The Effects of Fly Ash, Blast Furnace Slag, and Limestone Powder on the Physical and Mechanical Properties of Geopolymer Mortar
Abstract
:1. Introduction
2. Materials and Experimental Procedure
2.1. Materials
2.1.1. Fly Ash (FA)
2.1.2. Blast Furnace Slag (BFS)
2.1.3. Limestone Powder (LP)
2.1.4. Alkali Activators
- The polymerization procedure in this research used sodium hydroxide (NaOH) and sodium silicate (Na₂SiO₃) solutions as alkali activators. Local sources were contacted in order to obtain these substances. Purified water was used to dissolve sodium hydroxide (NaOH) until the molarity reached 10.
- Sodium Hydroxide (NaOH)
- A part of the heat is usually lost as the NaOH solution is being prepared, and another part is used up when the solution evaporates. Since NaOH is the most accessible and inexpensive alkali hydroxide, it is the preferred option for use as a hydroxide activator in geopolymer synthesis.
- b.
- Sodium Silicate (Na₂SiO₂)
2.1.5. Aggregate
2.2. Procedures
Finding Mixing Ratios
2.3. Geopolymer Production
2.4. Preparation, Casting, and Curing of Test Specimens
2.5. Property of Tests
3. Results
3.1. Initial and Final Setting Time of Fresh Mortar
3.2. Flow Table
3.3. Compressive Strength
3.4. Flexural Strengths
3.5. Impact Resistance
3.6. Water Absorption
3.7. Dry Unit Weight
4. Conclusions
- (1)
- An increase in FA content led to an augmentation in water absorption, accompanied by a decrease in dry unit weight, compressive strength, flexural resistance, impact resistance, and initial setting-time values.
- (2)
- The dry unit weight, flexural strength, compressive strength, and resistance to impacts all rose significantly as the percentage of BFS in the material increased. Both the initial setup time and the amount of water that was absorbed reduced simultaneously.
- (3)
- The properties of the material—dry unit weight, flexural strength, compressive strength, impact resistance, and water absorption—decreased as the LP content increased, while the initial setting time increased.
- (4)
- The presence and increased quantity of LP enhanced the workability of geopolymer, due to the fineness and the spherical shape of LP particles for all prepared mixtures.
- (5)
- The amount of additional water used in the production of geopolymer mortar was observed to be crucial and influential on its mechanical and physical properties.
- (6)
- Despite the fixed amount of additional water in mortar production, an increase in water quantity in supplementary studies positively impacted workability but adversely affected compressive strength and the initial setting time.
- (7)
- In the future, it is recommended that studies should concentrate on the basic science of geopolymers to discover the process of chemical reactions that occur during the procedure of setting and hardening.
5. Future Research Needs
- (1)
- As mentioned earlier, FA is classified into F and C classes, according to ASTM standards. In this study, only C-class FA was utilized. It is recommended that more studies be conducted making use of F-class FA and applying statistical approaches that are more thorough, in order to investigate the mechanical and physical characteristics of geopolymer.
- (2)
- The FA that was used in this experiment was derived from the Soma Thermal Power Plant, which is situated in the city of Manisa in Turkey. It is recommended that similar studies be conducted using different ash samples from various thermal power plants. Because thermal power plants have varying burning potentials, the findings may be considerably impacted by these differences.
- (3)
- In addition to the experimental studies conducted in this research, a comprehensive study could be carried out by applying other tests on geopolymer mortar, such as tests for air content, sulfate resistance, shrinkage measurement, ultrasonic transit time, elastic modulus, and abrasion resistance.
- (4)
- The influence of mixture materials on the mechanical characteristics of geopolymer mortar could be examined for long-term curing periods.
- (5)
- One of the major challenges in geopolymer production, identified in this study, is the short initial setting time. Since the initial setting times obtained in the study were very short, it is possible to extend the setting times by using different additive materials or chemical admixtures.
