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Abstract: This research investigates the feasibility of covert and reliable communication between Alice
and Bob in the presence of a vigilant adversary, Willie, employing a jammer in a complex Gaussian
channel. Alice strategically manipulates the noise-power ratio along the real and imaginary axes to
disrupt Willie’s detection capabilities. Covertness constraints are quantified using KL divergence, and
transmission performance is assessed through mutual information. Additionally, an optimization
method is introduced to enhance covert communication by fine-tuning the amplitude gain and noise-
power ratio. Numerical results confirm the effectiveness and superiority of the proposed method,
showcasing its ability to maximize covert transmission rates.

Keywords: covertcommunication; asymmetric jammer; binary phase shift keying; Taylor series
expansion

1. Introduction

Secure communication has traditionally centered on preventing adversaries from
deciphering message content [1–4]. However, in the realm of wireless communication,
traditional information security measures prove inadequate to meet current security de-
mands [5,6]. Even when information is encrypted, the potential leakage of sensitive data
through metadata, such as network traffic patterns, poses a significant concern [7].

The imperative to conceal communication behaviors has prompted the development
of covert communication technology [8]. In scenarios like battlefield environments or
confrontational situations, the slightest indication of exposed communication intentions
can lead to significant strategic failures [5]. Consequently, the military has devised diverse
techniques, including the spread spectrum technique [6,9,10], to ensure the covertness
of communication, aiming to hide its presence from vigilant adversaries. Despite the
multitude of proposed covert communication methods, such as encoding information onto
the training sequences of WiFi [11], utilizing the cyclic prefix of WiFi OFDM symbols [12],
or manipulating a perturbed WiFi QPSK constellation [13], the overarching goal remains
the formulation of strategies that effectively obfuscate communication activities in high-
stakes environments.

Recent research has pivoted towards the pursuit of reliable covert communication, ne-
cessitating that Willie’s detection error in discerning Alice’s transmission to Bob approaches
random guessing, while Bob’s error in recovering Alice’s message becomes exceedingly
small [14]. Specifically, when employing additive white Gaussian noise (AWGN) channels
for both the Alice-to-Bob and Alice-to-Willie communication paths, square root law (SRL)
was established by [8,15]. This SRL stipulates that, with a sufficiently lengthy pre-shared
secret between Alice and Bob, covert communication can be achieved by constraining the
per-symbol power to O( 1√

n ), which diminishes to 0 as n increases. As a consequence,

Ref. [8] demonstrated the transmission of O(
√

n) bits (and no more) within n channel
uses. Subsequent research has delved into various aspects, including the determination
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of the pre-shared secret’s optimal length in [16,17], the characterization of constants con-
cealed by Big-O notation in [17,18], and the theoretical and experimental exploration of
covert communication over quantum channels in [19]. Moreover, this seminal theorem has
subsequently been extended to various channel models, including discrete memoryless
channels [17,18,20], binary symmetric channels [16] and multiuser channels [21–25], etc.

In traditional covert communication theory research, significant attention has been
devoted to exploring theoretical boundaries over real Gaussian channels. The work pre-
sented in [9] expands the scope of covert communication theoretical research to encompass
complex Gaussian channels, substantiating the boundary of covert communication over
such channels. Existing works have investigated covert communication with random
noise [26] and jammers [14,27]. Subsequently, jammer-aided covert communication were
extended to UAV communication [28] and backscatter communication [29]. However, exist-
ing research on the theoretical boundaries of covert communication has been conducted in
the context of real Gaussian channels, and for computational simplicity and optimization
convenience, Gaussian input has been employed as the channel input. Nevertheless, in
practical communication scenarios, the scenario of using Binary Phase Shift Keying (BPSK)
as the channel input in a complex Gaussian channel has not been considered. In this work,
we consider covert communication over complex Gaussian channels in the presence of
an uninformed jammer. It is worth noting that jammer and Alice do not coordinate fully,
similar to the scenario in [14]. As shown in Figure 1, the jammer sends asymmetric complex
Gaussian noise signals, interfering with Willie’s covert communication detection. Alice can
only control the signal allocation ratio of the jammer, i.e., the power ratio of noise on the real
and imaginary axes. Willie cannot demodulate the jamming noise, but Willie can know the
power ratio of complex Gaussian noise on the real and imaginary axes in the environment.
Regarding Bob, we consider two scenarios: in one case, Bob can perfectly demodulate the
jamming noise from the jammer, thereby eliminating interference. In the other case, Bob
cannot fully demodulate the jamming noise from the jammer but can partially mitigate the
noise interference introduced by the jammer.

