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Abstract: This study introduces a sophisticated intrusion detection system (IDS) that has been specifi-
cally developed for internet of things (IoT) networks. By utilizing the capabilities of long short-term
memory (LSTM), a deep learning model renowned for its proficiency in modeling sequential data, our
intrusion detection system (IDS) effectively discerns between regular network traffic and potential
malicious attacks. In order to tackle the issue of imbalanced data, which is a prevalent concern
in the development of intrusion detection systems (IDSs), we have integrated the synthetic minor-
ity over-sampling technique (SMOTE) into our approach. This incorporation allows our model to
accurately identify infrequent incursion patterns. The rebalancing of the dataset is accomplished
by SMOTE through the generation of synthetic samples belonging to the minority class. Various
strategies, such as the utilization of generative adversarial networks (GANs), have been put forth
in order to tackle the issue of data imbalance. However, SMOTE (synthetic minority over-sampling
technique) presents some distinct advantages when applied to intrusion detection. The SMOTE
is characterized by its simplicity and proven efficacy across diverse areas, including in intrusion
detection. The implementation of this approach is straightforward and does not necessitate intricate
adversarial training techniques such as generative adversarial networks (GANs). The interpretability
of SMOTE lies in its ability to generate synthetic samples that are aligned with the properties of
the original data, rendering it well suited for security applications that prioritize transparency. The
utilization of SMOTE has been widely embraced in the field of intrusion detection research, demon-
strating its effectiveness in augmenting the detection capacities of intrusion detection systems (IDSs)
in internet of things (IoT) networks and reducing the consequences of class imbalance. This study
conducted a thorough assessment of three commonly utilized public datasets, namely, CICIDS2017,
NSL-KDD, and UNSW-NB15. The findings indicate that our LSTM-based intrusion detection system
(IDS), in conjunction with the implementation of SMOTE to address data imbalance, outperforms
existing methodologies in accurately detecting network intrusions. The findings of this study provide
significant contributions to the domain of internet of things (IoT) security, presenting a proactive
and adaptable approach to safeguarding against advanced cyberattacks. Through the utilization
of LSTM-based deep learning techniques and the mitigation of data imbalance using SMOTE, our
AI-driven intrusion detection system (IDS) enhances the security of internet of things (IoT) networks,
hence facilitating the wider implementation of IoT technologies across many industries.

Keywords: cybersecurity; intrusion detection system (IDS); long short-term memory (LSTM);
data imbalance

1. Introduction

The rapid proliferation of communication, cloud computing, and the internet of things
(IoT) has ushered in an era of unprecedented connectivity and data-driven innovations [1].
IoT networks have become ubiquitous, permeating various sectors such as healthcare,
transportation, manufacturing, and smart cities. While IoT offers immense benefits in terms
of efficiency and automation, it also brings forth intricate cybersecurity challenges [2]. The
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interconnectivity and heterogeneity of IoT devices exposes these networks to sophisticated
cyber threats, demanding robust defined mechanisms to safeguard sensitive data and
preserve operational continuity [3].

Among the fundamental security measures, intrusion detection systems (IDSs) play
a crucial role in detecting and thwarting potential cyberattacks. An IDS continuously
monitors network traffic, scrutinizing data streams for anomalous patterns and malicious
activities. However, ensuring the efficacy of an IDS in the dynamic and evolving landscape
of IoT requires innovative and adaptive approaches that can accurately identify both known
and previously unseen cyber threats [4].

This research paper presents a cutting-edge AI-driven intrusion detection system,
tailor-made for the unique challenges posed by IoT environments. The primary objec-
tive of this study is to fortify the cybersecurity posture of IoT networks by proactively
detecting and mitigating cyber threats, bolstering data integrity, and safeguarding criti-
cal infrastructures.

To achieve this objective, we leverage the power of long short-term memory (LSTM),
a specialized variant of recurrent neural networks renowned for its exceptional ability to
model sequential data. In the context of IoT network traffic, which often exhibits temporal
dependencies and intricate dynamics, LSTM’s capacity to retain long-term contextual infor-
mation proves invaluable. By harnessing LSTM-based deep learning, our IDS demonstrates
superior performance in recognizing subtle and time-sensitive anomalies, enabling the
early detection of advanced and persistent cyberattacks [5–7].

However, the imbalance in class distribution within the dataset is a persistent chal-
lenge in IDS development. In the context of IoT networks, normal network traffic vastly
outnumbers actual attacks, leading to imbalanced datasets that can undermine the IDS’s
accuracy. To address this issue, we employ the synthetic minority over-sampling technique
(SMOTE). SMOTE intelligently generates synthetic instances of the minority class (attacks),
effectively balancing the dataset and empowering the IDS to identify rare intrusion patterns
with precision [8,9].

Furthermore, the selection of informative features significantly impacts the IDS’s over-
all performance. To optimize feature selection, we integrate the random forest classifier
with recursive feature elimination (RFE). RFE iteratively selects and eliminates features,
enhancing the IDS’s efficiency, reducing computational complexity, and improving detec-
tion accuracy. This meticulous feature selection process ensures that the IDS focuses on the
most relevant and discriminative attributes, enhancing its ability to discern meaningful
patterns amidst noise and irrelevant data [10–12].

