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Abstract: Underwater imagery is plagued by issues such as image blurring and color distortion, which
significantly impede the detection and operational capabilities of underwater robots, specifically Au-
tonomous Underwater Vehicles (AUVs). Previous approaches to image fusion or multi-scale feature
fusion based on deep learning necessitated multi-branch image preprocessing prior to merging through
fusion modules. However, these methods have intricate network structures and a high demand for com-
putational resources, rendering them unsuitable for deployment on AUVs, which have limited resources
at their disposal. To tackle these challenges, we propose a multi-teacher knowledge distillation GAN
for underwater image enhancement (MTUW-GAN). Our approach entails multiple teacher networks
instructing student networks simultaneously, enabling them to enhance color and detail in degraded
images from various perspectives, thus achieving an image-fusion-level performance. Additionally, we
employ middle layer channel distillation in conjunction with the attention mechanism to extract and
transfer rich middle layer feature information from the teacher model to the student model. By eliminat-
ing multiplexed branching and fusion modules, our lightweight student model can directly generate
enhanced underwater images through model compression. Furthermore, we introduce a multimodal
objective enhancement function to refine the overall framework training, striking a balance between
a low computational effort and high-quality image enhancement. Experimental results, obtained by
comparing our method with existing approaches, demonstrate the clear advantages of our proposed
method in terms of visual quality, model parameters, and real-time performance. Consequently, our
method serves as an effective solution for real-time underwater image enhancement, specifically tailored
for deployment on AUVs.

Keywords: underwater image enhancement; image fusion; multi-teacher knowledge distillation;
channel distillation

1. Introduction

Autonomous Underwater Vehicles (AUVs) possess distinctive features such as un-
manned and cable-free operation, as well as a wide range of mobility, making them ex-
tensively utilized in ocean observation, mine search, rescue missions, and marine military
applications [1,2]. During underwater exploration and operations, AUVs rely primarily
on visual images as a means to gather scene information at short distances [3]. However,
the quality of underwater visual images is considerably lower than that of land-based
images, exhibiting issues such as blurring, color distortion, low contrast, and high noise [4].
Consequently, it has become imperative to enhance underwater images to enable effective
target identification and localization by AUVs.

Traditional methods for improving the clarity of degraded underwater images can be
broadly categorized into two approaches: image restoration methods based on physical
models and image enhancement methods based on non-physical models [5]. In the realm
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of underwater image restoration, researchers have drawn inspiration from the DCP algo-
rithm [6]. This algorithm aims to clarify underwater images by estimating the degradation
model and parameters, thereby inverting the imaging process [7,8]. However, the diverse
range of degradation types encountered in underwater images poses a challenge in deter-
mining a single imaging model with fixed parameters based on a priori assumptions. On
the other hand, underwater image enhancement methods bypass the need to consider the
imaging process directly. For instance, histogram equalization [9], a fundamental linear
mapping method, enhances the image contrast by adjusting the tonal distribution through
a constructed function. Methods rooted in Retinex theory [10] are employed to correct color
deviations in underwater images, thus enhancing the overall color quality. Nevertheless,
these techniques are prone to issues such as local over-enhancement and color inhomo-
geneity, leading to the introduction of new noise and color biases in the image. To address
these limitations, image fusion algorithms [11] have been developed. These algorithms
combine multiple enhanced underwater images with specific weights, effectively reducing
noise and local oversaturation resulting from a single enhancement method. However,
the requirement of preprocessing multiple enhanced images prior to fusion restricts the
applicability of such methods in high real-time processing scenarios involving AUVs.

In recent years, the rapid advancement of AI technology has propelled the rapid
development of deep learning, which boasts powerful feature learning capabilities. Image
processing methods based on deep learning have exhibited remarkable performance [12–14].
Consequently, numerous enhanced techniques have emerged within the domain of un-
derwater image enhancement research [15–20]. Li et al. [17] conducted experiments that
demonstrate the commendable performance of the fusion base [11] on a diverse range of
underwater images. Furthermore, they propose a gated fusion network called Water-Net,
which enhances underwater images by leveraging white balance, histogram equalization,
and gamma correction algorithms as inputs to the network model. Subsequently, the
network model predicts corresponding confidence maps, which are then fused with mul-
tiple inputs to obtain the enhanced image. While this method effectively enhances the
performance of image fusion, its network structure is intricate and it requires different
algorithms to generate three types of augmented images as input data for the network
model. Consequently, its practicality is significantly impacted, rendering it unsuitable for
real-time augmentation of underwater images by AUVs.