Communication
 Link

Detection
Link

Interference
 Link

Alice

Bob

Willie

Assisted 
Jammer

Figure 1. Covert communication in jammer−assist systems.

Our principal contributions can be succinctly summarized as follows:
(1) We explore covert communication in a scenario with a partially cooperative jammer

within a complex Gaussian channel. KL divergence serves as our metric for covertness,
while mutual information quantifies the transmission rate.

(2) We adopt BPSK input instead of Gaussian input, enhancing the applicability of our
theory in real-world communication systems and bolstering the feasibility of our approach.

(3) Employing Taylor series expansion, we approximate KL divergence and mutual
information under BPSK input. Transforming the dual-parameter optimization problem
involving transmission amplitude gain and noise allocation ratio into a single-parameter
optimization task significantly simplifies the complexity of the optimization process.
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(4) Through numerical simulations, we validate our proposed method and theory. The
precision of the Taylor approximation and the efficacy of the single-parameter optimization
are confirmed, providing robust evidence for the validity of our proposed approach.

The remainder of this paper is organized as follows. In Section 2, the modeling
of asymmetric noise communication scenarios is introduced, encompassing a scenario
overview and problem formalization. In Section 3, the performance analysis of covert
communication is provided, including transmission rates and covertness performance.
In Section 4, the optimization method of transmission amplitude and noise power ratio
is proposed. Section 5 presents numerical simulations to evaluate the outcomes of the
optimization. Finally, Section 6 provides the conclusion and summary of the paper.

2. System Model
2.1. Communication Scenario

As shown in Figure 1, we consider a wireless covert communication scenario with
the assistance of a jammer, involving a covert information transmitter (Alice), a covert
information receiver (Bob), a covert communication detector (Willie), and a jammer assisting
Alice in covert transmission. Alice, Bob, and Willie are equipped with a single antenna. We
consider a quasi-static block fading model where the channel is static and frequency-flat
within each coherent interval containing n symbols. The signal received by Bob and Willie
can be expressed as

Ẑb = hbD + nj,b + n̂b, (1)

Ẑw = hwD + nj,w + n̂w, (2)

respectively, where D ∈ C is the transmitted signal, and hb ∈ C and hw ∈ C are Alice-to-Bob
and Alice-to-Willie channel coefficient, which are assumed acceptable to everyone. nj,b and
nj,w denote the interference signals received from jammer at Bob and Willie, both of which
are composed of the zero-mean complex-valued Gaussian noise vectors. And n̂b ∈ C and
n̂w ∈ C denote the zero-mean complex-valued Gaussian noise vectors with the covariance
2σ̂2

b and 2σ̂2
w. Instead of adopting the conventional assumption of Gaussian input data,

we let D be the symbol randomly selected from well-known BPSK constellations set with
amplitude gain β, i.e., {−β,+β}. In practical communication systems, BPSK modulation is
favored over Gaussian modulation due to its simplicity and efficiency [5,8,30]. In contrast,
Gaussian modulation introduces complexity with a continuum of signal states, making it
less practical for many communication scenarios. Considering the composition of jammer
interference signals, we can equivalently rewrite the channel as

Zb = hbD + nb, (3)

Zw = hwD + nw, (4)

where nb ∼ CN (0, σ2
b ) and nw ∼ CN (0, σ2

w) denote the equivalent noise after superimpos-
ing the interference signals. In the following context, we will analyze and optimize our
problem based on equivalent channels (3) and (4).

