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Abstract: Patients who are suffering from neuromuscular disorders or injuries that impair motor
control need to undergo rehabilitation to regain mobility. Gait training is commonly prescribed to
patients to regain muscle memory. Automated-walking training devices were created to aid this
process; while these devices establish accurate ankle-path trajectories, the knee and hip movements
are inaccurate. In this work, a redesign of the leg assembly in a multi-purpose rehabilitation robotic
device (RoboREHAB) was explored to improve hip- and knee-movement accuracy by adding an
extra link and rollers to the assembly. Motion analysis was employed to test feasibility, reinforcement
learning was utilized to train the new leg assembly to walk, and the joint motions achieved with
the redesign were compared to those achieved by motion-capture (mocap) data. As a key result, the
motion analysis showed an improvement in the knee- and hip-path trajectories due to the added
roller/joint segment. The redesigned leg assembly, under the reinforcement-learning policy, showed
a 5% deviation from the motion-capture joint trajectories with a maximum deviation of 51.177 mm but
maintained a similar profile to the mocap trajectory data. This is an improvement over the original
two-segment design, which achieved a maximum deviation of 72.084 mm. These results in the knee-
and hip-joint movements more closely reflect the mocap and motion-analysis results, validating the
redesign and opening it up to further experimentation and technical improvement.

Keywords: gait motion; leg-assembly design; motion capture (mocap); reinforcement learning;
multi-purpose rehabilitation robotic device (RoboREHAB); feasibility analysis

1. Introduction

As the age of patients increases, so do the chances of them suffering disabilities.
Patients who have suffered from stroke, spinal cord injury (SCI), or brain trauma usually
develop a disability that affects motor function. SCIs can be physically and emotionally
damaging for the patient and treatment can cost up to USD 4.6 million [1]. Neuromotor
deficits are also present in patients with cerebral palsy (CP), a medical condition that
can impair the patient’s abilities to walk or keep their balance [2]. To help CP patients
regain motor function, muscle training and exercises such as constraint-induced movement
therapy have been used to improve the function of the affected limb [3–5]. However, there
is speculation about whether the patient is regaining control of their limb, or the patient
is using an unnatural movement to compensate for the loss of motor control [5]. This
has led to an increase in research dedicated to developing rehabilitation methods to help
patients regain motor control. Gait training is a rehabilitation strategy to help patients
regain motor control in their lower extremities by facilitating exercises mimicking a natural
walking pattern. Recent advancements in technology have inspired biomedical research
to improve gait-training effectiveness to help the patient make a full recovery. One such
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solution is the use of powered robotic exoskeletons to aid the patients in the gait-training
exercises. For example, one study used a lower-limb exoskeleton to assist in the knee
extension of CP patients with crouch gait [6]. Some studies have been made to test the
safety and feasibility of exoskeletal devices to treat patients suffering from complete and
incomplete SCI and how this treatment affects their gait [7]. For instance, the Ekso mobile
exoskeleton demonstrated an improvement in gait function for SCI patients; however,
the donning and doffing of the exoskeleton is a challenge for the patients [8]. Research
conducted at the University of Texas at Tyler involves designing and developing a device
called RoboREHAB, a multi-purpose rehabilitation robotic device to correct gait patterns
for walking and facilitate aid in sit-to-stand motions [9]. Within this work, motion-capture
(mocap) technology was used to record the motion path of the ankle when walking on a
treadmill. The path trajectory for the ankle joint is presented in Figure 1a. These mocap
data were then used to derive the path trajectories for the knee and hip joints as plotted in
Figure 1b,c [9]. The original design of the RoboREHAB leg assembly shown in Figure 2 does
not accurately replicate the path trajectories of the knee and hip joints shown in Figure 1b,c
due to a lack of degrees of freedom (DOF) in the assembly. In this paper, the RoboREHAB
leg assembly was redesigned to improve the path trajectories on the ankle, knee, and hip
joints by adding an additional link on the knee joint. This results in increased DOFs such
as pitch moment on the knee joint during the gait-motion simulations so that it produces
better path trajectories on the joints than the original design, in which only swing motion
was allowed on the knee joint.
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Figure 1. Ideal joint-motion paths for the (a) ankle, (b) knee, and (c) hip joint. 
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Figure 1. Ideal joint-motion paths for the (a) ankle, (b) knee, and (c) hip joint.
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Machine-learning solutions have also been researched and developed to aid patients
in regaining motor function [10–12]. One solution in the realm of machine learning is
reinforcement learning, a technique that trains an agent to analyze a given pose/state of
a subject and suggests actions for the subject to execute to maximize the reward that it
receives [13–15]. The agent is usually trained using an ‘actor–critic’ network. This agent
has an ‘actor’ that performs the action suggested by the agent and a ‘critic’ associates a
reward to the action performed. The reward comes in two forms: the individual episode
reward, R, and the long-term discounted reward that is initially expected from the action,
Q. Two common types of Q-learning algorithms are the deep-deterministic policy gradient
(DDPG) and the twin-delayed DDPG (TD3) algorithms. DDPG algorithms develop a single
Q-function when training the agent [16]. However, DDPG algorithms tend to overestimate
Q-values, which can cause the algorithm to break the policy that it has learned [17]. TD3
algorithms rectify this issue by developing two Q-functions and preventing the algorithm
from exploiting the Q-function by updating the policy less frequently and adding noise
to the target action [17,18]. The above-mentioned reinforcement-learning technique has
been used to make a lower-limb exoskeleton follow a natural walking gait. This allows for
a more natural gait to be developed by the patient when using the exoskeleton, but most
designs do not have the degrees of freedom needed to replicate the joint-path trajectories
accurately [19]. In this work, a redesign of the leg assembly of the RoboREHAB is made
to improve the kinematics at the knee joint to best replicate the mocap data collected. A
reinforcement-learning agent is trained in Simulink with the aim to have a model of the
leg assembly follow the mocap data. The original RoboREHAB leg assembly needs to be
modified by adding additional DOFs to the leg assembly and trained to follow the mocap
data using reinforcement learning. This modified leg assembly will then be compared to
the original RoboREHAB leg assembly based on the path trajectories achieved. The path
trajectories achieved by the modified assembly and the original assembly will be compared.
This work will help patients with diminished motor control recover with a more accurate
gait cycle.