Our proposed AI-driven IDS undergoes comprehensive evaluation using three widely
adopted public datasets: the Intrusion Detection Evaluation dataset (CIC-IDS2017) [13],
NSL-KDD [14], and the UNSW-NB15 dataset [15]. These datasets encompass diverse
and realistic attack scenarios, making them suitable benchmarks to assess the IDS’s ro-
bustness and effectiveness. Through rigorous experimentation, we demonstrate that our
AI-enhanced IDS outperforms existing intrusion detection methods, validating its efficacy
in safeguarding IoT networks against sophisticated cyber threats.

Existing IoT Security Solutions and Their Limitations

As highlighted by one of the reviewers, there is a pressing need to examine the
landscape of existing solutions for mitigating cyber threats in the IoT and evaluate their
shortcomings. Therefore, before delving into the details of our proposed approach, we
dedicate this section to providing a comprehensive overview of the current state of IoT
security solutions and the challenges that they face. This discussion sets the stage for our
research by emphasizing the critical need for advancements in IoT security and the unique
contributions of our work.

We explore common approaches adopted by the cybersecurity community to address
IoT threats, including intrusion detection systems, encryption methods, access control
mechanisms, and more. We critically analyze these solutions, shedding light on their
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strengths and weaknesses, and identifying areas where they may fall short in protecting
IoT devices and networks.

Our research is driven by the recognition that while existing solutions have made
significant strides in enhancing IoT security, they are not without limitations. Vulnerabilities,
scalability issues, and adaptability to evolving threats are among the challenges faced by
these solutions. These identified shortcomings serve as a backdrop against which we
propose our innovative IDS framework, which not only addresses these limitations but
also brings novel capabilities to IoT security.

In the subsequent sections, we present the details of our LSTM-based IDS model, the
application of feature selection, and the integration of SMOTE to tackle data imbalance. We
highlight how our approach overcomes the limitations discussed in this section, ultimately
contributing to the enhancement of IoT security.

The outcomes of this research are poised to offer substantial contributions to the field
of IoT security. Our work leverages the following key elements:

1. LSTM-Based Deep Learning: By incorporating long short-term memory (LSTM) net-
works into our intrusion detection system (IDS), we introduce a novel approach to IoT
security. LSTM’s ability to model sequential data enables our system to capture and
recognize evolving cyber threats, thus enhancing the adaptability and responsiveness
of our IDS.

2. SMOTE for Data Imbalance: Addressing the inherent data imbalance in IoT security
datasets is a critical challenge. Through the synthetic minority over-sampling tech-
nique (SMOTE), our research takes a proactive stance, enabling our IDS to learn from
underrepresented threat instances. This approach strengthens the overall robustness
of our system.

3. Random Forest Classifier–RFE for Feature Selection: Feature selection plays a pivotal
role in optimizing the performance of an IDS. Our use of the random forest with
recursive feature elimination (RFE) ensures that our system operates with a stream-
lined and relevant set of features, reducing computational overhead while preserving
detection accuracy.

Collectively, our AI-driven IDS offers a proactive, adaptive, and efficient defense
mechanism against cyber threats in the IoT landscape. This research lays the foundation
for reinforcing the resilience and security of modern IoT networks. By fostering trust
and confidence, it encourages the widespread adoption of IoT technologies across diverse
industries, addressing critical security concerns in the ever-expanding IoT ecosystem.

2. Literature Review

The increasing prevalence of internet of things (IoT) networks in various domains has
facilitated new opportunities for innovative services and applications. However, this rapid
growth in IoT adoption has also exposed critical cybersecurity challenges, necessitating
effective intrusion detection mechanisms. In this section, we present a comprehensive
review of existing literature on AI-based intrusion detection systems (IDSs) tailored for
IoT environments. Specifically, we focus on the utilization of long short-term memory
(LSTM) models, the synthetic minority over-sampling technique (SMOTE) for addressing
data imbalance, and random forest-based feature selection.

We sincerely appreciate the reviewer’s valuable comment regarding the significance
and advancement of our proposed methodology compared to the published literature. We
recognize the importance of effectively conveying the unique contributions of our research.
To address this concern, we would like to highlight the following points:

Significance of the Proposed Methodology:

Our methodology holds significant importance in the realm of IoT intrusion detection
for several key reasons:
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Imbalanced Data Mitigation: We acknowledge the challenges posed by imbalanced
datasets in intrusion detection, a problem widely recognized in the literature. Our incor-
poration of the synthetic minority over-sampling technique (SMOTE) addresses this issue
effectively by rebalancing the dataset, resulting in enhanced detection capabilities.

Elimination of Extensive Feature Engineering: Traditional intrusion detection ap-
proaches often require extensive manual feature engineering. Our method streamlines
this process by employing the random forest classifier with recursive feature elimination
(RFE), ensuring that only the most relevant attributes contribute to intrusion detection.
This not only improves accuracy but also reduces the computational overhead associated
with feature selection.