2.2. Transmission Scheme

Alice encode a message M into a codeword Dn =
[
D1, ..., Dn

]
∈ Cn by random coding

generation and i-th symbol D is independently drawn from {−β, β} with equal probabil-
ity [5,31]. The codeword Dn is generated independently and identically distribution (i.i.d.)
randomly as follows:

P(Dn) =
n

∏
i=1

PD(Di). (5)

Bob employs his contextual understanding to decode the covert messages, based on
the observation of Zn

b = [Zb, 1, ..., Zb, n] ∈ Cn. The quantification of the transmission rate
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is accomplished through the assessment of mutual information between the discrete input
Dn and the channel output Zn

b , which is given by

I(Zbn; Dn) = I(Zb, 1, ..., Zb, n; D1, ..., Dn). (6)

Bob possesses knowledge regarding the construction of the codebook, i.e., {−β,+β},
and he receives the symbols corrupted by AWGN. Then, we give the following joint
distribution of Zn

b and Dn as follows:

P(Zn
b Dn) = Pn

D(Dn)× WZn
b |Dn(Zn

b |D
n). (7)

where

PZn
b Dn(x, y) =

1
2

1
2π

√
σb,xσb,y

[
exp

(
−

(x + hb,xβ)2

2σ2
b,x

−
(y + hb,yβ)2

2σ2
b,y

)

+ exp
(
−

(x − hb,xβ)2

2σ2
b,x

−
(y − hb,yβ)2

2σ2
b,y

)]
, (8)

with hb,x and hb,y denote the channel coefficient of complex value hb on x-axis and y-
axis, σ2

b,x and σ2
b,y denote the variance of the complex Gaussian noise at Bob on the x-axis

and y-axis.

2.3. Hypothesis Test

Willie conducts a binary hypothesis test [8] based on n consecutive observations
Zn

w = [Zw, 1, ..., Zw, n] ∈ Cn to ascertain whether Alice is communicating to Bob. The total
power of the jammer remains constant PJ , but Alice can adjust the power distribution ratio α
of the jammer’s output signals along the real and imaginary axes. Specifically, the jammer’s
power on the x-axis is αPj, and on the y-axis, it is (1− α)Pj. Due to the differing noise power
along the two axes, this configuration results in an asymmetric jammer. Let σ2

w,x,0 and
σ2

w,y,0 denote the variance of the complex Gaussian noise at Willie on the x-axis and y-axis.
Specifically, the null hypothesis (H0) posits the absence of communication, where each
sample Zw, i = nw,i is an independent and identically distributed (i.i.d.) complex-Gaussian
random variable following the distribution CN (0, σ2

a ) with σ2
a = σ2

w,x,0 + σ2
w,y,0 + PJ . On

the other hand, the alternative hypothesis (H1) suggests communication is occurring,
and each sample Zw, i = hwDi + nw,i. Willie’s objective is to discriminate between these
two hypotheses:

H0 : Zw = nw, (9)

H1 : Zw = hwD + nw, (10)

where hw is the channel coefficient from Alice to Willie. Let Pn
1 (resp. Pn

0 ) represent the input
distribution corresponding to Willie’s n observations under the conditions of H1 (resp. H0),
respectively. The probability of false alarm, rejecting H0 when it is true, is denoted by PFA,
while the probability of missed detection, accepting H0 when it is false, is denoted by PMD.
Willie has knowledge of the distributions Pn

1 and Pn
0 , and can conduct an optimal statistical

hypothesis test such that PFA + PMD ≥ 1 −
√
D(Pn

1∥Pn
0 ), where D(Pn

1∥Pn
0 ) represents the

KL divergence between Pn
1 and Pn

0 . The objective is to achieve covert communication by
ensuring that the sum of error probabilities is one, i.e., PFA + PMD = 1. This implies
making D(Pn