- (6)
- Considering that Si-O-Si bonds are strong in geopolymer formation, materials with a high SiO2 ratio, such as metakaolin, silica fume, or fly ash class-F, could be used to obtain geopolymers with superior mechanical properties.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davidovits, J. False Values on CO2 Emission for Geopolymer Cement/Concrete Published in Scientific Papers; Technical Paper #24; Geopolymer Institute: Saint-Quentin, France, 2015; Volume 24, pp. 1–9. [Google Scholar]
- Singh, G.B.; Subramaniam, K.V. Production and characterization of low-energy Portland composite cement from post-industrial waste. J. Clean. Prod. 2019, 239, 118024. [Google Scholar] [CrossRef]
- Wang, J.; Dai, Y.; Gao, L. Exergy analyses and parametric optimizations for different cogeneration power plants in the cement industry. Appl. Energy 2009, 86, 941–948. [Google Scholar] [CrossRef]
- Zhang, W.; Maleki, A.; Khajeh, M.G.; Zhang, Y.; Mortazavi, S.M.; Vasel-Be-Hagh, A. A novel framework for integrated energy optimization of a cement plant: An industrial case study. Sustain. Energy Technol. Assess. 2019, 35, 245–256. [Google Scholar] [CrossRef]
- Demir, İ. F sınıfı uçucu kül ve yüksek fırın cürufu ikamesinin çimento harç özelliklerine etkisi. Int. J. Eng. Res. Dev. 2022, 14, 531–543. [Google Scholar]
- Qaidi, S.M.; Atrushi, D.S.; Mohammed, A.S.; Ahmed, H.U.; Faraj, R.H.; Emad, W.; Tayeh, B.A.; Najm, H.M. Ultra-high-performance geopolymer concrete: A review. Constr. Build. Mater. 2022, 346, 128495. [Google Scholar] [CrossRef]
- Amran, M.; Debbarma, S.; Ozbakkaloglu, T. Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties. Constr. Build. Mater. 2021, 270, 121857. [Google Scholar] [CrossRef]
- Abdulrahman, H.; Muhamad, R.; Visintin, P.; Shukri, A.A. Mechanical properties and bond stress-slip behaviour of fly ash geopolymer concrete. Constr. Build. Mater. 2022, 327, 126909. [Google Scholar] [CrossRef]
- Chokkalingam, P.; El-Hassan, H.; El-Dieb, A.; El-Mir, A. Development and characterization of ceramic waste powder-slag blended geopolymer concrete designed using Taguchi method. Constr. Build. Mater. 2022, 349, 128744. [Google Scholar] [CrossRef]
- Amin, M.; Elsakhawy, Y.; Abu el-hassan, K.; Abdelsalam, B.A. Behavior evaluation of sustainable high strength geopolymer concrete based on fly ash, metakaolin, and slag. Case Stud. Constr. Mater. 2022, 16, e00976. [Google Scholar] [CrossRef]
- Mustakim, S.M.; Das, S.K.; Mishra, J.; Aftab, A.; Alomayri, T.S.; Assaedi, H.S.; Kaze, C.R. Improvement in fresh, mechanical and microstructural properties of fly ash-blast furnace slag based geopolymer concrete by addition of nano and micro silica. Silicon 2021, 13, 2415–2428. [Google Scholar] [CrossRef]
- Zuaiter, M.; El-Hassan, H.; El-Maaddawy, T.; El-Ariss, B. Properties of slag-fly ash blended geopolymer concrete reinforced with hybrid glass fibers. Buildings 2022, 12, 1114. [Google Scholar] [CrossRef]
- ASTM C618; Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Concrete. Annual Book of ASTM Standards, ASTM: West Conshohocken, PA, USA, 1998.