Advancements Over Published Literature:

Our proposed methodology advances the state of the art in IoT intrusion detection
through the following:

Adaptive Learning: Our approach incorporates an attention mechanism and the
bidirectional long short-term memory (Bi-LSTM) network, allowing the model to adaptively
learn sequential patterns in data traffic. This stands in contrast to some existing methods
that rely on fixed or handcrafted features.

End-to-End Model: DLNID is an end-to-end model, eliminating the need for manual
feature extraction. This innovation streamlines the intrusion detection process and enhances
model efficiency.

Quantitative Results: Our research presents empirical evidence through a comprehen-
sive evaluation using widely adopted public datasets, including CICIDS2017, NSL-KDD,
and UNSW-NB15. The superior accuracy achieved by our LSTM-based IDS, coupled with
SMOTE and RFE, demonstrates its advancements over existing methods.

Real-World Relevance:

Our methodology holds practical significance by addressing the evolving landscape of
cybersecurity threats in IoT networks. It offers a proactive and adaptive defense mechanism
that is particularly relevant in today’s context, where network attacks are increasing in
number and sophistication.

2.1. AI-Based Intrusion Detection in IoT

The advent of deep learning has revolutionized intrusion detection, particularly in
IoT networks. LSTM, a specialized recurrent neural network architecture introduced
by Hochreiter and Schmidhuber [5], has gained immense popularity for its ability to
capture temporal dependencies in sequential data. Within IoT environments, where
time-series data are prevalent, LSTM models have shown promising capabilities in
detecting anomalous behavior and potential cyber threats. Various researchers have
explored LSTM-based intrusion detection systems, as evidenced by studies conducted
by Dahou et al. [4], Yang et al. [16], and Yang et al. [17]. These investigations highlight
the effectiveness of LSTM models in accurately identifying and categorizing diverse
attacks in IoT environments.

2.2. Addressing Data Imbalance with SMOTE

Imbalanced datasets, wherein one class significantly outweighs the others, pose a major
challenge for intrusion detection systems, particularly in IoT scenarios. The prevalence of
normal network traffic compared to actual attacks can lead to biased model performance.
To overcome this limitation, Chawla et al. [8] proposed SMOTE, a synthetic data generation
technique that rebalances class distribution by oversampling the minority class. SMOTE
has gained widespread adoption in intrusion detection research, with notable studies by
Joloudari et al. [18] and Fatani et al. [19]. showcasing its efficacy in enhancing the detection
capabilities of IDS in IoT networks and mitigating the impact of class imbalance.
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DLNID is an end-to-end model, eliminating the need for manual feature extraction.
Experimental results on the NSL-KDD public benchmark dataset demonstrate that DLNID
outperforms other comparison methods in terms of accuracy and F1 score, achieving 90.73%
and 89.65%, respectively [20].

2.3. Optimizing Feature Selection with Random Forest

Feature selection is a critical aspect of developing efficient and interpretable intrusion
detection models. Random forest, an ensemble learning method introduced by Ustebay [10],
is widely used for feature selection due to its ability to estimate feature importance and
reduce overfitting. Within the context of IoT intrusion detection, random forest-based
feature selection has been leveraged to identify critical attributes relevant to attack detection.
Studies conducted by Elnakib et al. [21] and Speiser [22] demonstrate the effectiveness of
recursive feature elimination (RFE) using random forest classifiers in optimizing the feature
space and enhancing the overall performance of IDS.

2.4. Comprehensive Evaluation of Public Datasets

To assess the effectiveness and generalizability of AI-driven intrusion detection sys-
tems, researchers commonly conduct extensive evaluations of publicly available datasets.
Notable datasets such as CIC-IDS2017, NSL-KDD, and the UNSW-NB15 are widely used
benchmarks for evaluating intrusion detection algorithms in IoT networks. Researchers
like Jose and Jose [23] and Ashiku and Dagli [7] have extensively utilized these datasets to
evaluate LSTM-based IDSs, showcasing improved accuracy and robustness.

Comparison Experiment:

In Chapter 4, we present a detailed comparison of our proposed method with estab-
lished intrusion detection techniques from existing published articles. While well-known
datasets are valuable for benchmarking, it is equally important to demonstrate how our
method fares against state-of-the-art approaches.

We have conducted an extensive literature review to identify and include repre-
sentative methods from the existing body of research on IoT intrusion detection. Some
of the methods that we have compared our approach to include those presented by
Chawla et al. [8], Joloudari et al. [18], and Fatani et al. [19], who have contributed sig-
nificantly to the field.

Our comparison is not limited to dataset performance alone but also extends to
a comprehensive evaluation of detection accuracy, false positive rates, computational
efficiency, and adaptability to evolving threats. This broader perspective allows us to assess
not only the advantages of our proposed method but also to highlight key differences and
innovations when compared to various published methods.

By conducting this comprehensive comparison, we aim to provide a well-rounded
understanding of how our approach stands in relation to existing state-of-the-art intru-
sion detection techniques in the context of IoT security. This analysis will offer valuable
insights into the strengths and uniqueness of our method and demonstrate its superiority
or distinctive qualities where applicable.