Several researchers have proposed the use of multi-scale feature fusion techniques to
enhance network models for underwater image enhancement [21–23]. Unlike image fusion
methods, these approaches do not require the fusion of multiple inputs for enhancement.
Instead, they leverage the feature information from the intermediate layer of the neural
network and fuse multi-scale feature maps generated through gradual convolution of
underwater images within the network. This fusion process aims to improve the overall
performance of underwater image enhancement. Liu et al. [21] introduced MLFcGAN, a
multiscale feature fusion framework. This framework involves extracting feature maps at
different scales by gradually downsampling the input image using a convolutional layer.
The fused features are then fed into the corresponding decoder layer, which incorporates a
feature fusion module and skip-connect operation. The resulting enhanced image is ob-
tained through multilevel feature fusion. Tian et al. [23] proposed an end-to-end framework
called heterogeneous feature fusion and dynamic feature enhancement. This framework
integrates a feature fusion module with an attention mechanism, enhancing the encoder
structure by introducing an improved feature attention module. Features are gradually
extracted at different scales, ranging from low to high levels, and the decoder employs
an upsampling operation to reconstruct feature vectors and progressively restore them to
clear images. Furthermore, Liu et al. [24] presented MGF-cGAN, a multiscale gated fusion
framework for underwater image enhancement. The generator in this framework utilizes a
multiscale feature extraction module to extract feature information at different scales from
three parallel sub-networks. A gated fusion module (GFM) is introduced to gradually fuse
the three feature images collected from the multiscale feature extraction module using a
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recursive strategy, thereby improving contrast and color saturation in underwater images,
while the multiscale feature fusion methods eliminate the need for preprocessing multiple
enhanced images. The operations involved, such as multiscale feature extraction, fusion
modules, and dense connectivity in the network, increase the complexity and the number
of parameters. Consequently, these algorithms struggle to strike a balance between low
computation requirements and high-quality image enhancement in hardware-constrained
practical applications.

Among the available underwater image enhancement methods, image fusion methods
and multi-scale feature fusion methods exhibit superior performance. However, their
network models employ complex multi-branch structures with a substantial number of
parameters. This poses a challenge for AUVs equipped with small-capacity batteries,
as they often have a limited computational power and storage capacity. Consequently,
these advanced algorithms are impractical for local real-time applications. In underwater
environments, effective real-time image processing algorithms are essential. A typical AUV
camera captures and transmits between 10 and 30 frames per second. To ensure a seamless
underwater observation experience for operators, the processing time for each image
should ideally be less than 0.1 s. Therefore, there is a pressing need for a comprehensive
conceptual and structural enhancement of fusion-based algorithms that can deliver both an
improved performance and real-time capabilities.

In the domain of image dehazing, Lan et al. [12] proposed the Online Knowledge
Distillation Network (OKDNet) as a solution. This approach involves the construction of a
multiscale feature extraction network utilizing residual dense blocks guided by an attention
mechanism. The network generates rich features, which are then sent to different branches
for further processing. Supervised training is employed to generate two styles of dehazed
images, which are subsequently fused using parallel convolution. Additionally, the model
is optimized through online knowledge distillation, resulting in a reduction in the model
parameters to 2.58 M. This optimization significantly enhances the algorithm’s real-time
applicability. Hence, employing knowledge distillation for model compression in real-time
underwater image enhancement is a viable approach. Furthermore, Wang et al. [25] pro-
posed that a student can learn better from multiple teachers, who are more informative and
instructive than a single teacher. Motivated by their work, we present a novel framework
called multi-teacher knowledge distillation GAN (MTUW-GAN) for underwater image en-
hancement. Through extensive experiments, we demonstrate that MTUW-GAN surpasses
existing methods in terms of visual quality, model parameters, and complexity. Moreover,
it effectively balances an enhanced performance with real-time capabilities.

In conclusion, fusion-based methods for underwater image enhancement exhibit a
superior performance and have been extensively studied. While these methods contribute
to enhancing the overall image quality, there are several important considerations to address
in underwater image enhancement scenarios:

• The requirement to preprocess multiple enhanced images in the image fusion al-
gorithm hampers practical usability and necessitates innovative approaches to the
overall concept.

• The inclusion of feature extraction branches and fusion modules in the multi-scale
feature fusion method elevates computational demands and compromises the real-
time performance of the algorithm.

• The image translation loss function exhibits limited capability in rectifying color bias
and facilitating detail recovery when employed for underwater image enhancement.

• Previous fusion-based underwater image enhancement algorithms encounter chal-
lenges in striking a balance between enhancement effectiveness and real-time perfor-
mance, with the need to process each image within a time frame of 0.1 s.

To tackle these challenges, we aim to develop AUV underwater image enhancement
algorithms that meet the demand for a high-quality output while ensuring real-time
performance. In this regard, we introduce MTUW-GAN as our proposed solution. The key
innovations of our approach are as follows:
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• We propose a framework called MTUW-GAN, which changes the idea of “multi-
image fusion” to “multi-teacher teaching”, and guides the student network to perform
underwater image enhancement through multiple teacher networks.

• We incorporate the attention mechanism to extract the channel attention information
from the teacher network and transfer it to the middle layer of the student network in
the form of a loss function, which improves the performance without increasing the
number of parameters and computations of the student network.