- Boyacı, Ö. Farklı Kaolenlerin Metakaolen ve Spinel Yapılarda Geopolimer Davranışı. Master’s Thesis, Kütahya Dumlupınar University/Institute of Science, Kütahya, Turkey, 2018. [Google Scholar]
- Bingöl, Ş. Alkali ile Aktive Edilmiş Yüksek Fırın Cürufu Geopolimer Harçların Mekanik ve Durabilite Özelliklerinin Araştırılması. Ph.D. Thesis, Erciyes University/Institute of Science, Kayseri, Turkey, 2018. [Google Scholar]
- Zeybek, O. Uçucu kül Esaslı Geopolimer Tuğla Üretimi. Master’s Thesis, Anadolu University/Institute of Science, Eskişehir, Turkey, 2009. [Google Scholar]
- Atis, C.D.; Gorur, E.B.; Karahan, O.; Bilim, C.; Ilkentapar, S.; Luga, E. Very high strength (120 MPa) class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration. Constr. Build. Mater. 2015, 96, 673–678. [Google Scholar] [CrossRef]
- Okoye, F.N.; Durgaprasad, J.; Singh, N.B. Fly ash/Kaolin based geopolymer green concretes and their mechanical properties. Data Brief 2015, 5, 739–744. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Jiang, L.; Xu, J.; Zu, Y. Effect of Na2SiO3 content on passivation and corrosion behavior of steel in a simulated pore solution of Na2SiO3-activated slag. Constr. Build. Mater. 2017, 146, 156–164. [Google Scholar] [CrossRef]
- Chi, H.L.; Louda, P.; Bakalova, T.; Kovačič, V. Preparation and mechanical properties of potassium metakaolin based geopolymer paste. Adv. Eng. Forum 2019, 31, 38–45. [Google Scholar] [CrossRef]
- Davidovits, J. High-Alkali cements for 21st century concretes. Spec. Publ. 1994, 144, 383–398. [Google Scholar]
- Luhar, S.; Nicolaides, D.; Luhar, I. Fire Resistance Behaviour of Geopolymer Concrete: An overview. Buildings 2021, 11, 82. [Google Scholar] [CrossRef]
- Komljenovic, M.; Bascarivic, Z.; Bradic, V. Mechanical and microstructural properties of alkaliactivated fly ash geopolymers. J. Hazard. Mater. 2010, 181, 35–42. [Google Scholar] [CrossRef]
- Greiser, S.; Gluth, G.; Sturm, P.; Jäger, C. 29Si {27Al}, 27Al {29Si} and 27Al{1H} double-resonance NMR spectroscopy study of cementitious sodium aluminosilicate gels (geopolymers) and gel-zeolite composites. RSC Adv. 2018, 70, 40164–40171. [Google Scholar] [CrossRef]
- Tayeh, B.A.; Hakamy, A.; Amin, M.; Zeyad, A.M.; Agwa, I.S. Effect of air agent on mechanical properties and microstructure of lightweight geopolymer concrete under high temperature. Case Stud. Constr. Mater. 2022, 16, e00951. [Google Scholar] [CrossRef]
- Amin, M.; Zeyad, A.M.; Tayeh, B.A.; Agwa, I.S. Effect of high temperatures on mechanical, radiation attenuation and microstructure properties of heavyweight geopolymer concrete. Struct. Eng. Mech. 2021, 80, 181. [Google Scholar]
- Ghafoor, M.T.; Khan, Q.S.; Qazi, A.U.; Sheikh, M.N.; Hadi, M.N.S. Influence of alkaline activators on the mechanical properties of fly ash based geopolymer concrete cured at ambient temperature. Constr. Build. Mater. 2021, 273, 121752. [Google Scholar] [CrossRef]
- Tippayasam, C.; Balyore, P.; Thavorniti, P.; Kamseu, E.; Leonelli, C.; Chindaprasirt, P.; Chaysuwan, D. Potassium alkali concentration and heat treatment affected metakaolin-based geopolymer. Constr. Build. Mater. 2016, 104, 293–297. [Google Scholar] [CrossRef]
- Ankur, G. Investigation of the strength of ground granulated blast furnace slag based geopolymer composite with silica fume. Mater. Today Proc. 2021, 44, 23–28. [Google Scholar]
- Kaya, M.; Uysal, M.; Yılmaz, K.; Atiş, C.D. Behaviour of geopolymer mortars after exposure to elevated temperatures. Mater. Sci. 2018, 24, 428–436. [Google Scholar] [CrossRef]
- Kaya, M.; Uysal, M.; Yilmaz, K.; Karahan, O.; Atiş, C.D. Mechanical properties of class C and F fly ash geopolymer mortars. Gradevinar 2020, 72, 297–309. [Google Scholar]