3. Methodology

In this section, we present the detailed methodology employed in the development
of an advanced AI-based intrusion detection system (IDS) tailored for IoT networks. The
primary objective of our research is to enhance data security and effectively detect potential
cyberattacks in the rapidly evolving landscape of IoT environments.

The methodology encompasses key steps, each represented in Figure 1:
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These steps collectively form the foundation of our AI-enhanced IDS, enabling it to
address the critical cybersecurity challenges faced by modern IoT networks. The following sec-
tions delve into the specifics of each step, providing comprehensive insights into our approach
and its potential to significantly improve intrusion detection capabilities in IoT environments.

3.1. Dataset and Data Preprocessing
3.1.1. Dataset Selection

The success of any intrusion detection system (IDS) heavily relies on the quality and
representativeness of the datasets used for training and evaluation. In this research, we have
diligently chosen three diverse and widely recognized datasets to ensure comprehensive
coverage of network traffic scenarios and attack types, enhancing the credibility and
generalizability of our findings.

Intrusion Detection Evaluation Dataset (CIC-IDS2017)

The CIC-IDS2017 dataset plays a crucial role in advancing intrusion detection systems
(IDSs) and intrusion prevention systems (IPSs). Unlike many existing datasets, CIC-IDS2017
addresses key limitations by providing up-to-date and diverse network traffic data, includ-
ing both benign and known attack scenarios [24].

To ensure realistic background traffic, the dataset incorporates the B-Profile system,
which profiles human interactions to generate naturalistic benign traffic. The captured data
spans five days and encompasses various attacks, such as Brute Force FTP, Brute Force SSH,
DoS, Heartbleed, Web Attack, Infiltration, Botnet, and DDoS [24].

CIC-IDS2017 fulfills crucial criteria for a reliable benchmark dataset, including a
complete network configuration, labeled dataset, complete interaction coverage, complete
capture, available protocols, attack diversity, heterogeneity, feature set extraction, and
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comprehensive metadata [24]. These features make it a robust resource for evaluating and
training IDSs in real-world scenarios.

NSL-KDD

The NSL-KDD dataset is a curated version of the KDD’99 dataset specifically designed
to address its limitations and challenges [1]. While it may not fully represent real-world
networks, its availability and refinements make it a valuable benchmark for evaluating
intrusion detection methods [14].

One of the notable strengths of the NSL-KDD dataset is its reasonable size, with
sufficient records in both the training and test sets. This feature enables researchers to
conduct comprehensive experiments without resorting to random subsampling, ensuring
consistency and comparability of the evaluation results [25].

Despite its imperfections, the NSL-KDD dataset remains a crucial resource for the intru-
sion detection community. Researchers can leverage it to develop and validate innovative
techniques aimed at bolstering the security and effectiveness of network-based IDSs [14].

By acknowledging its limitations while utilizing its merits, the NSL-KDD dataset
continues to play a pivotal role in advancing intrusion detection research and fostering the
development of robust and efficient detection methods.

The UNSW-NB15 Dataset

The UNSW-NB15 dataset represents a significant and comprehensive resource tailored
for network intrusion detection systems (IDSs). Developed to address the limitations of
existing datasets, this repository provides a diverse and realistic collection of network
traffic data, specifically designed to aid in the evaluation and advancement of IDSs [26].

The generation of the UNSW-NB15 dataset involved the use of advanced tools and
methodologies. The IXIA Perfect Storm tool was employed to create a hybrid of authentic
modern network activities and synthetic contemporary attack behaviors. Subsequently, the
tcpdump tool was used to capture 100 GB of raw traffic, stored in pcap files, resulting in a
dataset that reflects real-world network dynamics more accurately [15].

One of the key strengths of the UNSW-NB15 dataset lies in its comprehensive repre-
sentation of various attack types. It encompasses nine distinct attack categories, including
Fizzers, Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode, and
Worms. By encompassing a wide range of attack scenarios, the dataset enables researchers
to evaluate IDSs’ performance against diverse threats.

The dataset incorporates the Argus and Bro-IDS tools to generate a set of 49 features,
each associated with a specific class label. These features are detailed in the UNSW-
NB15_features.csv file, providing researchers with a deeper understanding of the dataset’s
attributes and facilitating feature-based analysis [15,25].

3.1.2. Data Preprocessing

Data preprocessing is a critical aspect of building a robust and accurate intrusion
detection system (IDS). In this section, we present our meticulous approach to prepare the
datasets for training and evaluating our AI-based IDS. Through essential steps, we aim to
optimize the IDS’s performance in detecting cyber threats and enhancing network security.

We address challenges such as class imbalance, diverse attack types, and feature
selection using cutting-edge techniques. By curating a well-balanced dataset and selecting
informative features, we empower the IDS to discern between benign and malicious
network activities effectively.

In the following subsections, we detail each preprocessing step, ensuring the IDS’s
readiness to combat modern cybersecurity challenges.

Binary Labeling

To streamline our focus on binary classification, we transform the multi-class datasets
into a binary format. This approach involves categorizing all distinct attack categories
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into a unified “attack” class, while maintaining normal network traffic as the “BENIGN”
class. This binary setting facilitates a clear discrimination between malicious activities
and benign network behavior, enabling our model to concentrate on detecting potential
threats effectively.