1∥Pn
0 ) negligible [32–34], specifically by guaranteeing that the KL divergence

satisfies the condition

D(Pn
1∥Pn

0 ) ≤ ϵ, (11)

where ϵ is an arbitrarily small value within the range (0,1).
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Willie possesses knowledge regarding the construction of the codebook and jammer
noise, both the set of all potential discrete constellation sets and input distribution, and he
receives the symbols corrupted by AWGN. The distribution of P0,w can be expressed as

P0(x, y) =
1

2π
√
(σ2

w,x,0 + αPJ)(σ
2
w,y,0 + (1 − α)PJ))

× exp
(
− x2

2(σ2
w,x,0 + αPJ)

− y2

2(σ2
w,y,0 + (1 − α)PJ)

)
. (12)

Similarly, The distribution of Pn
1,w can be expressed as

P1(x, y) =
1
2

1

2π
√
(σ2

w,x,0 + αPJ)(σ
2
w,y,0 + (1 − α)PJ)

×
[

exp
(
− (x − hw,xβ)2

2(σ2
w,x,0 + αPJ)

−
(y − hw,yβ)2

2(σ2
w,y,0 + (1 − α)PJ)

)
+ exp

(
− (x + hw,xβ)2

2(σ2
w,x,0 + αPJ)

−
(y + hw,yβ)2

2(σ2
w,y,0 + (1 − α)PJ)

)]
, (13)

where hw,x and hw,y denote the channel coefficient of complex value hw on x-axis and y-axis.

2.4. Problem Formulation

In this work, we aim to investigate the transmission design with the goal of maximizing
the mutual information in (6) while adhering to the covertness constraint stipulated in (11).
Our focus lies in the optimization of the amplitude gain β and the jammer noise distribution
ratio α on the x-axis and y-axis. The problem of covert communication in jammer−assist
systems is formulated as:

P1 : max
β,α

I(Zn
b ; Dn) (14)

s.t. D(Pn
1∥Pn

0 ) ≤ ϵ, (15)

0 < β, (16)

0 < α < 1. (17)

3. Design of Amplitude Gain and Jammer Noise Distribution

To compute the optimal jammer noise allocation ratio, we define

σ2
a ≜ σ2

w,x + σ2
w,y (18)

σ2
w,x ≜ µσ2

a = σ2
w,x,0 + αPJ , (19)

σ2
w,y ≜ (1 − µ)σ2

a = σ2
w,y,0 + (1 − α)PJ , (20)

where 0 < µ < 1 is a auxiliary parameters. Combining with (12) and (13), we have

P0(x, y) =
1

2πσw,xσw,y
exp

(
− x2

2σ2
w,x

− y2

2σ2
w,y

)
(21)

P1(x, y) =
1
2

1
2πσw,xσw,y

[
exp

(
− (x − hw,xβ)2

2σ2
w,x

−
(y − hw,yβ)2

2σ2
w,y

)
+ exp

(
− (x + hw,xβ)2

2σ2
w,x

−
(y + hw,yβ)2

2σ2
w,y

)]
. (22)
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Then, the problem P1 can be reformulated as

P2 : max
β,µ

I(Zn
b ; Dn) (23)

s.t. (15), (16),

min{
σ2

w,x,0

σ2
a

,
σ2

w,y,0

σ2
a

} ≤µ ≤ max{
σ2

w,x,0 + PJ

σ2
a

,
σ2

w,y,0 + PJ

σ2
a

}. (24)

The KL divergence between P1 and P0 can expressed as

D(P1∥P0) =
∫∫ ∞

−∞
P1(x, y) log

P1(x, y)
P0(x, y)

dxdy (25)

where

log
P1(x, y)
P0(x, y)