- İlkentapar, S.; Atiş, C.D.; Karahan, O.; Görür Avşaroğlu, E.B. Influence of duration of heat curing and extra rest period after heat curing on the strength and transport characteristic ofalkali activated class F fly ash geopolymer mortar. Constr. Build. Mater. 2017, 151, 363–369. [Google Scholar] [CrossRef]
- Ozodabas, A.; Yilmaz, K. Improvement of the performance of alkali activated blast furnace slag mortars with very finely ground pumice. Constr. Build. Mater. 2013, 48, 26. [Google Scholar] [CrossRef]
- Atabey, İ.İ. F Sınıfı Uçucu Küllü Geopolimer Harcının Durabilite Özelliklerinin Araştırılması. Ph.D. Thesis, Erciyes University/Institute of Science, Kayseri, Turkey, 2017. [Google Scholar]
- Balcikanli, M.; Turker, H.T.; Ozbay, E.; Karahan, O.; Atis, C.D. Identifying the bond and abrasion behavior of alkali activated concretes by central composite design method. Constr. Build. Mater. 2017, 132, 196–209. [Google Scholar] [CrossRef]
- Kaya, M. Farklı Tür Uçucu Küller Kullanılarak Üretilen Alkali Aktive Edilmiş Harçların Mekanik ve Durabilite Özelliklerinin Incelenmesi. Ph.D. Thesis, Sakarya Universitesi, Sakarya, Turkey, 2016. [Google Scholar]
- Zhang, M.; Zhao, M.; Zhang, G.; Mann, D.; Lumsden, K.; Tao, M. Durability of red mud-fly ash based geopolymer and leaching behavior of heavy metals in sulfuric acid solutions and deionized water. Constr. Build. Mater. 2016, 124, 373–382. [Google Scholar] [CrossRef]
- Jindal, B.B. Investigations on the properties of geopolymer mortar and concrete with mineral admixtures: A review. Constr. Build. Mater. 2019, 227, 116644. [Google Scholar] [CrossRef]
- Aktürk, M. Metakaolin Tabanlı Pişirilmiş Taş Tozu Atığı Ikameli Kolemanit Ve Boraks Penta Hidrat Katkılı Geopolimer Harçların Fiziksel Ve Mekanik Özellikleri. Ph.D. Thesis, Faculty of Engineering and Natural Sciences, Konya Technical University, Konya, Turkey, 2021. [Google Scholar]
- Kotwal, A.R.; Kim, Y.J.; Hu, J.; Sriraman, V. Characterization and early age physical properties of ambient cured geopolymer mortar based on class C fly ash. Int. J. Concr. Struct. Mater. 2015, 9, 35–43. [Google Scholar] [CrossRef]
- Sasui, S.; Kim, G.; Nam, J.; Koyama, T.; Chansomsak, S. Strength and microstructure of class-C fly ash and GGBS blend geopolymer activated in NaOH & NaOH+ Na2SiO3. Materials 2019, 13, 59. [Google Scholar]
- Kumar, S.; Kumar, R.; Mehrotra, S.P. Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer. J. Mater. Sci. 2010, 45, 607–615. [Google Scholar] [CrossRef]
- Kürklü, G. The effect of high temperature on the design of blast furnace slag and coarse fly ash-based geopolymer mortar. Compos. Part B Eng. 2016, 92, 9–18. [Google Scholar] [CrossRef]
- Taher, S.M.; Saadullah, S.T.; Haido, J.H.; Tayeh, B.A. Behavior of geopolymer concrete deep beams containing waste aggregate of glass and limestone as a partial replacement of natural sand. Case Stud. Constr. Mater. 2021, 15, e00744. [Google Scholar] [CrossRef]
- Kubátová, D.; Khongová, I.; Kotlanova, M.K.; Zezulova, A.; Bohac, M. The use of limestone sludge for the geopolymer preparation. In IOP Conference Series: Materials Science and Engineering, Proceedings of the International Conference Building Materials, Products and Technologies (ICBMPT 2021), Telc, Czech Republic, 29September–1st October 2021; IOP Publishing: Bristol, UK, 2021; Volume 1205, p. 012002. [Google Scholar]
- Bayiha, B.N.; Billong, N.; Yamb, E.; Kaze, R.C.; Nzengwa, R. Effect of limestone dosages on some properties of geopolymer from thermally activated halloysite. Constr. Build. Mater. 2019, 217, 28–35. [Google Scholar] [CrossRef]
- Minitab Inc. Minitab Software for Quality Improvement. Available online: www.minitab.com (accessed on 18 May 2023).