• We formulate a multimodal objective function to fully restore the visual quality of
underwater images by removing noise and color distortion caused by underwater light
scattering based on the global content, color, and texture information of the images.

• We comprehensively verify that the method in this paper can achieve image fusion
level performance by designing comparison experiments and ablation experiments,
taking into account the performance enhancement and real-time performance.

To provide a more intuitive illustration of the innovative ideas presented in this paper,
particularly in comparison to previous image fusion and multi-scale feature fusion methods,
Figure 1 showcases the overall process enhancement achieved by the proposed method.

Figure 1. Comparison between MTUW-GAN and fusion-based method processes. MTUW-GAN
does not need a preprocessing enhanced images and fusion module, and only needs to output the
enhanced underwater images directly via a lightweight student network after framework training
is completed.

The remainder of this paper is structured as follows: In Section 2, we present an
introduction to MTUW-GAN. Section 3 conducts quantitative and qualitative analyses,
along with a comprehensive ablation experiment. Lastly, Section 4 provides a summary of
our work.

2. Materials and Methods

In this paper, we propose MTUW-GAN, an underwater image enhancement method
based on multi-teacher knowledge distillation. The overall framework is depicted in
Figure 2, consisting of three main components: the Main Teacher Generator (GM

T ), respon-
sible for the primary instructional contribution; the Assistance Teacher Generator (GA

T ),
responsible for the secondary instructional contribution; and the Lightweight Student Gen-
erator (GS). During the training process, multiple teacher networks concurrently learn the
end-to-end transformations from degraded underwater images to real underwater images.
The student networks, guided by the teachers, enhance the underwater images and merge
them to achieve image fusion. Moreover, GS are trained to distill the knowledge from the
intermediate layers of the GM

T , ensuring the preservation of crucial details. To address the
issue of over-fitting in offline distillation [26], we employ online knowledge distillation
throughout the training process, allowing the multi-teacher network to gradually guide
the students in learning the feature information, as depicted in Figure 2. During training,
all mentioned tasks are executed simultaneously, while in the testing phase, each teacher



Appl. Sci. 2024, 14, 529 5 of 16

and student model can be independently run. Only the component represented by the
blue solid line, corresponding to the Student Generator (GS) after model compression, is
utilized, as it aligns with our task objective. The specific details and loss functions of each
component are presented below.

Figure 2. The overall structure of MTUW-GAN. The different structural teacher generators provide
complementary knowledge, and the Lightweight Student Generator (GS) in the blue solid box learns
to enhance underwater images under the guidance of multiple teachers (GM

T and GA
T ). n in GM

T
denotes each channel of the convolutional layer divided by the channel compression factor.

2.1. Multi-Teacher Teaching

To meet the requirements of real-time enhancement of underwater images by AUVs,
achieving a balance between a high-quality output and a low complexity is crucial. Pre-
vious image fusion methods have relied on the merging of multiple enhanced images to
synthesize clear underwater images, exploiting the benefits of information integration.
However, such approaches often involve multiple pre-processing steps and image fusion
network modules, resulting in increased computational demands. In order to address this
challenge, we propose a novel approach that shifts the paradigm from “multi-image fusion”
to “multi-teacher teaching”. In this approach, the student model learns from multiple
teacher models, enabling it to incorporate the complementary advantages of multiple
enhanced underwater images. Consequently, our method eliminates the need for image
preprocessing and image fusion network modules. Furthermore, the adoption of model
compression in the lightweight student model enables a harmonious balance between
performance enhancements and real-time capabilities.

The concept of multi-teacher knowledge distillation resembles the cognitive process of
human learning, where students deepen their understanding by receiving guidance from
multiple teachers. The utilization of multiple teachers effectively enhances the performance
of the student model. However, when there is a significant capacity gap between the teacher
and student models, the transfer of knowledge from the teacher to the student model may
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be insufficient, resulting in a degradation of the student model’s performance [27]. To
address this issue, our framework adopts a consistent MobileNet-Style [28] architecture for
both the teacher and student models. This architectural consistency reduces the number of
model parameters while ensuring effective knowledge transfer. Li et al. [29] demonstrated
that the ResBlock layer in the ResNet-based generator [30] accounts for most of the model
parameters and computational cost, remaining unaffected by decomposition. Consequently,
to reduce model redundancy, we employ channel pruning techniques [31,32] to decrease
the channel width of the ResBlock layer. By applying channel pruning to the robust GM

T ,
we obtain a more streamlined GS. The specific settings are to set the channel compression
factor n to 4 and to reduce the number of convolution filters of GM

T from 64 to 16 for GS.
This model compression approach not only improves computational efficiency but also
provides a better foundation for subsequent model optimization and deployment.