= log
1
2

[
exp

(
− hw,x

2β2 − 2xhw,xβ

2σ2
w,x

−
hw,y

2β2 − 2hw,yβ

2σ2
w,y

)
+ exp

(
− hw,x

2β2 + 2xhw,xβ

2σ2
w,x

−
hw,y

2β2 + 2hw,yβ

2σ2
w,y

)]
. (26)

Performing Taylor expansion, we can obtain

log
P1(x, y)
P0(x, y)

= Z1β2 + Z2β4 +O(β5), (27)

where

Z1 = − hw,x
2

2σ2
w,x

−
hw,y

2

2σ2
w,y

+
hw,xhw,yxy

σ2
w,xσ2

w,y
+

hw,y
2y2

2σ4
w,y

+
hw,x

2x2

2σ4
w,x

, (28)

Z2 = −hw,x
4x4

12σ8
w,x

−
hw,y

4y4

12σ8
w,y

−
hw,x

2hw,y
2

2σ4
w,xσ4

w,y
−

hw,x
3hw,yx3y

3σ6
w,xσ2

w,y
−

hw,xhw,y
3xy3

3σ2
w,xσ6

w,y
. (29)

Combining with (27)–(29), Equation (25) can be rewritten as

D(P1∥P0) =
∫∫ ∞

−∞
P1(x, y)

(
Z1β2 + Z2β4 +O(β5)

)
dxdy. (30)

With some calculations, we can obtain

∫∫ ∞

−∞
P1(x, y)Z1β2dxdy = −hw,x

2β2

2σ2
w,x

−
hw,y

2β2

2σ2
w,y

+
h2

w,xh2
w,yβ4

σ2
w,xσ2

w,y

+
hw,y

2β2(σ2
w,y + hw,y

2β2)

2σ4
w,y

+
hw,x

2β2(σ2
w,x + hw,x

2β2)

2σ4
w,x

+O(β5). (31)

and ∫∫ ∞

−∞
P1(x, y)Z2β4dxdy

= −
3hw,x

4σ4
w,xβ4

12σ8
w,x

−
3hw,y

4σ4
w,yβ4

12σ8
w,y

−
hw,x

2hw,y
2σ2

w,xσ2
w,yβ4

2σ4
w,xσ4

w,y
+O(β5) (32)

= −hw,x
4β4

4σ4
w,x

−
hw,y

4β4

4σ4
w,y

−
hw,x

2hw,y
2β4

2σ2
w,xσ2

w,y
+O(β5) (33)
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Then, the KL divergence between P1 and P0 can be expressed as

D(P1∥P0) =
β4

4

(hw,x
2

σ2
w,x

+
hw,y

2

σ2
w,y

)2
+O(β5). (34)

Combining with (19) and (20), the KL divergence can be expressed as

D(Pn
1∥Pn

0 ) =
nβ4

4

(hw,x
2

µσ2
a

+
hw,y

2

(1 − µ)σ2
a

)2
+O(β5). (35)

We can minimize D(P1∥P0) by minimizing

F(µ) =
hw,x

2

µσ2
a

+
hw,y

2

(1 − µ)σ2
a

. (36)

4. Analysis of the Transmission Rate

In this section, we will analyze the transmission rate of covert communication with
mutual information. Specifically, we consider two cases: (1) Bob can perfectly eliminate the
influence of interference; and (2) Bob can partially eliminate the influence of interference.

4.1. Derivation of Mutual Information at Bob

For the two cases we mentioned, the mutual information in (6) can be expressed as

I(Zbn; Dn) = nI(Zb; D). (37)

Considering the codebook in Section 2.2, we have

I(Zb; D) = H(Zb)− H(Zb|D) (38)

= −
∫∫

pb(x, y) log pb(x, y)dxdy +
∫∫ 2

∑
i=1

1
2

pb,i(x, y) log pb,i(x, y)dxdy (39)

= −
∫∫ 2

∑
j=1

1
2

pb,j(x, y) log
[ 2

∑
i=1

1
2

pb,i(x, y)
]
dxdy

+
∫∫ 2

∑
j=1

1
2

pb,j(x, y) log pb,j(x, y)dxdy (40)