- Shi, C.; Roy, D.; Krivenko, P. Alkali-Activated Cements and Concretes; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Taji, I.; Ghorbani, S.; de Brito, J.; Tam, V.W.; Sharifi, S.; Davoodi, A.; Tavakkolizadeh, M. Application of statistical analysis to evaluate the corrosion resistance of steel rebars embedded in concrete with marble and granite waste dust. J. Clean. Prod. 2019, 210, 837–846. [Google Scholar] [CrossRef]
- Tahwia, A.M.; Hamido, M.A.; Elemam, W.E. Using mixture design method for developing and optimizing eco-friendly ultra-high performance concrete characteristics. Case Stud. Constr. Mater. 2023, 18, e01807. [Google Scholar] [CrossRef]
- Altawil, H.A.H. Geopolimer Kazıkların Üretimi ve Performansını Etkileyen Faktörlerin Deneysel Olarak Araştırılması. Ph.D. Thesis, Faculty of Engineering and Natural Sciences, Konya Technical University, Konya, Turkey, 2022. [Google Scholar]
- ASTM C 403/C 403M; Test Method for Time of Setting of Concrete Mixtures by Penetration Resistance (C 403/C 403M). Annual Book of ASTM Standards, ASTM International: West Conshohocken, PA, USA, 2003.
- ASTM, C230/C230M-14; Standard Specification for Flow Table for Use in Tests of Hydraulic Cement. ASTM International: West Conshohocken, PA, USA, 2014.
- ASTM C39–05; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. Annual book of ASTM Standards: West Conshohocken, PA, USA, 2005.
- ASTM C293; Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Center Point Loading). Annual Book of ASTM Standard: West Conshohocken, PA, USA, 1979.
- ACI Committee 544. Report on Fiber Reinforced Concrete (ACI 544.1R-96) (Reapproved 2009); American Concrete Institute: Farmington Hills, MI, USA, 1996; p. 66. [Google Scholar]
- ASTM C642–13; Standard Test Method for Density, Absorption, and Voids in Hardened Concretes. ASTM International: West Conshohocken, PA, USA, 2013.
- Yildiz, S. Endüstriyel Yan Ürünlerle Üretilmiş Geopolimer Betonların Mekanik Ve Durabilite Özelliklerinin Araştırılması. Ph.D. Thesis, Kocaeli University, İzmit, Turkey, 2023. [Google Scholar]
- Qiu, J.; Zhao, Y.; Xing, J.; Sun, X. Fly ash/blast furnace slag-based geopolymer as a potential binder for mine backfilling: Effect of binder type and activator concentration. Adv. Mater. Sci. Eng. 2019, 2019, 2028109. [Google Scholar] [CrossRef]
- Bernal, S.A.; San Nicolas, R.; Van Deventer, J.S.; Provis, J.L. Alkali-activated slag cements produced with a blended sodium carbonate/sodium silicate activator. Adv. Cem. Res. 2016, 28, 262–273. [Google Scholar] [CrossRef]
- Nath, P.; Sarker, P.K. Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr. Build. Mater. 2014, 66, 163–171. [Google Scholar] [CrossRef]
- Li, Z.; Li, S. Carbonation Resistance of Fly Ash and Blast Furnace Slag Based Geopolymer Concrete. Constr. Build. Mater. 2018, 163, 668–680. [Google Scholar] [CrossRef]
- Nuaklong, P.; Sata, V.; Chindaprasirt, P. Influence of Recycled Aggregate on Fly Ash Geopolymer Concrete Properties. J. Clean. Prod. 2016, 112, 2300–2307. [Google Scholar] [CrossRef]