To achieve image fusion-level performance for GS, we incorporated the Assistance
Teacher Generator (GA

T ) into the framework. Inspired by the residual network [33], we
incorporate expansion residual blocks to facilitate additional nonlinear transformations
that extract more expressive information features from underwater images. This aids in
accurate recovery of details, colors, and contrasts in the underwater images. The robust GA

T
exhibits a faster convergence rate compared to the shallow GS, aligning with the cognitive
process of teachers guiding students in the learning process.

By engaging in collaborative training between the GM
T and the GA

T , teacher generators
with diverse structures can effectively capture the intricate relationships between input
image features and augmented images from different perspectives. Consequently, the
knowledge gained from these diverse perspectives can be transferred to the GS. This ap-
proach offers several advantages. Firstly, the GS is relieved from the need to preprocess the
underwater image into multiple augmented images. Additionally, there is no requirement
for an additional image fusion module to merge these images. Furthermore, during the
training process, the GS is not involved in adversarial learning with the discriminator. This
reduction in complexity and training cost significantly alleviates the hardware requirements
of the entire framework.

2.2. Channel Distillation Module

Current methods for enhancing underwater images employ multi-scale feature fusion
techniques, which involve extracting and merging feature information from intermediate
layers of neural networks. These methods typically utilize feature extraction modules
based on residual blocks [33] and dense blocks [34] to extract features from convolutionally
generated multiscale feature maps. These features are then fused together using operations
like channel splicing and dense joining to generate enhanced underwater images [21–23].
However, these feature extraction branches and fusion modules significantly increase
computational demands and impact the real-time performance of the algorithm. To address
this issue, we leverage the knowledge distillation framework to transfer middle layer
feature information from the teacher model to the student model through a loss function.
This approach effectively improves the model’s performance without increasing the number
of parameters or computational requirements of the student network.

In this study, we employ the channel distillation [35] to effectively enhance the texture
details of underwater images by extracting and transferring middle layer feature infor-
mation from the teacher model. Initially, a 1 × 1 convolution is utilized to address the
discrepancy in the number of channels between the GM

T and the GS feature maps. This
expansion of channels in the student generator ensures compatibility. Subsequently, we
utilize global average pooling (GAP) to compute the importance of each channel’s feature
map, which reflects the attention information associated with that channel. We regard
the attention information of each channel’s feature map as knowledge. The GM

T and the
GS independently calculate the attention information of each channel from their respec-
tive feature maps. The GM

T then guides the GS to learn the attention information of each
channel and transfers this knowledge to the GS. Through this process, the GS can acquire
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the teacher’s attention information for each channel, resulting in an enhancement of its
performance. Consequently, the texture information of the underwater image is further
improved. Notably, the Channel Distillation (CD) module only utilizes computational
resources during the training process of the framework, and there is no need to invoke this
module when utilizing the student model. Figure 3 provides a detailed depiction of the CD
module architecture.

Figure 3. The Channel Distillation module.

In Figure 3, we use GAP to compute the importance of each channel’s feature map,
which represents the attention information of each channel [35,36]. The weight of each
channel is defined as follows:

wc =
1

H × W

H

∑
i=1

W

∑
h=1

µc(i, j) (1)

where wc denotes the weight of the cth channel. H, W are the spatial dimensions of the
feature map and µc(i, j) is the activation work. When calculating the channel distillation
(CD) loss, due to the inconsistency of the number of GS and GM

T channels, it is necessary
to upgrade the dimensionality by using 1 × 1 convolution first, and then perform channel
distillation. The CD loss is defined as follows:

LCD(GM
T , GS) =

∑
f
i=1 ∑c

j=1

(
wij

tM
− wij

s

)2

f × c
(2)

where wij denotes the attention weight of the jth channel of the ith feature map of the
model, f denotes the number of feature maps, and c represents the number of channels.

2.3. Loss Function

The loss function of the proposed MTUW-GAN in this paper comprises three primary
components: the underwater image enhancement (UIE) loss, the knowledge distillation
(KD) loss, and the channel distillation (CD) loss.

When image translation losses [37] are applied to underwater image enhancement,
they often encounter challenges, resulting in deficiencies such as blurred details, a low
contrast, and overall darkness in the generated images. To address these issues and generate
high-quality enhanced underwater images, we propose the underwater image enhancement
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(UIE) loss. This loss formulation effectively eliminates noise and color distortion caused
by underwater light scattering by restoring the visual perception quality of underwater
images. The restoration process is achieved by utilizing the global content, color, and local
texture information of the images. Among them, for the teacher model, the GAN objective
is formalized as:

min
GT

max
D

V(D, GT) = Ey∼ptrain(y)[log D(y)] +Ex∼pgen(x)[log(1 − D(GT(x)))] (3)

In the context of the image dehazing task, the L1 loss demonstrates superior capability
in aligning the feature distribution between pixels in hazy and clear images compared to
the L2 loss [38]. Moreover, the L1 loss mitigates the risk of introducing blurred artifacts.
Therefore, we employ the L1 loss to enhance the dehazing performance of the network.
The calculation formula for the L1 loss is expressed as follows:

L1(GT) = Ex,y[∥y − GT(x)∥1] (4)

To enhance the generation of images with advanced features and details, we calculate
the content loss [19] by utilizing the output of the middle layer of VGG-19 [39] as a feature
representation. This approach assists the generator in producing high-quality images. The
content loss is defined as the Euclidean distance between the generated underwater image
from the teacher model and the corresponding ground truth. It can be expressed as follows:

Lcontent(GT) = E(x,y)[∥φj(y)− φj(GT(x))∥2] (5)

The UIE loss is represented as follows:

LUIE(G∗
T) = min

GT
max

D
V(D, GT) + λ1L1(GT) + λcontentLcontent(GT) (6)

To optimize the GS, it is necessary to simulate the outputs of multiple GT models. To
accomplish this, we introduce the knowledge distillation (KD) loss. For the sake of clarity,
we denote the outputs of the GT and GS models as t and s, respectively. The optimization
process of GS involves simulating the outputs of multiple GT models.

The SSIM index [40] quantifies the similarity between two images by considering their
brightness, contrast, and structure. It serves as a valuable metric for measuring image
similarity. In our study, we utilize the SSIM index to enhance the local structure and detail
information of the generated image. The SSIM loss for t and s is defined as follows:

LSSIM(t, s) = 1 − SSIM(t, s) (7)

Relying solely on the SSIM loss during training may lead to significant geometric
distortions in the generated images. Furthermore, since the SSIM loss is primarily designed
for grayscale images, it can fall short in accurately assessing the quality of color images,
resulting in color bias within the generated outputs. To mitigate these issues, we integrate
perceptual loss [41] into the training process. By leveraging a pre-trained VGG network,
we extract high-level feature representations from t and s to approximate the perceptual
information between them. The expression for perceptual loss is as follows:

LPer(t, s) =
1

CjHjWj

∥∥φj(t)− φj(s)
∥∥2

2 (8)

To enhance the spatial smoothness of the generated images produced by GS, we
incorporate the total variation (TV) loss [42] into the training process. This additional
loss term serves to constrain network learning by reducing the discrepancies between
neighboring pixel points. By doing so, it effectively preserves the fine details of the
generated images while removing excessive noise. The TV loss is represented as follows:
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LTV = Mean ∥ ∑
h,w

(sh+1,w − sh,w) + (sh,w+1 − sh,w) ∥2
2 (9)

The overall KD loss is obtained by combining LSSIM, LPer, and LTV, and can be
expressed as follows:

LKD(t∗, s) = λSSIMLSSIM + λPerLPer + λTVLTV (10)

To sum up, after adding the CD loss, the total target loss form of the whole distillation is:

L(GM
T , GA

T , GS) = Lmulti
UIE (GM

T , GA
T ) + Lmulti

KD (tM, tA, s) + λCDLCD(GM
T , Gs) (11)

3. Experiments and Analysis

Previous fusion-based methods for enhancing underwater images face challenges in
balancing the quality of enhancement and real-time usage. This is primarily due to the
complexity of the process and network structure involved. To validate the effectiveness of
the proposed method in this paper, a comprehensive evaluation is conducted in this section
through comparative experiments and ablation experiments. Firstly, we discuss the detailed
setup of the proposed framework training. Subsequently, we demonstrate the performance
of our method by comparing it with other non-deep and deep learning methods on both
synthetic and real underwater images. This comparison is carried out using subjective
and objective evaluation methods, focusing on parametric quantities, GFLOPs, and real-
time performance of different algorithms. Finally, ablation experiments are performed to
showcase the effectiveness of each module within the Channel Distillation (CD) module,
loss function, and multi-teacher model employed in the framework of this paper.

3.1. Experiment Details

To assess the effectiveness of the algorithms, all experiments were conducted within
the PyTorch framework and executed on NVIDIA GeForce GTX 3060 GPUs (12G). Data
augmentation techniques, including random rotations and horizontal flips, were applied
during the training of MTUW-GAN. Additionally, all input images in the training set were
resized to dimensions of 256 × 256 pixels. The adversarial training involved simultaneous
and progressive optimization of GM

T , GA
T , and GS, as the entire optimization process follows

an online knowledge distillation framework. The Adam optimizer was utilized for opti-
mization, with an initial learning rate of 2 × 10−4. The parameters β1 and β2 were set to 0.5
and 0.999, respectively. The batch size was set to 1, and a total of 200 epochs were trained.

To demonstrate the robustness of our proposed method, we conducted training and
testing using two publicly available underwater datasets: EUVP [19] and UIEBD [17].
The training set comprises real underwater images paired with their corresponding clear
images. Specifically, we employed 11,435 images from the EUVP dataset to train our
model, encompassing both degraded and high-quality underwater images. For testing,
we randomly selected 300 pairs of images from the EUVP test set, representing various
underwater scenes.