= −
∫∫ 2

∑
j=1

1
2

pb,j(x, y) log
[

∑2
i=1

1
2 pb,i(x, y)

pb,j(x, y)

]
dxdy, (41)

where

pb,1(x, y) =
1

2πσ2
b

[
exp

(
−

(x + hb,xβ)2

2σ2
b,x

−
(y + hb,yβ)2

2σ2
b,y

)]
, (42)

pb,2(x, y) =
1

2πσ2
b

[
exp

(
−

(x − hb,xβ)2

2σ2
b,x

−
(y − hb,yβ)2

2σ2
b,y

)]
. (43)

Performing Taylor expansion, we have

log
[

∑2
i=1

1
2 pb,i(x, y)

pb,1(x, y)

]
= β

(hb,xx
σ2

b,x
+

hb,yy

σ2
b,y

)
+ β2

(h2
b,xx2

2σ4
b,x

+
hb,yy2

2σ4
b,y

+
hb,xhb,yxy

σ2
b,xσ2

b,y

)
+O(β3), (44)

and
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log
[

∑2
i=1

1
2 pb,i(x, y)

pb,2(x, y)

]
= −β

(hb,xx
σ2

b,x
+

hb,yy

σ2
b,y

)
+ β2

(h2
b,xx2

2σ4
b,x

+
hb,yy2

2σ4
b,y

+
hb,xhb,yxy

σ2
b,xσ2

b,y

)
+O(β3). (45)

With some calculations, we can obtain

∫∫ 2

∑
j=1

1
2

pb,j(x, y) log
[

∑2
i=1

1
2 pb,i(x, y)

pb,j(x, y)

]
dxdy

= −
(h2

b,xβ

σ2
b,x

+
h2

b,yβ

σ2
b,y

)
β + (

h2
b,x

2σ2
b,x

+
h2

b,y

2σ2
b,y

)β2 +O(β3) (46)

= −
( h2

b,x

2σ2
b,x

+
h2

b,y

2σ2
b,y

)
β2 +O(β3), (47)

and the mutual information can be expressed as

I(Zb; D) =
( h2

b,x

2σ2
b,x

+
h2

b,y

2σ2
b,y

)
β2 +O(β3). (48)

4.2. Problem Reformulation for Two Cases

To measure the influence of interference, we define

σ2
b,x ≜ σ2

b,x,0 + α∆PJ , (49)

σ2
b,y ≜ σ2

b,y,0 + (1 − α)∆PJ . (50)

where ∆PJ denotes the jammer interference power after interference elimination.
Case 1: if Bob can perfectly eliminate the influence of interference, ∆PJ = 0. Taking

the derivative of the function F(µ), the minimal value F∗(µ) can be obtained when

µ∗ =
hw,x

hw,y + hw,x
. (51)

Considering the range of µ given in (24), the minimization of the KL divergence can
be achieved when

µ∗ =


max{ σ2

w,x,0+PJ

σ2
a

,
σ2

w,y,0+PJ

σ2
a

} max{ σ2
w,x,0+PJ

σ2
a

,
σ2

w,y,0+PJ

σ2
a

} ≤ hw,x
hw,y+hw,x

hw,x
hw,y+hw,x

min{ σ2
w,x,0
σ2

a
,

σ2
w,y,0

σ2
a
} < hw,x

hw,y+hw,x
< max{ σ2

w,x,0+PJ

σ2
a

,
σ2

w,y,0+PJ

σ2
a

}

min{ σ2
w,x,0
σ2

a
,

σ2
w,y,0

σ2
a
} hw,x

hw,y+hw,x
≤ min{ σ2

w,x,0
σ2

a
,

σ2
w,y,0

σ2
a
}

(52)