- Malkawi, A.B.; Nuruddin, M.F.; Fauzi, A.; Almattarneh, H.; Mohammed, B.S. Effects of Alkaline Solution on Properties of The HCFA Geopolymer Mortars. Procedia Eng. 2016, 148, 710–717. [Google Scholar] [CrossRef]
- Nath, P.; Sarker, P.K. Use of OPC to Improve Setting and Early Strength Properties of Low Calcium Fly Ash Geopolymer Concrete Cured at Room Temperature. Cem. Concr. Compos. 2015, 55, 205–214. [Google Scholar] [CrossRef]
- Yuan, B.; Yu, Q.L.; Brouwers, H.J.H. Assessing the chemical involvement of limestone powder in sodium carbonate activated slag. Mater. Struct. 2017, 50, 136. [Google Scholar] [CrossRef]
- Xu, H.; Van Deventer, J.S.J. The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process. 2000, 59, 247–266. [Google Scholar] [CrossRef]
- Komnitsas, K.; Zaharaki, D.; Perdikatsis, V. Geopolymerisation of low calcium ferronickel slags. J. Mater. Sci. 2007, 42, 3073–3082. [Google Scholar] [CrossRef]
- Van Jaarsveld, J.G.S.; van Deventer, J.S.J.; Lukey, G.C. The effect of composition and temperature on the properties of fly ash-and kaolinite-based geopolymers. Chem. Eng. J. 2002, 89, 63–73. [Google Scholar] [CrossRef]
- Liew, Y.M.; Heah, C.Y.; Mohd Mustafa, A.B.; Kamarudin, H. Structure and properties of clay-based geopolymer cements: A review. Prog. Mater. Sci. 2016, 83, 595–629. [Google Scholar] [CrossRef]
- Heah, C.Y.; Kamarudin, H.; Mustafa Al Bakri, A.M.; Bnhussain, M.; Khairul Nizar, I.; Ruzaidi, C.M.; Liew, Y.M. Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers. Constr. Build. Mater. 2012, 35, 912–922. [Google Scholar] [CrossRef]
- Ravikumar, D.; Neithalath, N. Effects of activator characteristics on the reaction product formation in slag binders activated using alkali silicate powder and NaOH. Constr. Build. Mater. 2012, 34, 809–818. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Puertas, F.; Sobrados, I.; Sanz, J. Structure of calcium silicate hydrates formed in alkaline-activated slag: Influence of the type of alkaline activator. J. Am. Ceram. Soc. 2003, 86, 1389–1394. [Google Scholar] [CrossRef]
- Wang, W.C.; Wang, H.Y.; Lo, M.H. The fresh and engineering properties of alkali activated slag as a function of fly ash replacement and alkali concentration. Constr. Build. Mater. 2015, 84, 224–229. [Google Scholar] [CrossRef]
- Puertas, F.; Martínez-Ramírez, S.; Alonso, S.; Vazquez, T. Alkali-activated fly ash/slag cements: Strength behaviour and hydration products. Cem. Concr. Res. 2000, 30, 1625–1632. [Google Scholar] [CrossRef]
- Buchwald, A.; Hilbig, H.; Kaps, C. Alkali-activated metakaolin-slag blends—Performance and structure in dependence of their composition. J. Mater. Sci. 2007, 42, 3024–3032. [Google Scholar] [CrossRef]
- Buchwald, A.; Tatarin, R.; Stephan, D. Reaction progress of alkaline-activated metakaolin-ground granulated blast furnace slag blends. J. Mater. Sci. 2009, 44, 5609–5617. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, Z.; Zhu, H.; Chen, Y. Geopolymerization process of alkali–metakaolinite characterized by isothermal calorimetry. Thermochim. Acta 2009, 493, 49–54. [Google Scholar] [CrossRef]
