 8). This
model uses only two of the variables: BAC in combination with night and BAC in combi-
nation with weather of type 3. According to Figure 8, BAC in combination with night is a
more important variable, with an importance of 0.73, while the remaining importance of
0.27 belongs to the second variable.
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Figure 8 represents the CHAID classification tree, predicting the likelihood of fatalities
in maritime accidents. The decision tree shows the most contributing factors with BAC
as the primary variable in an interaction with the time of day. Figure 8 highlights specific
combinations of BAC, time of day, and weather conditions, demonstrating how these
interactions heighten the fatality risk.

Both tree models, CHAID and CHART (Figure 6), help simplify complex relationships
between variables and make the model’s predictions more interpretable, offering a practical
tool for assessing risk in maritime safety protocols.
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According to the CHAID tree, the model classifies accidents with the level of BAC
below 0.112 as fatal (node 2), as well as cases with BAC over 0.285 (node 5). Interestingly,
the accidents with BAC between 0.27 and 0.285 are classified as non-fatal, but this represents
only a small group of cases (node 4).

The accidents where the combination of BAC and night has a value of zero (i.e., the
cases where either BAC was 0 or the accidents happened during the day, node 1) are further
classified according to the combination of BAC and the weather of type 3. Among these,
the accidents that occurred during the day with a level of BAC between 0.101 and 0.253
are classified as fatal (node 8). The remaining cases, with a level of BAC between 0 and
0.101 or over 0.253 (nodes 7 and 9), but all occurring during the day and with weather
conditions of type 3, are classified by the model as non-fatal. The last category to mention
is the one where the combination of BAC and the weather of type 3 equals zero (node 6),
i.e., either BAC was zero (but there was no case in the data with such a level of BAC) or the
weather was not of type 3 (i.e., the weather during the accident was of another type) and
the accident happened during the day. All these accidents were categorised by the model
as fatal. To conclude, according to the CHAID model shown in Figure 9, the combination of
day and weather different from that of type 3 means a fatal accident for all levels of BAC.
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The classification performance of the CAHID model is illustrated in Table 9. This
model correctly classified 91.5% of all accidents of both types. Among the fatal accidents,
the model correctly found almost 90% of them. Finally, when the model predicted the
accident as fatal, the prediction was correct in almost 93% of cases.

Table 9. Classification table and evaluation metrics of CHAID model with interactions.

Actual
Predicted

Total
0 1

0 28 2 30
1 3 26 29

Total 31 28 59

Accuracy [%] 91.5
Sensitivity [%] 89.7
Precision [%] 92.9

AUC 0.96

6. Discussion

In our paper, we provide new insights into the contributing factors of fatality risks in
maritime accidents, with a special focus on alcohol impairment. The findings emphasise
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the importance of understanding how multiple variables interact to create risky situations.
While underscoring the effects of alcohol on cognitive functions and physical abilities, our
paper enhances this knowledge using a predictive model that quantifies the impact of
alcohol in combination with meteorological conditions and time of day. This model not
only confirms the significant effect of alcohol on fatality risks but also reveals how these
risks are amplified when alcohol consumption coincides with adverse weather or nighttime
operations. This interactive effect, which has not been explored in previous studies, fills
a critical gap by providing a more nuanced understanding of the factors contributing to
maritime fatalities.

The findings highlighted the significance of the role of alcohol in fatal maritime
accidents by using logistic regression. The analysis showed that alcohol consumption is a
major predictor of fatality. Each additional unit of BAC increased the probability of a fatality
by approximately 8.78 times. However, the results also demonstrated that alcohol does not
act in isolation. Adverse weather conditions, often affecting visibility, significantly increase
the likelihood of fatal accidents, especially when combined with alcohol consumption. Poor
visibility can severely affect safe navigation and the crew’s ability to respond to hazards.
Nighttime conditions make this even worse by reducing vision further, as there is no
natural light and crews must rely on artificial lighting.