Combining with (35), (36) and the optimal µ∗, the constraint (15) can be rewritten as

nβ4

4
F2(µ∗) ≤ ϵ, (53)

and the optimal amplitude gain β∗ is given by

β∗ =

(
4ϵ

nF2(µ∗)

) 1
4

. (54)
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Then, we can obtain the maximum mutual information as

I∗(Zbn; Dn) =

√
4nϵ

F2(µ∗)

( h2
b,x

2σ2
b,x,0

+
h2

b,y

2σ2
b,y,0

)
. (55)

Case 2: Bob can partially eliminate the influence of interference, ∆PJ = ηPJ where
η ∈ (0, 1) denotes the coefficient of Bob’s interference cancellation capability. Combining
with (19) and (20), the ratio α is given by

α =
µσ2

a − σ2
w,x,0

PJ
. (56)

Then, the mutual information can be expressed as

Î(Zbn; Dn) =

√
nϵ

F2(µ)

(
h2

b,x

(σ2
b,x,0 + αηPJ)

+
h2

b,y

(σ2
b,y,0 + (1 − α)ηPJ)

)
. (57)

Combining with (23), (16), (17) and (24), the problem P2 can be equivalently trans-
formed to

P3 : max
µ

Î(Zbn; Dn) (58)

s.t. (24). (59)

Clearly, the optimal value of µ∗ and the maximization of mutual information can be
effortlessly obtained through an iterative exploration algorithm for α∗. Then, we can obtain
the optimal amplitude gain β∗, and the original problem P1 has been fully addressed.

5. Numerical Results

In this section, we initiate the validation of our proposed KL divergence and mu-
tual information approximation methods, operating within two distinct scenarios that
encompass diverse hw and hb channel coefficients, along with varying interferer total power
levels. Following the confirmation of the precision of these approximation methods, we
conduct a thorough performance analysis, assessing both covertness and transmission rate
using our proposed methodology. Subsequently, we ascertain the optimal noise allocation
ratio for interferers. Finally, through a comparative performance evaluation between the
optimal interference noise allocation ratio and alternative ratios, we establish the efficacy
and superiority of the optimization method we have introduced.

In Figure 2a, the graph illustrates the KL divergence versus amplitude gain (β).
We compare two scenarios with distinct parameters: hw,x,0 = hw,y,0 = 0.5, PJ = 3 and
hw,x,0 = hw,y,0 = 0.3, PJ = 5. As depicted in Figure 2a, with the increase in amplitude
gain (β), KL divergence gradually increases, indicating a deterioration in covertness. The
Taylor expansion results obtained for KL divergence exhibit high fidelity with the precise
values as β increases, affirming the precision and effectiveness of our proposed method
in characterizing KL divergence in covert communication. Figure 2b presents the KL di-
vergence versus amplitude gain (β) graph. We compare two scenarios with parameters
hb,x,0 = hb,y,0 = 0.5, PJ = 3, η = 0.3 and hb,x,0 = hb,y,0 = 0.2, PJ = 5, η = 0.3. As illustrated
in Figure 2b, with the increase in amplitude gain (β), mutual information and transmission
rate gradually increase. The Taylor expansion results for transmission rate exhibit high
fidelity with the precise values as β increases, demonstrating the precision and effectiveness
of our proposed method in characterizing transmission rate in covert communication.
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Figure 2. Performance analysis of covert communication in jammer−assist system. (a) KL divergence
versus amplitude gain. (b) Transmission rate versus amplitude gain.

In Figures 3 and 4, we design three distinct scenarios for comparative experiments.
The parameters for the three scenarios are provided in Table 1.
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Figure 3. Performance analysis of covert communication in jammer−assist system. (a) KL divergence
versus jammer noise ratio. (b) Transmission rate versus jammer noise ratio.