- Mozgawa, W.; Deja, J. Spectroscopic studies of alkaline activated slag geopolymers. J. Mol. Struct. 2009, 924, 434–441. [Google Scholar] [CrossRef]
- Murali, G.; Santhi, A.S.; Ganesh, G.M. Effect of crimped and hooked end steel fibres on the impact resistance of concrete. J. Appl. Sci. Eng. 2014, 17, 259–266. [Google Scholar]
- Oltulu, M.; Gökhan Altun, M. Betonun darbe dayanımının tespitinde ağırlık düşürme deney yöntemi ve yapılan çalışmalar. Gümüşhane Univ./Fen Bilim. Derg. 2018, 8, 155–163. [Google Scholar]
Oxides (%) | SiO2 | AI2O3 | Fe2O3 | CaO | SiO2/AI2O3 | MgO | K2O | SO3 | MnO | TiO₂ |
---|---|---|---|---|---|---|---|---|---|---|
FA | 28.05 | 13.93 | 6.55 | 45.09 | 2.01 | - | 2.12 | 3.45 | - | 0.78 |
BFS | 35.00 | 16.00 | 1.40 | 37.50 | 2.18 | 5.25 | - | - | 1.75 | - |
LP | 4.08 | 1.62 | 0.58 | 43.00 | 2.51 | 9.34 | 0.19 | - | - | 0.11 |
Mixture No. | Binder | ||
---|---|---|---|
FA (%) | BFS (%) | LP (%) | |
1 | 55.00 | 25.00 | 20.00 |
2 | 45.00 | 35.00 | 20.00 |
3 | 45.00 | 25.00 | 30.00 |
4 | 50.00 | 30.00 | 20.00 |
5 | 50.00 | 25.00 | 25.00 |
6 | 45.00 | 30.00 | 25.00 |
7 | 48.33 | 28.33 | 23.33 |
8 | 51.66 | 26.66 | 21.66 |
9 | 46.66 | 31.66 | 21.66 |
10 | 46.66 | 26.66 | 26.66 |
Specimen | Initial Setting Time (Min) | Final Setting Time (Min) | Flow Table (mm) | Compressive Strength (MPa) | Flexural Strengths (MPa) | Impact Resistance (kNmm) | Water Absorption (%) | Dry Unit Weight (g/cm3) |
---|---|---|---|---|---|---|---|---|
1 | 15.00 | 30.00 | 220.00 | 7.17 | 1.98 | 10.02 | 10.17 | 2.06 |
2 | 12.00 | 19.00 | 185.00 | 14.61 | 2.82 | 30.06 | 9.02 | 2.10 |
3 | 15.00 | 20.00 | 193.00 | 9.57 | 2.22 | 20.04 | 8.78 | 2.08 |
4 | 14.00 | 18.00 | 185.00 | 12.54 | 2.02 | 16.63 | 9.27 | 2.07 |
5 | 15.00 | 19.00 | 180.00 | 10.10 | 1.63 | 16.63 | 9.49 | 2.06 |
6 | 15.00 | 19.00 | 195.00 | 12.02 | 1.69 | 16.63 | 8.64 | 2.08 |
7 | 13.00 | 18.00 | 210.00 | 14.95 | 2.55 | 30.06 | 8.58 | 2.09 |
8 | 14.00 | 20.00 | 200.00 | 13.69 | 2.90 | 33.36 | 8.87 | 2.04 |
9 | 15.00 | 20.00 | 220.00 | 16.16 | 2.88 | 33.36 | 8.31 | 2.11 |
10 | 15.30 | 22.30 | 235.00 | 14.96 | 2.52 | 16.63 | 8.23 | 2.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aslan, S.; Erkan, İ.H. The Effects of Fly Ash, Blast Furnace Slag, and Limestone Powder on the Physical and Mechanical Properties of Geopolymer Mortar. Appl. Sci. 2024, 14, 553. https://doi.org/10.3390/app14020553
Aslan S, Erkan İH. The Effects of Fly Ash, Blast Furnace Slag, and Limestone Powder on the Physical and Mechanical Properties of Geopolymer Mortar. Applied Sciences. 2024; 14(2):553. https://doi.org/10.3390/app14020553
Chicago/Turabian StyleAslan, Salih, and İbrahim Hakkı Erkan. 2024. "The Effects of Fly Ash, Blast Furnace Slag, and Limestone Powder on the Physical and Mechanical Properties of Geopolymer Mortar" Applied Sciences 14, no. 2: 553. https://doi.org/10.3390/app14020553
APA StyleAslan, S., & Erkan, İ. H. (2024). The Effects of Fly Ash, Blast Furnace Slag, and Limestone Powder on the Physical and Mechanical Properties of Geopolymer Mortar. Applied Sciences, 14(2), 553. https://doi.org/10.3390/app14020553