Although nighttime conditions alone did not significantly increase fatality risk, when
coupled with high BAC levels and poor weather, the risk increased. The use of the CHAID
tree model illustrated how this combination of high BAC, nighttime, and specific weather
conditions create a key predictor of fatal accidents.

Existing maritime regulations need to adapt to the broader conditions in which ac-
cidents happen. Current rules should be improved with evidence-based changes, like
stricter alcohol testing during high-risk situations, mandatory sobriety checks before night
voyages, and more monitoring during bad weather. Additionally, our findings suggest that
safety protocols and training for maritime staff should be adjusted to address the higher
risks linked to these conditions.

Our paper also identifies several gaps in the earlier research, particularly the failure
to investigate the combined effects of alcohol, weather, and time of day. The majority of
the previous works focused on these variables in isolation, leaving the complex interplay
between them unexplored. By integrating these factors into our predictive model, we
provide a more comprehensive understanding of when fatalities are most likely to occur.
For example, even moderate levels of alcohol, when compounded by poor weather or
nighttime conditions, can lead to fatal outcomes. This supports the need for integrated risk
management strategies that address multiple interacting factors rather than isolated risks.

Previous research on the effects of alcohol on maritime safety underscores the signifi-
cant role it plays in causing maritime accidents. Various studies have examined how alcohol
affects critical skills, like navigation and decision making, as well as broader human factors
that contribute to accidents. Across different geographical contexts, such as the Baltic
Sea, Korea, and Norway, alcohol consumption has been identified as a major contributing
factor to maritime accidents, highlighting the need for stricter regulations and better safety
management systems [2,7,8].

Various studies have focused on alcohol’s direct impact on the cognitive and motor
skills essential for ship navigation. From these studies it was evident that even small
amounts of alcohol impair decision making, coordination, and reaction times, significantly
increasing the likelihood of accidents [3,16]. These findings point to the urgent need for
stringent alcohol regulations, especially during high-risk situations. However, most studies
focus on the immediate effects of alcohol, and the authors do not examine the long-term
operational risks, an area where our research aims to contribute new insights.

On a broader level, human factors play a critical role in maritime accidents. Errors
in judgment, lapses in situational awareness, and leadership failures are all common
contributors [4,10]. While existing research covers these general factors, fewer studies
directly link alcohol to specific accident types like groundings and falls overboard. Our
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research fills this gap by investigating how alcohol directly contributes to these types of
incidents, offering a deeper understanding of its role in maritime safety.

From a regulatory point of view, proactive safety measures, such as strict alcohol test-
ing and robust safety management systems, have been shown to effectively reduce accident
rates [12,15]. However, there is often inconsistency in how these rules are enforced across
different regions. This requires more consistent, global policies. Our research highlights
the need for unified international guidelines, with a particular emphasis on alcohol testing
during high-risk conditions, such as nighttime operations or adverse weather.

Methodologically, much of the previous research has relied on retrospective qualitative
studies, which offer valuable insights but often lack the ability to predict future accidents.
Our paper addresses this gap by adopting a quantitative approach, using predictive models
in order to analyse the factors that lead to fatalities. By taking this approach, we provide a
clearer, data-driven understanding of how alcohol contributes to maritime accidents.

Logistic regression, as used in our study, allows the use of all types of variables,
quantitative and qualitative, in one common model and the assessment of the influence of
each predictor while controlling for the others. As a main advantage of the logistic model,
we consider the interpretability of its results. Another advantage of this technique is that
it does not require predictors to be normally distributed, which is particularly useful in
our study, where some variables, such as weather conditions, may not follow a normal
distribution.