The UIEBD dataset offers a diverse collection of underwater scenes and encompasses
a wide range of degradation types. The images within this dataset cover various domains
such as marine ecology, divers, submarine corals, and coral reefs. We utilized a random
subset of 800 images from the UIEBD dataset for training purposes, while the remaining
90 images were reserved for testing.

3.2. Compared Methods

To address the problem that traditional enhancement methods have an insufficient
generalization ability and that deep-learning-based methods, especially fusion-based meth-
ods, are unable to balance performance enhancements and real-time performance, we
compared the method proposed in this paper with the following seven methods: UDCP [7],
Fusion-based [11], UGAN [18], Water-Net [17], CWR [20], and two feature-based algo-
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rithms, MSBDN-DFF [43] and FFA-Net [44], for image dehazing. Among them, UDCP and
Fusion-based algorithms are traditional methods for underwater image processing, while
the others are deep-learning-based methods that require the measurement of model parame-
ters and the number of GFLOPs. Water-Net, MSBDN-DFF, and FFA-Net are based on image
fusion or multi-scale feature fusion, while the other methods are non-fusion methods.

3.3. Evaluation Metrics

To validate the image enhancement quality achieved by the method proposed in this
paper, we employed several objective evaluation metrics [45] to assess the performance
of our underwater image enhancement technique. Firstly, we utilize the mean square
error (MSE) to calculate the average squared difference between the pixels of the enhanced
underwater image and the reference image. The MSE provides a quantitative measure
of the overall distortion between the enhanced image and the reference image, with a
lower MSE value indicating a better image quality. The second metric employed is the
peak signal-to-noise ratio (PSNR), commonly used to evaluate the signal reconstruction
quality in domains such as image compression. The PSNR measures the ratio between
the peak signal and the noise level and serves as an indicator of the extent of distortion in
the processed underwater image compared to the reference image. Higher PSNR values
indicate lower levels of distortion. To assess the visual quality of the enhanced image, we
utilized the structural similarity index (SSIM). The SSIM evaluates the similarity between
the enhanced image and the reference image based on key features, including luminance,
contrast, and structural information. Higher SSIM values indicate a higher degree of
similarity between the enhanced image and the reference image, reflecting an improved
visual quality.

Furthermore, we calculated the average underwater image quality measure [46] (UIQM)
for the quantitatively enhanced images. The UIQM is a metric that takes into account the
degradation mechanism and optical imaging properties specific to underwater images. This
metric comprises three distinct components: the underwater image color metric (UICM),
the underwater image sharpness metric (UISM), and the underwater image contrast metric
(UIConM). These metrics, respectively, evaluate the color fidelity, sharpness, and contrast
of the underwater images. Each attribute metric can be utilized independently to assess a
specific aspect of underwater image degradation. Higher scores in the UIQM indicate a
more perceptually consistent outcome in line with human visual perception. The expression
for the UIQM is as follows:

UIQM = c1 × UICM + c2 × UISM + c3 × UIConM (12)

where the color, sharpness, and contrast of the image are represented as linear combinations,
with respective weighting coefficients of c1 = 0.0282, c2 = 0.2953, and c3 = 3.5753. The weight
values utilized in this study are derived from [46].

In order to validate the superiority of our proposed method in terms of computational
requirements and real-time performance, we evaluate the efficiency of the model based on
the number of model parameters, GFLOPs, and the single image processing time. These
metrics provide insights into the computational demands of the algorithm. Notably, the
number of parameters serves as a key indicator of model complexity, whereby a higher
parameter count indicates greater computational resource and data requirements for model
training and execution. GFLOPs, on the other hand, quantify the number of floating-
point operations necessary to execute a network model once, thus serving as a measure of
computational efficiency and speed. Furthermore, the single image processing time directly
signifies the algorithm’s efficiency in handling individual images.

3.4. Objective Evaluation

Table 1 presents the average MSE, PSNR, and SSIM values of the enhancement results
on the EUVP and UIEBD datasets, showcasing the competitiveness of our method. Our
approach, MTUW-GAN, achieves a remarkable performance in underwater image enhance-
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ment, as evidenced by achieving the highest scores in MSE, PSNR, and SSIM on the EUVP
test set. This outcome underscores the network architecture’s capability to restore colors
and revive image details in underwater images. Compared to the second-best method, our
approach exhibits improvements of 31.40 in the MSE, 1.04 in the PSNR, and 0.06 in the
SSIM. Additionally, on the UIEBD test set, our method attains the best PSNR and SSIM
scores, and the second-best MSE score. These findings demonstrate that our method excels
in handling image details and local contrast in degraded images, while also displaying
robust generalization capabilities across a wide range of underwater scene images. In
contrast to prevalent methods based on image fusion and multi-scale feature fusion, our
proposed approach exhibits a superior performance.