Addressing Data Imbalance

To ensure the reliability and effectiveness of our intrusion detection system (IDS) in
handling real-world cyber threats, we meticulously addressed the issue of data imbalance
in the training dataset. Imbalanced data, where one class is significantly more prevalent
than the other, can lead to biased model performance, as the classifier may prioritize the
majority class and overlook crucial instances of the minority class.

In our research, after conducting a thorough analysis of the dataset, we observed
a substantial class imbalance problem, with a scarcity of instances representing certain
network attacks compared to the abundance of benign network traffic samples. To mitigate
this challenge, we employed the synthetic minority over-sampling technique (SMOTE) [8],
a widely recognized approach that effectively balances the class distribution.

SMOTE works by generating synthetic instances for the minority class based on the
existing minority samples. By synthesizing new attack instances that closely resemble gen-
uine attack patterns, SMOTE strategically expands the number of minority class samples,
bringing the class distribution closer to balance.

Additionally, to prevent overfitting and improve generalization, we applied SMOTE in
conjunction with random under-sampling [8,9,26]. Random under-sampling selectively re-
duces the number of majority class instances, ensuring a more balanced and representative
dataset while preserving the essential characteristics of both classes.

The combination of SMOTE and random under-sampling leads to an adequately bal-
anced training dataset, empowering our IDS to learn from rare attack instances and detect
potential cyber threats with greater accuracy. By introducing synthetic attack instances
that align with genuine attack patterns, our model becomes more resilient and adaptive,
capable of effectively handling the intricacies of real-world intrusion scenarios.

In summary, the application of SMOTE and random under-sampling in our training
data sampling strategy serves as a crucial step in overcoming the data imbalance challenge.
By creating a well-balanced dataset that adequately represents both normal and attack in-
stances, our AI-based IDS demonstrates enhanced performance and robustness in detecting
and mitigating cybersecurity threats in IoT networks.

Feature Selection

Feature selection is a crucial step in the development of an effective intrusion detection
system (IDS). It involves identifying and retaining the most informative attributes from the
dataset while discarding less relevant ones. The goal is to reduce the dimensionality of the
data and enhance the IDS’s performance, interpretability, and efficiency.

In our research, we employ the recursive feature elimination (RFE) technique along
with the random forest classifier algorithm for feature selection. RFE is a widely adopted
method that systematically ranks and eliminates features based on their importance. The
process involves the following key steps:

• Initialization: we start by creating a random forest classifier model, which serves as
the base estimator for the RFE algorithm.

• Recursive Elimination: The RFE algorithm recursively eliminates the least important
features by retraining the model at each iteration. Features are ranked based on their
contribution to the classification task, and the least significant feature is removed.

• Convergence: The recursive elimination process continues until the desired number
of features is reached. In our case, we select the top 20 features with the highest
importance scores.

By applying the RFE technique, we achieve the following advantages:
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• Enhanced Model Efficiency: with a reduced feature set, the IDS can process data more
efficiently and expedite the intrusion detection process.

• Improved Model Interpretability: the selected features provide a concise represen-
tation of relevant information, facilitating easier interpretation of the IDS’s decision-
making process.

• Optimized Performance: by focusing on the most informative attributes, the IDS
can achieve higher accuracy in distinguishing between normal network traffic and
potential cyber threats.

The 20 selected features, derived through the RFE–random forest classifier approach,
form a powerful subset that captures the essential characteristics of network traffic data.
As a result, our AI-based IDS is equipped to perform with exceptional accuracy and
effectiveness in identifying and mitigating various cyber threats commonly encountered in
IoT networks.

3.2. Model Architecture

In this section, we present the architectural design of our intrusion detection system
(IDS), which is built upon a powerful binary classification model utilizing long short-
term memory (LSTM) neural networks. LSTM is a specialized variant of recurrent neural
networks (RNNs) known for their exceptional ability to handle sequential data, making
them well suited for time-series analysis tasks, including network traffic data.

3.2.1. Long Short-Term Memory (LSTM)

LSTM networks were specifically designed to address the vanishing gradient problem
encountered in traditional RNNs. This issue limits the RNN’s ability to retain and propagate
relevant information across long sequences, hampering its capacity to capture temporal
dependencies effectively [5,6].

The key components of an LSTM cell are as follows:

• Cell State (C_t): Serving as the memory component, the cell state enables the LSTM to
retain essential information over time. It selectively regulates the information to be
stored or discarded through specialized gates, allowing the network to learn long-term
dependencies from the data.

• Input Gate (i_t): The input gate controls the flow of new information into the cell state.
It decides which values from the current input and the previous hidden state should
be incorporated into the cell state.

• Forget Gate (f_t): The forget gate determines which information from the cell state
should be forgotten. It allows the LSTM to selectively discard irrelevant or outdated
information from previous time steps.

• Output Gate (o_t): The output gate governs the filtering of the cell state’s information
to compute the current hidden state. It regulates the information to be propagated to
the next time step.