In Figure 3a, Scenarios 1, 2, and 3 achieve optimal covertness (α = 0.48, α = 0.58,
α = 0.45, respectively) with minimal KL divergence values. In Figure 3b, Scenarios 1, 2, and
3 achieve maximum transmission rates (α = 1, α = 0, α = 0, respectively). To obtain the
globally optimal value for α that maximizes transmission rate under the same amplitude
gain and covertness constraints, we utilize our proposed method and obtain the results of
transmission rate versus noise allocation ratio α for the three scenarios.
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Figure 4. Transmission rate versus jammer noise ratio in three scenarios.

Table 1. Parameters for comparative experiments.

Scenario PJ σw,x,0 σw,y,0 hw,x hw,y η σb,x,0 σb,y,0 hb,x hb,y

1 5 3.5 2.5 0.46 0.38 0.3 3.8 2.2 0.22 0.56
2 5 4.5 3.5 0.45 0.44 0.3 3.5 2.0 0.41 0.52
3 5 5.5 1.5 0.15 0.13 0.3 2.8 4.2 0.15 0.18

As depicted in Figure 4, the results show the transmission rate versus noise allocation
ratio α for β = 0.1. In Scenario 1, the maximum covert transmission rate is achieved at
α = 0.78; in Scenario 2, it is at α = 0.7, and in Scenario 3, it is at α = 0.3. Subsequently, based
on the parameters of Scenario 3 and the obtained optimal noise allocation ratio α∗ = 0.3,
we conduct a theoretical validation.

Figure 5a presents the KL divergence versus amplitude gain (β) results. We compare
the results with the globally optimal allocation ratio α∗ = 0.3 against samples with α = 0.5
and α = 0.8. As β increases, α∗ = 0.3 consistently maintains optimal covertness (lower KL
divergence values). Figure 5b displays the mutual information versus amplitude gain (β)
results. We select the transmission rate at the globally optimal allocation ratio α∗ = 0.3 and
compare it with samples at α = 0.5 and α = 0.8. As β increases, α = 0.8 exhibits the lowest
transmission rate. However, α = 0.5 achieves a higher transmission rate than the globally
optimal allocation ratio α∗ = 0.3. Considering the substantial degradation in covertness at
α = 0.5, further comparison under the same covertness constraints is necessary.

Figure 6 depicts the covert transmission rate versus covertness constraint ϵ. We select
the results at the globally optimal allocation ratio α∗ = 0.3 and compare them with samples
at α = 0.5 and α = 0.8. With an increasing covertness constraint ϵ, the covert transmission
rate gradually increases. Under the same covertness constraint, α∗ = 0.3 attains the
highest covert transmission rate. Combining the results from Figure 5a,b, our proposed
optimization method achieves the globally optimal noise allocation ratio, realizing the
maximum covert transmission rate under the same covertness constraints. Simulation
results validate the effectiveness and superiority of our proposed method.
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Figure 5. Performance comparison of difference jammer noise ratio. (a) KL divergence versus
amplitude gain. (b) Transmission rate versus amplitude gain.
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Figure 6. Covert transmission rate versus covertness constraint.

6. Conclusions

In this work, we investigate covert communication in a complex Gaussian channel
with a partially coordinate jammer. Specifically, Alice aims to transmit covert information
to Bob using BPSK codebook, while remaining undetected by Willie throughout the covert
communication process. A jammer is present to assist Alice in covert communication,
but Alice has limited control over the jammer, with adjustments constrained to the power
allocation ratio along the real and imaginary axes in the complex Gaussian channel.

We employ KL divergence as a metric for covertness and mutual information as a
metric for transmission rate. The optimization task involves adjusting both the amplitude of
Alice’s transmitted signal and the power allocation ratio of the jammer. Leveraging Taylor
series expansion techniques, we approximate KL divergence and mutual information. Com-
bining our approximation results, we degrade the complex dual-parameter optimization
problem into a single-parameter traversal problem, simplifying the optimization complexity.

Numerical simulations validate the effectiveness of our proposed theory. In future
work, we plan to extend the study to include different modulation schemes adopted by
Alice, such as 16-QAM, 64-QAM, and other scenarios.
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