Table 1. Average MSE, PSNR, and SSIM values of the enhancement results on the EUVP and UIEBD
datasets. ↑ represents that higher is better, and ↓ represents that lower is better. Red represents the
best, while blue represents the second best.

Method
EUVP UIEBD

MSE↓ PSNR↑ SSIM↑ MSE↓ PSNR↑ SSIM↑

UDCP 2319.73 15.90 0.55 4341.56 12.45 0.52
Fusion-based 1068.93 18.58 0.68 583.66 21.63 0.75
UGAN 817.39 20.29 0.71 970.40 21.36 0.73
Water-Net 385.44 23.89 0.78 594.83 22.14 0.75
CWR 263.76 24.99 0.76 782.46 20.71 0.72
MSBDN-DFF 187.84 26.45 0.73 170.40 24.60 0.79
FFA-Net 154.96 27.16 0.75 240.25 24.51 0.80
Ours 123.56 28.20 0.84 205.71 25.88 0.83

Table 2 presents the average UICM, UISM, UIConM, and UIQM results for the en-
hanced images. Notably, our proposed method consistently achieves the highest UIQM
score across the board. Among the three component metrics, UISM and UIConM obtain the
highest scores, indicating superior performance in terms of image sharpness and contrast
enhancement. Although the UICM score ranks third among the compared methods, it is
worth noting that the UICM, being a color metric component, tends to favor images with
a higher color saturation. Consequently, certain underwater images may receive inflated
color metric scores when processed by fusion-based methods, leading to discrepancies
between score judgments and the visual perception of human observers. Nonetheless, our
algorithm remains highly competitive in enhancing the clarity and contrast of underwater
images, delivering an exceptional performance akin to image-fusion-based approaches.

Table 2. Average UICM, UISM, UIConM, and UIQM results for enhanced images. ↑ represents that
higher is better. Red represents the best, while blue represents the second best.

Method UICM↑ UISM↑ UIConM↑ UIQM↑

UDCP 6.251 5.422 0.046 1.942
Fusion-based 7.853 6.829 0.141 2.745

UGAN 6.522 6.623 0.202 2.863
Water-Net 5.408 6.850 0.254 3.083

CWR 4.911 6.401 0.233 2.862
MSBDN-DFF 4.371 5.715 0.181 2.457

FFA-Net 4.014 5.670 0.214 2.551
Ours 6.314 7.258 0.268 3.278

In addition to evaluating performance, our focus also extends to comparing the effi-
ciency of each algorithm. Table 3 presents these data, indicating that our model exhibits
a superior efficiency across multiple metrics. Specifically, MTUW-GAN demonstrates
remarkable advantages in terms of the number of parameters, GFLOPs, and the running
speed. MTUW-GAN requires only 0.137 M parameters, which is more than 87% less than
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the image fusion network Water-Net. In terms of GFLOPs, our method significantly outper-
forms the second-ranked multiscale feature fusion network, MSBDN-DFF. This observation
highlights the considerably lower computational resource requirements of our approach,
making it more suitable for deployment on AUVs with a constrained GPU performance
and battery capacity. To further assess efficiency, we compared the time required to enhance
a single image among the seven methods. The results were averaged using the test data.
Our method achieves an impressive average time of 0.069 s for enhancing each underwa-
ter image, providing a significant advantage over image fusion and multi-scale feature
fusion algorithms. Collectively, the multiple experiments conducted in this section prove
that the method proposed in this paper effectively balances performance and real-time
processing capabilities.

Table 3. Comparison of the model parameter, GFLOPs, runtime and FPS for different methods.
↑ represents that higher is better, and ↓ represents that lower is better. The red value represents the
best, while the blue value represents the second best.