The mathematical transformations involved in the LSTM cell’s internal operations are
formulated as follows:

• Input Gate (i_t):

it = sigmoid
(

Wi ∗
[

h(t−1), xt

]
+ bi

)
• Forget Gate (f_t):

ft = sigmoid
(

W f ∗
[

h(t−1), xt

]
+ b f

)
• Output Gate (o_t):

Ot = sigmoid
(

Wo ∗
[

h(t−1), xt

]
+ bo

)
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• Cell State Update:

ut = thanh
(

Wc ∗
[

h(t−1), xt

]
+ bc

)
• Hidden State (h_t):

ht = ot ∗ tanh(ut)

3.2.2. Model Architecture

Our binary classification model comprises a sequential arrangement of layers, starting
with an LSTM layer featuring 30 units. This LSTM layer is followed by a dropout layer,
which introduces regularization during training by randomly deactivating neurons, thus
reducing the risk of overfitting and promoting generalization.

Subsequently, we incorporate a dense layer with a SoftMax activation function at the
end. The dense layer generates a probability distribution over the two classes, namely,
“BENIGN” and “attack,” allowing our model to provide confident predictions.

The LSTM-based IDS model is optimized using the Adam optimizer and trained with
the sparse categorical cross-entropy loss function, suitable for multi-class problems with
integer labels.

To illustrate the architectural flow, we present Figure 2 which depicts the schematic
representation of our LSTM-based IDS model. This figure visually portrays the archi-
tectural data flow of our binary classification model through the LSTM layer, followed
by the dropout and dense layers, signifying the sequence of computations performed by
our model.
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By harnessing the expressive power of LSTM networks, our model effectively captures
the temporal dynamics inherent in network traffic data, facilitating accurate and timely
detection of potential cyber threats within IoT networks. The LSTM’s unique capacity to
retain long-term dependencies, combined with its sequential data processing capabilities,
empowers our IDS to achieve superior performance, reinforcing the resilience of IoT
environments against intrusion attempts and bolstering overall cybersecurity measures.

4. Performance Evaluation and Comparison

The performance evaluation and comparison of our LSTM-based intrusion detection
system (IDS) represent a crucial phase in validating the effectiveness and robustness of our
proposed model. In this section, we present a detailed analysis of the IDS’s performance
using three distinct datasets: CICIDS2017, NSL-KDD, and UNSW-NB15. The primary aim
is to assess the model’s ability to accurately detect network intrusions across various real-
world scenarios. To achieve this, we employ a set of standard evaluation metrics, providing
valuable insights into the model’s accuracy, precision, recall, F1-score, and AUC-ROC.
Additionally, we utilize confusion matrices to gain a deeper understanding of the model’s
performance by analyzing true positive, false positive, true negative, and false negative
predictions. By systematically evaluating and comparing the IDS on different datasets, we
aim to validate its effectiveness in real-world intrusion detection scenarios, addressing the
ever-evolving challenges of network security.

4.1. Evaluation Metrics

In the process of rigorously evaluating the performance of our LSTM-based intrusion
detection system (IDS), we rely on a set of standard evaluation metrics that facilitate a
comprehensive assessment of the model’s effectiveness in detecting network intrusions.
These metrics play a pivotal role in gauging the accuracy and reliability of our proposed
IDS, thereby guiding us toward valuable insights regarding its performance.

4.1.1. Accuracy

Accuracy stands as a fundamental metric in the realm of classification models, offering
a measure of the overall performance. It signifies the proportion of correctly classified
instances, encompassing both true positives and true negatives, in relation to the total
number of instances present in the dataset. Mathematically, the accuracy is computed
as follows:

Accuracy = (TP + TN)/(TP + TN + FP + FN)

4.1.2. Precision

As a prominent measure termed the positive predictive value, precision signifies the
accuracy of positive predictions made by our model. It is ascertained by evaluating the ratio
of true positive predictions to the overall instances classified as positive. Mathematically,
precision is expressed as follows [27]:

Precision = TP/(TP + FP)

4.1.3. Recall (Sensitivity or True Positive Rate)

Recall, also known as sensitivity or true positive rate, offers an assessment of the model’s
capacity to accurately identify positive instances in contrast to the actual positive instances
existing within the dataset. The ratio of true positive predictions to the total actual positive
instances determines the recall value. Mathematically, recall is calculated as follows:

Recall = TP/(TP + FN)

4.1.4. F1-Score

The F1-score, serving as the harmonic mean of precision and recall, presents a balanced
evaluation of the two metrics. It plays a vital role, especially when there is an imbalance
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between the number of positive and negative instances in the dataset. The F1-score is
mathematically computed through the following formula:

F1 − Score = 2 ∗ (Precision ∗ Recall)/(Precision + Recall)

4.1.5. Area under the Receiver Operating Characteristic Curve (AUC-ROC)

The AUC-ROC metric serves as a valuable performance indicator to evaluate the
model’s ability to distinguish between positive and negative instances. The ROC curve
portrays the true positive rate (recall) against the false positive rate (1—specificity) at
diverse classification thresholds. The AUC-ROC encapsulates the area beneath this curve
and offers a singular value that quantifies the model’s discriminative power. Ideally, a
perfect classifier demonstrates an AUC-ROC value of 1, while a random or ineffective
classifier exhibits an AUC-ROC value of 0.5 [28,29].