2. Design and Methods

The workflow for this work is demonstrated in Figure 3. The 2022 version of Solid-
Works software was used to redesign the leg assembly and to establish feasibility through
motion analysis. MATLAB 2022a was used to create a MATLAB/Simscape (Simscape)
model that reflects the proposed redesign of a leg composed of three links (upper leg, lower
leg, and foot). Reinforcement learning was implemented to train the new leg assembly to
follow the mocap data. These results were compared to SolidWorks and mocap data for
validation purposes.
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The original design of the RoboREHAB leg assembly has the upper-leg section con-
nected to the lower-leg section as a fixed knee joint. The human knee joint is not so much a
fixed joint, but rather, a saddle joint that the femur and the tibia form, as seen in Figure 4.
The saddle joint allows the proximal end of the tibia to roll and travel along the distal end
of the femur. By this logic, the interaction between the ends of the femur and tibia can
be considered a small segment with two rollers in contact at the top and bottom of the
segment. To emulate this movement, the redesign of the leg assembly involved the addition
of a link between the upper- and lower-leg sections, along with two rollers being placed
in the assembly to mimic the rolling joint of the knee. This is the modification that needs
to be made to the preexisting leg assembly. The inclusion of Figure 4 is not intended for
determining which muscle contributes the most to the motion of the leg assembly, but more
so for use as a visual reference of the mechanical formation of the knee joint.
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Figures 5 and 6 present the reinforcement-learning (RL) Simscape model and the Sim-
scape block diagram for the redesigned leg assembly, respectively. Figure 5 is the Simscape
model that was used to conduct reinforcement-learning training using the redesigned
leg assembly. Figure 6 is the block diagram in the Simscape model which assembles the
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redesigned leg and allows for the joints to actuate based on the joint angles prescribed by
the reinforcement-learning agent. Figure 7 depicts the variables which are controlled by
the RL networks for the redesigned and original leg assemblies. In Figure 7, the variable q
represents the joint angle for a specific joint, q1 corresponds to the hip joint, q2 to the joint
above the knee segment, and q3 to the joint below the knee segment. The additional m
subscript denotes joint angle calculated from the motion-capture data. The Simscape model
consists of the redesigned leg model with three reference points at the hip, the midpoint of
the second segment, and the ankle. Adjacent to the leg model are the mocap datapoints. The
Simscape model features six different signals as seen in Figure 5: kinematic measurements
of the leg model (meas) and mocap data (mocap meas), the action requested by the RL
block (action), an observation of the state and performance of the redesigned leg assembly
(observation), the reward generated by the performance of the leg assembly (reward), and a
signal to end the current episode if the threshold distance between the leg model and mocap
joints is met (isdone). The reinforcement learner interprets the observations and the reward
that it received and performs a new action based on this feedback to maximize the reward
it receives. The reward function governing the gait training is illustrated in Equation (1);
the variables controlled by the RL agent for the redesigned and original RoboREHAB leg
assemblies are depicted in Figure 7.