Method # Model Param (M)↓ GFLOPs (G)↓ Times (s)↓ FPS (f/s)↑

UDCP - - 1.693 0.591
Fusion-based - - 0.442 2.262

UGAN 38.7 18.14 0.104 9.615
Water-Net 1.1 142.9 0.161 6.211

CWR 6.1 42.37 0.136 7.353
MSBDN-DFF 31.4 16.14 0.143 6.993

FFA-Net 4.7 302.7 0.209 4.785
Ours 0.137 0.82 0.069 14.493

3.5. Subjective Evaluation

Figure 4 showcases the visual results obtained from our proposed method and seven
comparison methods. To ensure a comprehensive evaluation across diverse underwater
scenes, we deliberately selected different types of images for the experimental comparison.
The findings reveal distinct characteristics for each method. UDCP demonstrates a dehaz-
ing effect but exhibits an overall greenish hue, failing to effectively eliminate significant
color biases in underwater images. Fusion-based approaches effectively enhance the im-
age contrast but exhibit tendencies towards over-enhancement and introduce substantial
amounts of red noise in certain images. UGAN suffers from localized over-enhancement
and inadequate recovery of image details. Water-Net and CWR exhibit varying degrees
of color bias when handling low-light underwater scenes, resulting in an uneven color
distribution and insufficient preservation of fine textures. Feature-fusion-based methods,
such as MSBDN-DFF and FFA-Net, succeed in reducing image blurring caused by under-
water scattered light, but lack sufficient color correction capabilities, leading to a subpar
restoration of the original colors with an overall blue-green bias. In contrast, our method
excels in enhancing underwater images by providing visually clearer texture details of
marine plants and coral reefs, more vivid fish colors, and accurate reproduction of divers’
skin tones. It consistently demonstrates an excellent performance in restoring underwater
image details, mitigating the effects of scattered light and effectively correcting color biases
across multiple scenes.

3.6. Ablation Study

To comprehensively validate the roles of each module proposed in this paper within
the framework, namely the Channel Distillation (CD) module for feature extraction from
the teacher’s network middle layer, the UIE loss for perception-based quality recovery of
underwater images, and the Assistance Teacher Generator GA

T for achieving fusion-level
performance, ablation study were conducted. Multiple models were trained on the EUVP
dataset to facilitate detailed analysis and validation, and the results are presented in Table 4.
In index-A, where all three modules were removed, and the proposed UIE loss was replaced
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by the image translation loss in pix2pix, the performance was unsatisfactory, with only
a PSNR score of 24.40 and an SSIM score of 0.77. In index-B, by incorporating the CD
module for knowledge distillation learning, the scores for GS-enhanced images improved
to 24.56 and 0.78, respectively. In index-C, substituting the objective loss function of the
teacher network with the UIE loss resulted in a significant boost in PSNR scores by 3.45
and SSIM scores by 0.04. Lastly, in index-3, with the addition of GA

T for multi-teacher
knowledge distillation, there was further improvement, with an increase of 0.19 in PSNR
scores and 0.02 in SSIM scores. These ablation study effectively demonstrate the efficacy of
the individual modules proposed in this paper.

Figure 4. Visual comparison of different types of images. The first and second rows are from the test
set of EUVP, and the third, fourth, and fifth rows are from UIEDB.

Table 4. Ablation study involving CD Modules, UIE loss, and GA
T validity.

Index CD Module UIE Loss GA
T PSNR SSIM

A - - - 24.40 0.77
B ✓ - - 24.56 0.78
C ✓ ✓ - 28.01 0.82

Ours ✓ ✓ ✓ 28.20 0.84

Figure 5 presents a partial example of the ablation study, illustrating the functions of
each module. The channel distillation module plays a vital role in restoring detailed image
textures and reducing blurring. The UIE loss contributes to color correction of the overall
image and effectively mitigates the impact of scattered light. Additionally, the incorporation
of GA

T integrates diverse styles of enhanced images into the student model, enabling it to
achieve a performance comparable to image fusion algorithms. This integration further
enhances the quality of detailed image features. The ablation study’s quantitative and
qualitative results are summarized in Table 4 and Figure 5, revealing that the removal of
any module diminishes the enhancement of underwater images.
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Figure 5. Example of control group results from an ablation study.

4. Conclusions

In this paper, we propose a multi-teacher knowledge distillation GAN for underwater
image enhancement (MTUW-GAN). By employing a multi-teacher network to simultane-
ously instruct a student network, we achieve a comparable performance to image fusion
methods while addressing color distortion and detail loss issues in underwater images.
The student model of MTUW-GAN acquires rich intermediate-layer feature information
from the teacher model through channel distillation, enhancing image color and feature
details without increasing the parameters or computational requirements. Additionally,
our proposed underwater image enhancement function effectively removes noise and
color distortion caused by underwater light scattering, restoring image quality. Compared
to typical fusion networks, MTUW-GAN eliminates multiplexed branching and fusion
modules, using online knowledge distillation for model compression, significantly re-
ducing the computational requirements for the lightweight student model. Numerous
experiments demonstrate that MTUW-GAN achieves a state-of-the-art performance in
terms of evaluation metrics and visual quality in underwater image enhancement. It has
low computational requirements and real-time performance, making it viable for future
applications in AUVs for operational tasks like underwater mineral resource exploration
and biological resource investigation. In addition, we plan to file a patent application based
on the method presented in this paper.

While MTUW-GAN offers notable advantages, there is still room for improvement.
Firstly, the setup of the multi-structured teacher network results in a large number of
overall parameters within the framework, potentially leading to slower training. Secondly,
the student model in our algorithm struggles to effectively recover certain specialized
underwater images. To address these issues, we intend to conduct further research in our
future work. Our plan involves exploring several more streamlined and effective teacher
networks to optimize the framework’s training process. Additionally, we aim to identify
the root cause of the problem by utilizing statistics such as image histograms, with the goal
of narrowing the gap between the outputs of the student model and the teacher model.
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