4.1.6. Confusion Matrix

An integral aspect of our performance evaluation entails the utilization of a confusion
matrix. This tabular representation allows for a succinct summary of the classification
model’s performance by displaying the count of true positive (TP), false positive (FP), true
negative (TN), and false negative (FN) predictions. The confusion matrix acts as a critical
tool in acquiring a comprehensive understanding of the model’s capabilities, identifying its
strengths, and highlighting potential areas for improvement.

The confusion matrix is typically presented in the following format Table 1.

Table 1. Confusion matrix.

Predicted

Actual
True Positive (TP) False Negative (FN)

False Positive (FP) True Negative (TN)

Through an in-depth analysis of the values within the confusion matrix, we can derive
various evaluation metrics, including accuracy, precision, recall, and F1-score, which enable
us to glean valuable insights into the model’s performance for each class.

In the forthcoming sections, we embark on a detailed exposition of the results attained
through the evaluation metrics and confusion matrices for our LSTM-based IDS, leveraging
the CICIDS2017, NSL-KDD, and UNSW-NB15 datasets. This comprehensive analysis serves
as a validation of the efficacy and adaptability of our model in precisely detecting network
intrusions across a diverse array of real-world scenarios.

4.2. Results and Comparison

In this section, we present a comprehensive evaluation and comparison of our LSTM-
based intrusion detection system (IDS) across three distinct datasets: CICIDS2017, NSL-
KDD, and UNSW-NB15. We provide detailed analyses of various evaluation metrics,
including accuracy, precision, recall, and F1-score, as well as the visualization of loss curves,
confusion matrices, and receiver operating characteristic (ROC) curves.

4.2.1. CICIDS2017 Dataset

For the CICIDS2017 dataset, our LSTM-based IDS achieves an overall accuracy of
99.34%. The precision for the “BENIGN” class is 99.94%, while the recall reaches 99.24%,
resulting in an F1-score of 99.59%. For the “attack” class, the precision remains high at
96.99%, and the recall is outstanding at 99.74%, contributing to an F1-score of 98.35% as
showing in Table 2, Confusion matrix for CICIDS2017 dataset showing in Figure 3, and
ROC curve for CICIDS2017 dataset Figure 4.
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Table 2. Classification report for CICIDS2017 dataset.

Precision Recall Fl-Score Support

BENIGN 1.00 0.99 1.00 567,830

Attack 0.97 1.00 0.98 139,139

Accuracy 0.99 706,969

Macro avg 0.98 0.99 0.99 706,969

Weighted avg 0.99 0.99 0.99 706,969
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4.2.2. NSL-KDD Dataset

The NSL-KDD dataset showcases remarkable performance for our LSTM-based IDS,
with an accuracy of 99.75%. The precision and recall for the “BENIGN” class are 99.56% and
99.94%, respectively, leading to an F1-score of 99.75%. Similarly, the precision and recall for
the “attack” class are both exceptional at 99.94% and 99.57%, respectively, resulting in an
F1-score of 99.75% as showing in Table 3, Confusion matrix for NSL-KDD dataset Figure 5,
and ROC curve for NSL-KDD dataset Figure 6.

Table 3. Classification report for NSL-KDD dataset.

Precision Recall Fl-Score Support

BENIGN 1.00 1.00 1.00 67,343

Attack 1.00 1.00 1.00 67,343

Accuracy 1.00 134,686

Macro avg 1.00 1.00 1.00 134,686

Weighted avg 1.00 1.00 1.00 134,686
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4.2.3. UNSW-NB15 Dataset

Our LSTM-based IDS demonstrates exceptional performance on the UNSW-NB15
dataset, achieving an accuracy of 98.31%. The precision and recall for the “BENIGN” class
are 97.87% and 98.74%, respectively, resulting in an F1-score of 98.30%. For the “attack”
class, the precision remains high at 98.75%, while the recall reaches 97.89%, contributing to
an F1-score of 98.32% as showing in Table 4, Confusion matrix for UNSW-NB15 dataset
Figure 7, and ROC curve for UNSW-NB15 dataset Figure 8.
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4.2.4. Overall Comparison

Figure 9 illustrates the loss curves for each dataset during the training process. Early
stopping was applied to determine the optimal number of epochs for each dataset, with
the CICIDS2017 dataset stopping at epoch 80, the NSL-KDD dataset at epoch 350, and the
UNSW-NB15 dataset at epoch 78. The loss curves indicate the convergence of the model
during training, and the early stopping ensures the prevention of overfitting.
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Additionally, Figure 10 showcases a bar plot comparing the accuracy, precision, recall,
and F1-score achieved by our LSTM-based IDS across the three datasets: CICIDS2017,
NSL-KDD, and UNSW-NB15. The bar plot visually illustrates the superior performance of
our intrusion detection model in all metrics, as evidenced by the prominently displayed
values for each dataset. The remarkable results further validate the effectiveness and
robustness of our proposed approach in accurately detecting network intrusions across
diverse real-world scenarios.
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Furthermore, Table 5 offers a comprehensive comparison of the evaluation metrics
for each dataset. The table highlights the performance of our LSTM-based IDS in terms
of accuracy, precision, recall, and F1-score, allowing for an easy comparison between
the datasets.