Reward = (xk − xk,m)− (yk − yk,m)− (xa − xa,m)− (ya − ya,m) (1)
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Figure 7. Variables controlled in algorithm for (a) modified and (b) original RoboREHAB leg
assemblies. Where xh and yh are thex and y positions of hip joint on leg model, xk and yk are the x
and y positions of knee joint on leg model and xa, ya are the x and y positions of ankle joint on leg
model. xh,m, yh,m are the x and y positions of hip joint from mocap data, xk,m, yk,m are the x and y
positions of knee joint from mocap data and xa,m, ya,m are the x and y positions of ankle joint from
mocap data. q1 is the angle of rotation for first segment of the leg model, q2 is the angle of rotation
for second segment of the leg model and q3 is the angle of rotation for third segment of the leg model.
q1,m is the angle of rotation for the first segment of motion-captured limb and q2,m is the angle of
rotation for second segment of motion-captured limb. Ts is the sample time of the environment and
Tf is the final simulation time of the environment.

The logic flow for the algorithm is compiled below:

1. Initialize angles of the leg segments and load any previous experience if any exists.
2. For t = 0: Ts: Tf sec.
3. Initialize state from observations signal as the first state in this sequence, retrieving

joint positions and angles from the MATLAB leg model.
4. Obtain the action signal from the actor’s current network.
5. Perform the action, obtain the new observation signal and reward signal, and de-

termine if the episode ended prematurely by checking the ‘isdone’ block (does the
distance between the leg model and mocap joints exceed the threshold?).

6. Store {observation, action, reward, newObservation, isdone} for empirical playback.
7. newObservation = observation.
8. action = prevAction.
9. Determine the q-value of the action from the empirical playback.
10. Update actor’s and critic’s networks.
11. If the new observation has satisfied the ‘isdone’ criteria, the episode is over. If not,

continue with the next step.

The reinforcement-learning (RL) agent is trained for the redesigned and original
RoboREHAB leg assemblies. The agent is trained for 10,000 episodes and the goal for the
agent is to control the leg assembly by adjusting the joint angles of the segments to achieve
a reward total of 0. During this training session, the code saves all agents that achieve a
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reward of −30 or higher. If the agent achieves a reward total of −10, the training session
stops early. The Simulink model has graph blocks to graph the joint trajectories of the
hip, knee, and ankle joints of the RoboREHAB assembly, as well as the angular position
histories. Joint-trajectory data were saved to a CSV file to be imported into an excel file to
easily compare the results to the original RoboREHAB assembly and the mocap data. To
ensure that the RL agent is properly trained, the angular position histories of the redesigned
leg assembly and mocap data will be assessed to see how close the redesigned assembly is
to the mocap data. Then, the joint-path trajectories will be compared for the redesigned and
original leg assemblies and the mocap data to visualize the improvements of the redesigned
assembly over the original design.

3. Results

The redesigned leg assembly and the original leg assembly are compared in Figure 8.
The knee joint is incorporated into the link between the upper- and lower-leg sections and
a close-up of the rollers for the knee joint is displayed to the right of the assembly. The
result of the motion analysis conducted in SolidWorks is compared to the mocap data in
Figures 9 and 10. SolidWorks motion analysis addressed feasibility of the redesigned leg
assembly model; the SolidWorks model showed that it can replicate the movements and
motions as gathered in the mocap data.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 13 
 

agent is to control the leg assembly by adjusting the joint angles of the segments to achieve 
a reward total of 0. During this training session, the code saves all agents that achieve a 
reward of −30 or higher. If the agent achieves a reward total of −10, the training session 
stops early. The Simulink model has graph blocks to graph the joint trajectories of the hip, 
knee, and ankle joints of the RoboREHAB assembly, as well as the angular position histo-
ries. Joint-trajectory data were saved to a CSV file to be imported into an excel file to easily 
compare the results to the original RoboREHAB assembly and the mocap data. To ensure 
that the RL agent is properly trained, the angular position histories of the redesigned leg 
assembly and mocap data will be assessed to see how close the redesigned assembly is to 
the mocap data. Then, the joint-path trajectories will be compared for the redesigned and 
original leg assemblies and the mocap data to visualize the improvements of the rede-
signed assembly over the original design. 