However, while we chose logistic regression and classification trees as the most appro-
priate methods for this study, we acknowledge that other techniques, such as discriminant
analysis, neural networks, nearest neighbour, support vector machines, and others, could
also be considered. Nowadays, neural networks are a popular powerful machine learning
technique that can model highly complex, non-linear relationships between variables. How-
ever, they are well suited for large datasets and can excel at prediction tasks. In our case, we
focused on the explanation task and the description of the relationship between the input
variables and the outcome. In comparison with the techniques used in our study, which
provide transparent and interpretable results, neural networks are often considered “black
boxes”. Moreover, neural networks typically require large datasets to perform optimally.
Discriminant analysis is a very useful technique often used for classifying binary outcomes.
Compared to logistic regression, its key assumption is that the independent variables
follow a normal distribution. In our study, variables like alcohol consumption and weather
conditions are unlikely to follow a normal distribution, making logistic regression more
appropriate. Discriminant analysis usually allows only the quantitative type of explanatory
variables, which prevents the use of some variables (weather and time of day) in the model.

Among the studies published so far, the authors employed various methodologies,
each with its strengths and limitations. For example, in [7], the authors utilised a standard
regression approach to find significant human factors involved in maritime accidents.
In comparison to our study, the authors did not include the kind of machine learning
technique. While their analysis provided valuable insights into the role of human error,
individual accidents were for the purpose of this study cumulated into the number of
accidents. From this perspective, our use modelling techniques adds greater interpretability
of the results, particularly in analysing interactions between variables.

However, our research also has limitations that must be considered. One significant
limitation is the relatively small effect size and lack of statistical significance for the time-
of-day variable. This suggests that time of day may not be as crucial as blood alcohol
concentration (BAC) and weather conditions in predicting fatal outcomes in maritime
accidents. In particular, BAC and adverse weather were found to have a much stronger
influence on the risk of fatality, indicating that they should be prioritised when developing
safety protocols or predictive models.

Another limitation of our paper is the small sample comprising 38 accident investiga-
tion reports. A review of comparable studies mentioned in our paper reveals that similar
research based on accident reports often involves smaller datasets due to the specificity
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and detail of the cases analysed. On the other hand, studies that typically have larger
sample sizes either use questionnaires or are focused on accidents in general without
a specific focus on alcohol consumption. In the first category, we can mention [10], for
example, where the author examined 39 collisions. Despite the smaller sample, the research
effectively identified key human factors contributing to these accidents, demonstrating that
even small datasets of accident reports can provide valuable insights into accident causality.
Ritz-Timme et al. (2006) [17] also focused on a similar experimental approach with 21 ship
captains using a simulator to assess nautical performance under the influence of alcohol.
Gug et al. (2022) [6] used 10 participants (5 cadets and 5 experienced navigation officers)
who carried out simulations where different blood alcohol concentration (BAC) levels were
involved. The smaller sample size reflects the controlled environment of a simulation study,
where the primary focus was on understanding the direct effects of various BAC levels
on navigation performance. Similarly, Howland et al. (2001) [19] examined the effects
of alcohol (between 0.04 and 0.05 g% BAC) on simulated ship handling with 38 cadet
volunteers. This study was focused on a specific subgroup of seafarers and mirrors our
approach in targeting a precise aspect of alcohol-related accidents, and their sample size
aligns closely with our own.

Other studies in the field utilise larger sample sizes, though they predominantly rely
on questionnaires or simulations. For example, Hasanspahic et al. (2021) [7] examined
135 accident reports, though not exclusively focused on alcohol-related cases. A study
by Wang et al. (2021) [8] analysed 1207 accidents, with a focus on 87 collision cases. The
larger datasets were not limited by the need for detailed alcohol consumption information.
Komulainen (2024) [5] employed a comprehensive survey targeting 144 students, focusing
on perceptions of on-board safety, alcohol consumption, and security. This large sample size
was feasible due to the broad scope and demographic accessibility of the study participants.
A study by Nævestad et al. (2018) [11] involved 192 Norwegian and Greek respondents
to examine the influence of national culture, which we measure partly as what kind
of behaviours respondents expect from seafarers from their own country. Oluseye and
Ogunseye (2016) [12] used a survey design to collect data from 284 marine service operators
in Nigeria. Data for the study were collected through questionnaires, and the analysis
focused on several human-related factors as major causes of marine accidents, with drugs
and alcoholism among them. A questionnaire involving 118 officers was also used by Kim
et al. (2007) [16], where the authors examined the drinking status of officers on board. Also,
with a ship handling simulator, the effect of alcohol on maritime navigational performance
was studied for the three blood alcohol concentration (BAC) levels.