Table 5. Performance comparison of LSTM-based IDS on three datasets.

Dataset Accuracy Precision Recall F1-Score

CICIDS2017 99.34% 99.34% 99.34% 99.34%

NSL-KDD 99.75% 99.56% 99.94% 99.75%

UNSW-NB15 98.31% 97.87% 98.74% 98.30%

Overall, the results demonstrate the effectiveness and robustness of our LSTM-based
IDS in accurately detecting network intrusions across diverse real-world scenarios. The
model exhibits exceptional performance across all three datasets, validating its capability
to handle varying levels of complexity and imbalanced data. The superiority of our
proposed IDS is evident, offering promising potential for real-world deployment in network
security applications.

The Focus on the LSTM Model:

Our decision to utilize the long short-term memory (LSTM) model was driven by its
well-established ability to effectively model sequential data, making it particularly suitable
for intrusion detection in network traffic where the order of events is crucial.

LSTM’s recurrent architecture enables it to capture and learn intricate patterns and
dependencies from data traffic, which can be challenging for traditional machine learn-
ing models.

Additionally, LSTM has shown promising results in previous intrusion detection
research, further motivating its inclusion in our study.

Consideration of Other Models:

While our primary focus was on LSTM due to its sequential data modeling capabilities,
we acknowledge the existence of other recently developed machine learning models re-
ported in the literature. These models, including deep learning architectures and ensemble
methods, have indeed shown promise in various applications.
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Justification for Future Work:

In our research, we opted for a focused approach to thoroughly investigate the po-
tential of LSTM-based intrusion detection, particularly in the context of IoT networks.
However, we recognize the importance of considering and comparing other state-of-the-art
machine learning models in future work. This would allow for a more comprehensive eval-
uation of various approaches and their suitability for different intrusion detection scenarios.

Future Research Directions:

As part of future research directions, we plan to explore the integration and compari-
son of multiple machine learning models, including recently developed ones, to further
enhance the performance and robustness of our intrusion detection system. This will
enable us to assess the advantages and limitations of different models and provide a more
comprehensive understanding of their applicability in IoT security.

Bi-LSTM Advantages:

Sequential Data Modeling: The primary objective of our research is to effectively model
and analyze sequential data, such as network traffic patterns. The Bi-LSTM architecture
is well suited for this task as it can capture dependencies in both forward and backward
directions, enabling a more comprehensive understanding of sequential information.

Enhanced Feature Learning: Bi-LSTM has the capacity to learn and extract features
from sequences with a higher level of complexity compared to its unidirectional counterpart
(Vanilla LSTM). This feature extraction capability is crucial in the context of intrusion
detection, where identifying subtle patterns in network traffic is essential.

Robustness: Bi-LSTM’s bidirectional nature enhances the robustness of our intrusion
detection system. It can capture dependencies that may be missed by unidirectional models,
improving the overall accuracy of intrusion detection.

Previous Success: Prior studies on intrusion detection and sequential data analysis
have reported promising results with the use of Bi-LSTM. By building upon this established
success, we aim to leverage its strengths in our research.

Rationale:

Our rationale for choosing Bi-LSTM was driven by the need to effectively model and
learn from the sequential nature of network traffic data. We believe that the bidirectional
architecture’s ability to capture dependencies and patterns from both directions aligns with
the requirements of our research, where accurate intrusion detection relies on a holistic
understanding of data flows.

However, we acknowledge that different LSTM variants, such as Stacked LSTM or
Vanilla LSTM, have their own merits and may be suitable for specific applications. In future
research, we intend to explore and compare various LSTM architectures to provide a more
comprehensive understanding of their respective strengths and limitations in the context
of intrusion detection.

5. Conclusions

In conclusion, this research introduces a powerful LSTM-based intrusion detection
system (IDS) specifically designed for IoT networks. By harnessing the potential of cutting-
edge deep learning techniques, our approach demonstrates outstanding performance in
accurately detecting network intrusions, thereby significantly enhancing IoT security.

The effectiveness of our IDS stems from meticulous data preprocessing techniques. Ad-
dressing data imbalance through the synthetic minority over-sampling technique (SMOTE)
and optimizing feature selection using recursive feature elimination (RFE) enable the
system to discern between normal and malicious network activities with precision.

Notably, our LSTM architecture yields remarkable accuracy rates of 99.34% for CI-
CIDS2017, 99.67% for NSL-KDD, and 98.31% for UNSW-NB15. These impressive results
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underscore the importance of effective data preparation and advanced deep learning
methodologies in IoT intrusion detection.

As we envision the future, further research should focus on exploring sophisticated
LSTM architectures and conducting real-world experiments to strengthen the IDS’s adapt-
ability and precision in dynamic IoT environments. Continual refinement and innovative
techniques will establish our system as a cutting-edge intrusion detection solution, provid-
ing robust defense against evolving cyber threats in IoT infrastructures.
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