3. Results 
The redesigned leg assembly and the original leg assembly are compared in Figure 

8. The knee joint is incorporated into the link between the upper- and lower-leg sections 
and a close-up of the rollers for the knee joint is displayed to the right of the assembly. 
The result of the motion analysis conducted in SolidWorks is compared to the mocap data 
in Figures 9 and 10. SolidWorks motion analysis addressed feasibility of the redesigned 
leg assembly model; the SolidWorks model showed that it can replicate the movements 
and motions as gathered in the mocap data. 

  
(a) (b) 

Figure 8. Comparison of configurations: (a) original RoboREHAB leg assembly and (b) redesigned 
leg assembly with extra DOFs and side view of roller mechanism. 

Figure 9, below, shows the knee movement of the newly redesigned and three-seg-
mented leg assembly, in blue, overlayed onto the ideal knee-motion trajectory motion-
capture data, in orange. This overlay of both plots validates the mechanical capabilities of 
the new leg assembly design, reiterating that the new knee joint can recreate the move-
ment and ranges needed for ideal knee movement pattern during the gait cycle. To further 
ensure the functionality of the SolidWorks model, the ankle movement was also evaluated 
for motion and range. Figure 10 below shows the overlay of the SolidWorks model for the 
ankle joint movement, in blue, overlayed to the ideal mocap ankle-joint trajectory, in or-
ange. From this data comparison, it is clear that the new redesign is fully capable of the 
motions and ranges needed to recreate an ideal gait cycle on the ankle joint. 

Figure 8. Comparison of configurations: (a) original RoboREHAB leg assembly and (b) redesigned
leg assembly with extra DOFs and side view of roller mechanism.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 13 
 

 
Figure 9. Comparison of knee-joint trajectories for mocap and redesigned model in SolidWorks. 

 
Figure 10. Comparison of ankle-joint trajectories for mocap and redesigned model in SolidWorks. 

While the SolidWorks model of the new redesign was used to validate the hardware 
aspect of the project, the MATLAB 2022a Simscape model was used to validate the soft-
ware, programing, and machine-learning aspects of this project. In the Simscape model, 
the three-segmented leg model was trained in the reinforcement-learning block by the 
reward function illustrated in Equation (1). The trained leg model was then compared to 
the mocap data collected to validate the redesigned leg model in Simscape. The angular 
position histories for the mocap data and leg model are displayed in Figures 11 and 12, 
respectively. The Simscape simulation recreated the mocap data with less than a 5% devi-
ation from the ideal mocap data. In Figure 11, the angular position of the leg segment 
connecting the hip and knee joints is shown by the red line. These data are directly com-
pared to the angular position of the respective hip–knee segment of the mocap data. Much 
like the hip–knee segment, the knee–ankle segment simulation, shown in Figure 12, also 
shows the slight overshot of motion. This overshoot, like in the previous segment is still 
less than 5%, yet looks exaggerated when visualized in such a graphic. The initiation of 
these movements, marked at time 0, shows a larger-than-5% deviation. However, this 
shows that the machine-learning simulation can also somewhat naturally initiate a gait 
movement, also known as gait initiation. 

570

585

600

615

630

645

200 250 300 350 400 450 500 550

Y 
(m

m
)

X (mm)

Redesigned RoboREHAB Joint Trajectory Mocap Data

200

240

280

320

360

400

-50 50 150 250 350 450 550 650

Y 
(m

m
)

X (mm)

Redesigned RoboREHAB Joint Trajectory Mocap Data

Figure 9. Comparison of knee-joint trajectories for mocap and redesigned model in SolidWorks.
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Figure 10. Comparison of ankle-joint trajectories for mocap and redesigned model in SolidWorks.