Expanding the dataset in future research could provide a wider base for analysis
and improve the robustness of predictive models. This expansion would also allow the
inclusion of additional variables, such as fatigue, vessel maintenance, and the competency
of responsible personnel, which are known to play critical roles in maritime safety but
were outside the scope of our current analysis. Even though the dataset might seem small
for robust statistical analysis, it still provided valuable insights into the role of alcohol
in maritime accidents. Of course, using more reports would improve the accuracy and
generalisability of the results. But despite the smaller sample size, our study clearly
illustrates the significant impact alcohol has on maritime safety, especially when combined
with adverse weather or nighttime operations.

In conclusion, our research shows just how important it is to take a detailed, data-
driven approach to improving maritime safety. While future studies with larger datasets
can build on our findings and enhance the models we have developed, this paper already
provides important insights into how multiple risk factors interact to increase the likelihood
of fatal accidents at sea.

7. Conclusions

Maritime safety is critically important as about 90% of global goods are transported by
sea, making the safety of maritime transport essential for the global economy and supply
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chains [47]. In the fast-paced and unpredictable world of shipping, where operations run
24/7, even small mistakes can have serious consequences, including loss of life, environ-
mental harm, and interruptions to global trade. To ensure the on-board safety of as well
as the protection of the environment, it is essential to understand and address the various
factors that lead to accidents, especially those that result in fatalities.

Our paper focuses critical attention towards alcohol as the findings reveal that alcohol
consumption is a significant predictor of fatal outcomes in maritime accidents. Specifically,
each additional unit of BAC drastically increases the probability of a fatality. The data
suggest that even moderate levels of alcohol consumption can impair judgment and motor
skills to a degree that significantly elevates the risk of fatal accidents.

Firstly, the research included a data collection process—the data were compiled and
curated from a range of maritime accident investigation reports. This involved the careful
selection of cases where alcohol consumption was confirmed as a contributing factor.
The database was constructed using reports from 13 different national and international
maritime safety agencies, ensuring that the data represented various types of maritime
accidents. Then, the data analysis and model development were conducted using several
methods to create predictive models. This involved selecting the variables, selecting the
potential methods for modelling, creating several predictive models, selecting the suitable
model, performing statistical tests, and validating the model’s accuracy. After these steps,
the interpretation of findings was provided. The results were critically analysed, especially
the interactions between alcohol consumption, weather conditions, and time of day.

Moreover, a literature overview was conducted. This review was not limited to
just academic sources; it also included industry reports and data from the World Health
Organization and the National Institute on Alcohol Abuse and Alcoholism, providing
a well-rounded understanding of the topic. The analysis shows that adverse weather
conditions notably increase the dangers posed by alcohol consumption. When combined
with poor visibility or nighttime operations, the risk of fatal accidents increases markedly.
This points to the fact that not only individual risk factors like alcohol consumption
influence the probability of fatality, but also the interactions between multiple risk factors.
The CHAID tree model identified the combination of high BAC, nighttime operations, and
specific weather conditions as critical predictors of fatal outcomes.

The results have important implications for maritime safety management. Traditional
approaches to safety may not be sufficient if they focus only on individual risk factors.
Instead of that, a more developed approach is needed—one that recognises and addresses
the complex interplay between different variables that contribute to accidents. This could
include more comprehensive training programs that educate crew members on the dangers
of alcohol consumption, especially when combined with adverse weather and low visibility
conditions. Additionally, implementing stricter enforcement of alcohol regulations or
policies, especially during high-risk periods such as nighttime or bad weather, could
significantly reduce the likelihood of fatal accidents.

In conclusion, enhancing maritime safety requires a comprehensive approach that
goes beyond addressing individual risk factors. As the maritime industry continues to
evolve, it is essential that safety measures evolve as well, ensuring that all possible risks
are minimised.
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Appendix A

Table A1. Data on contributing factors for selected accidents.

Accident ID Type of Accident BAC 1 (%) Fatalities Weather and Sea State 2 Time of Day 3

1 man overboard 0.270 1 4 1
2 collision 0.265 1 3 1
3 fatal fall 0.110 1 8 1
4 collision 0.258 0 3 0
5 crush incident 0.570 1 2 1
6 grounding 0.660 0 2 0
7 man overboard 0.182 1 2 1
8 grounding 0.690 0 2 0
9 collision 0.324 1 0 0

10 sinking 0.101 1 3 0
11 man overboard 0.154 1 8 1
12 man overboard 0.318 1 2 1
13 grounding 0.271 0 6 1
14 collision 0.600 0 6 1
15 man overboard 0.122 1 4 0
16 fatal fall 0.227 1 2 1
17 man overboard 0.291 1 6 1
18 man overboard 0.346 1 2 1
19 crush incident 0.193 1 1 1
20 fatal fall 0.190 1 3 1
21 grounding 0.112 0 6 1
22 man overboard 0.268 2 4 0
23 fatal fall 0.430 1 1 1
24 fatal fall 0.253 1 3 0
25 man overboard 0.276 1 1 0
26 sinking 0.148 3 4 0
27 fatal fall 0.215 1 1 0
28 crush incident 0.117 1 1 0
29 fatal fall 0.160 1 3 1
30 collision 0.420 2 1 1
31 grounding 0.061 0 3 0
32 collision 0.071 0 4 1
33 grounding 0.058 0 4 1
34 man overboard 0.190 1 3 1
35 grounding 0.193 1 3 1
36 grounding 0.285 1 4 1
37 collision 0.150 2 4 1
38 other 4 0.112 1 3 0

Source: Authors, based on investigation reports data. 1 of person under influence, who caused the acci-
dent/responsible for the process. 2 weather and sea state based on the Beaufort scale: 1–10; 10 = the worst.
3 0 = daytime, 1 = nighttime. 4 oxygen insufficiency due to disabled breathing as a result of chloroform inhalation.



Appl. Sci. 2024, 14, 9153 27 of 28

References
1. Transportation Safety Board of Canada. Marine Investigation Report M15C0094. Available online: https://www.tsb.gc.ca/eng/

rapports-reports/marine/2015/m15c0094/m15c0094.html (accessed on 21 June 2024).
2. SHT. Investigation Report on Maritime Accident. Rapport om Sjoulykke med Fritidsbat, Lokkarsklaeret, Namsos, 1 August 2019; Statens

Havarikommisjon for Transport: Lillestrøm, Norway, 2020; Available online: https://havarikommisjonen.no/ (accessed on 17
September 2024).

3. JTSB. MA2023-10 Marine Accident Investigation Report. 28 September 2023. Available online: https://www.mlit.go.jp/jtsb/eng-
mar_report/2023/2020tk0010e.pdf (accessed on 25 September 2024).

4. MAIB. Report on the Investigation of the Collision between the General Cargo Vessel Scot Carrier and the Split Hopper Barge
Karin Høj Resulting in the Capsize of the Barge with Two Fatalities in the Bornholmsgat Trafc Separation Scheme, Sweden on
13 December 2021. 2023. Available online: https://assets.publishing.service.gov.uk/media/64f9bbec9ee0f2000fb7c054/2023-5-
ScotCarrier-KarinHoej-ReportAndAnnex.pdf (accessed on 27 September 2024).

5. Komulainen, A. An Aspect of Safety and Security Aboard Passenger Vessels: The Impact of Alcohol. Bachelor’s Thesis, Novia
University of Applied Sciences, Turku, Finland, 2024.

6. Gug, S.G.; Yun, J.H.; Harshapriya, D.; Han, J.J. A Prefatory Study on the Effects of Alcohol on Ship Manoeuvring, Navigational
and Decision-Making Abilities of Navigators. J. Navig. 2022, 75, 1069–1081. [CrossRef]
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