Figure 9, below, shows the knee movement of the newly redesigned and three-
segmented leg assembly, in blue, overlayed onto the ideal knee-motion trajectory motion-
capture data, in orange. This overlay of both plots validates the mechanical capabilities of
the new leg assembly design, reiterating that the new knee joint can recreate the movement
and ranges needed for ideal knee movement pattern during the gait cycle. To further
ensure the functionality of the SolidWorks model, the ankle movement was also evaluated
for motion and range. Figure 10 below shows the overlay of the SolidWorks model for
the ankle joint movement, in blue, overlayed to the ideal mocap ankle-joint trajectory, in
orange. From this data comparison, it is clear that the new redesign is fully capable of the
motions and ranges needed to recreate an ideal gait cycle on the ankle joint.

While the SolidWorks model of the new redesign was used to validate the hardware
aspect of the project, the MATLAB 2022a Simscape model was used to validate the software,
programing, and machine-learning aspects of this project. In the Simscape model, the
three-segmented leg model was trained in the reinforcement-learning block by the reward
function illustrated in Equation (1). The trained leg model was then compared to the mocap
data collected to validate the redesigned leg model in Simscape. The angular position
histories for the mocap data and leg model are displayed in Figures 11 and 12, respectively.
The Simscape simulation recreated the mocap data with less than a 5% deviation from
the ideal mocap data. In Figure 11, the angular position of the leg segment connecting
the hip and knee joints is shown by the red line. These data are directly compared to the
angular position of the respective hip–knee segment of the mocap data. Much like the
hip–knee segment, the knee–ankle segment simulation, shown in Figure 12, also shows
the slight overshot of motion. This overshoot, like in the previous segment is still less
than 5%, yet looks exaggerated when visualized in such a graphic. The initiation of these
movements, marked at time 0, shows a larger-than-5% deviation. However, this shows that
the machine-learning simulation can also somewhat naturally initiate a gait movement,
also known as gait initiation.

The joint motions that the robots (leg assemblies in the model) learned are annotated
in Figures 13–15. Figure 13 shows the hip-joint path movement throughout the gait cycle,
with each axis representing relative movement to a reference frame. Three types of data
point of the hip joint are plotted simultaneously to provide an intuitive visual of the results.
In orange, the original movement of the hip joint, labeled as ‘Mocap Data’, extracted
though motion-capture analysis, is plotted. This original motion-capture trajectory is
considered the ideal movement of the hip joint through one repetition of the gait cycle.
Next, the overlaying gray plot, labeled as ‘Two Segment Simscape Model’, shows the
machine-learning algorithm replicating the hip motion with a Simscape model made of
only two segments. Furthermore, the third plot, labeled as ‘Three Segment Simscape
Model’, represents the reinforcement-learning algorithm replicating the hip movement of
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a Simscape model made of three segments. All three of the data plots have converged to
an identical hip trajectory, meaning that the reinforcement-learning algorithm was able to
fully understand and replicate the hip motion of an ideal gait cycle. For this instance, the
difference between two or three segments appears to be negligible.
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Figure 14 shows the overlay of the knee-joint movement paths of the motion capture,
the Simscape model using two segments, and the Simscape model using three segments,
respectively, following the same color convention as Figure 13 above. In this Figure, the two-
segmented reinforcement-learning simulations, shown in gray, produced a deviation from
the ideal knee-trajectory data, shown in orange. Next, focusing on the blue plot, the same
reinforcement-learning algorithm replicated the knee-path trajectory, this time using the
three-segmented leg assembly. Comparing these outputs shows that there is a significant
difference between using a simulation with two segments compared to a simulation with
three segments in replicating a knee trajectory implementing a machine-learning algorithm.
The comparison of these two data plots, two-segmented and three-segmented, shows that
the reinforcement-learning algorithm is better able to replicate an ideal and smooth knee-
path trajectory using a three-segmented Simscape model. The maximum deviation from



Appl. Sci. 2024, 14, 516 10 of 13

the ideal path of the two-segmented simulation is 24.178 mm and the maximum deviation
from the ideal path for the three-segmented simulations is 19.199 mm. In general, the
simulation can replicate the horizontal elements of the movement better than the vertical
elements of the knee-path trajectory.
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Figure 13. Hip-path trajectory from the mocap data and Simscape models of two/three segments.
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Figure 14. Knee-path trajectory from the mocap data and Simscape models of two/three segments.

Figure 15, once again, shows an overlay of joint trajectory, specifically, the three
ankle trajectories with their respective colors. While errors from the hip and knee joints
tend to increase as they propagate downwards though the kinetic chain, the results of
the simulation are pleasing. The reinforcement-learning algorithm was able to replicate
an ankle-motion trajectory using the two-segmented and the three-segmented Simscape
models. Much like the knee trajectory, the two-segmented ankle trajectory is less ideal than
the three-segmented results. This further validates the idea that the addition of the knee
segment does in fact aid the smoother and more accurate replications of gait motion. While
the errors of the knee trajectory propagate a larger error of the ankle, the reinforcement-
learning algorithm was able to compensate significantly. The error of the two-segmented
simulation plot was 72.084 mm compared to the error of the three-segmented simulation,
51.177 mm.
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4. Discussion

The angle-position histories of the Simscape model and the mocap data shown in
Figures 11 and 12 share a similar profile but the Simscape model has variations in the
angle at various points of the simulation, which cause deviations in the path trajectories
of the knee and ankle joints as shown in Figures 14 and 15. The path trajectories of the
redesigned three-segmented leg assembly are close to the mocap data but feature deviations
due to the angle difference between the mocap data and the leg assembly. The sources of
the angle difference could be due to the lengths of the leg assembly segments remaining
constant and the fact that the motion in the z-direction is not considered in our current
work. However, the maximum deviations for the ankle and knee joints (8.3%, 4.8%) are
smaller for the three-segment assembly than the two-segment assembly (11.8%, 6.1%) but
maintained a similar profile to the mocap trajectory data. This shows promise for the
redesigned leg assembly and can be further improved by resolving the deviation. A reason
for this deviation could be due to the segment lengths remaining constant throughout
the simulation. The mocap data reveal small shifts in the distance between the joints
every single frame, which demonstrates small changes in the position of the joints that
cannot be captured by having the leg segments at a constant length. These changes in
segment length of the mocap data are caused by movement into the unmeasured axis,
the z axis. If segment-length compensations were permitted by the Simscape model, the
joint-path trajectories of the redesigned leg assembly could be nearly exact to the mocap
data. Further work would therefore involve changing the leg segments to feature variable
lengths using adjustable spring stiffness or other equivalent mechanisms and comparing
the joint trajectories obtained to the mocap data. Implementation of variable-length leg
segments in the future might be the key to replicating a more natural human gait motion
and the exact replication of the joint trajectories.

This work’s impact extends to predicting and correcting gait motion and to joint angle
and torque derivation. Such derived data could be used as a tool to assess the degree of
paralysis that patients are suffering from. Furthermore, this derived data can also serve to
prescribe specialized treatments to address specific problem areas.

One of the promising applications of such data would be critical in mapping the path
trajectory to the joints to develop smart implants with triboelectric patterns. Joint implants,
such as for the knee, hip, and ankle, would therefore be able to signal their remaining life.
Such a smart implant would alert physicians for replacement before it fails and injures the
patient. The path trajectory mapping can also be applied to characterize asymmetry during
gait by comparing relative motion in the left–right angle diagram [21] on the hip, knee,
and ankle joints, respectively. This method may thus facilitate physicians’ decisions in the



Appl. Sci. 2024, 14, 516 12 of 13

early diagnosis and in the evaluation of disease progression in diseases such as Parkinson’s
disease [22].

5. Conclusions

In this work, a redesign of the leg assembly for RoboREHAB was presented that
aims to improve the joint movements of the knee and hip joints that can be achieved by
traditional leg assemblies. SolidWorks motion analysis and Simscape analysis demonstrated
the feasibility of the redesigned leg assembly. Reinforcement learning was applied to a
Simscape model that utilized the redesigned leg assembly. The policy that the network
learned while using the new leg design produced angular-position histories and path
trajectories that closely reflect the results from the mocap data when compared to the
original two-segmented RoboREHAB leg assembly. Results of the validation process
showed that, based on the shape and size of the reproduced trajectories, a smooth and
more natural gait was learned by the reinforcement-learning algorithm using the three-
segmented Simscape model. The learned trajectories, while still improvable, will serve
as a foundational reference to diagnose and evaluate normal gait deviations for patients.
Therefore, the key result is that a redesigned RoboREHAB, with a three-segmented linkage
provides a framework that is better for rehabilitating and recreating human joint movements
used in robotic rehabilitation applications. This key finding opens the door to monitor
patient progress objectively by direct comparison of the patient’s current gait and the
natural human gait, allowing for specialized treatment of the muscles or neural connections
responsible for the abnormal gait. The learned trajectories could be improved by using
variable-length segments for the leg assembly or incorporating the z-direction motion from
the motion-capture data to train the reinforcement-learning agent.
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