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Abstract: This study investigates the alterations in the ratios of components such as class C fly
ash (FA), blast furnace slag (BFS), and waste stone powder (WSP) types of limestone powder (LP)
used in the production of geopolymer concrete. These components are meticulously examined
concerning the physical and mechanical attributes of geopolymer concrete. Using the mixture-
design method, 10 different mixing ratios were determined using FA, BFS, and LP, and experimental
research on the mechanical attributes and workability of geopolymer mortar is presented. A series
of experimental tests, including tests for compressive strength, impact strength, setting time, flow
table, flexural strength, and water absorption, were carried out on the geopolymer mortars that were
made using FA, BFS, and LP, to investigate and enhance their overall performance. The experimental
study aimed to ascertain the extent to which variations in the materials used in the formation of
geopolymer mortar affected its mechanical and physical properties. To achieve this objective, certain
parameters for geopolymer mortar formulation were fixed, according to the literature (molarity:
10; aggregate/binder ratio: 2.5; plasticizer ratio: 2%; sodium silicate (SS)/sodium hydroxide (SH):
1.5; additional water content: 14.5%; alkali activators/binder: 0.5). Subsequently, mortars were
produced according to the 10 different mixing ratios determined by the mixture-design method,
and the experiments were completed. The samples of the 10 different mixes were subjected to air
curing at an ambient temperature (23 ◦C ± 2 ◦C) for 28 days. Following the curing period, the
tests revealed that mix No. 9 exhibited the best compressive, flexural, and impact strengths, while
mix No. 10 demonstrated superior workability of geopolymer mortar. It was shown that impact,
compressive, and flexural strength values decreased as the ratios of FA and LP increased. In contrast,
the increases in the ratios of FA and LP positively influenced the workability of geopolymer mortar.

Keywords: blast furnace slag; compressive strength; fly ash; geopolymer; impact strength;
limestone powder

1. Introduction

Geopolymer concrete, developed by Davidovits, offers a viable substitute for tradi-
tional concrete [1]. Geopolymer concrete (GPC) is produced from waste materials contain-
ing aluminosilicates, activated by alkali activators. Researchers have been paying attention
to geopolymer materials recently because of their superior durability, high mechanical
and physical qualities, and low carbon dioxide (CO2) emissions. Excessive use of energy
and high release of CO2 happen when making cement. Accordingly, research efforts have
shifted toward alternative binding materials to mitigate environmental impact. Studies
indicate that energy costs in cement production account for approximately 20% to 40% of
overall costs [2–4]. Research studies have demonstrated that producing one ton of cement
emits roughly one ton of CO2. Annually, global CO2 emissions from cement plants alone
contribute an estimated 5% to 8% to overall CO2 emissions [5].
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In recent years, there has been a growing emphasis on recycling industrial waste
materials such as fly ash, blast furnace slag, and waste stone powder (WSP). These materials
can be activated with various alkalis, resulting in the production of binding materials used
in geopolymer concrete [6–12].

According to American Material Test Standard (ASTM) C618-19, fly ashes obtained
from bituminous coal, with a content of SiO2 + Al2O3 + Fe2O3 exceeding 50%, are classified
as class C. Furthermore, in the class C fly ash classification, it has been indicated that the
calcium oxide (CaO) content is above 10%. The fly ash chosen in this study was class C fly
ash [13].

Polymerization is a heterogeneous chemical reaction. The exposure of aluminosilicate
hydrates to heat causes the dissociation of OH ions, forming water, and initiates the
formation of Si-O-Al bonds [14]. This reaction, occurring between solid aluminosilicate
oxides and alkali metal silicate solutions under highly alkaline conditions and moderate
temperatures, results in amorphous semi-crystalline polymeric structures containing Si-O-
Al and Si-O-Si bonds [15].

Various geopolymers have been defined in the literature based on the Si/Al ratio.
Some of these include water glass-based geopolymer, polysiloxonate (Si:Al = 1:0), kaolin
hydroxysodalite-based geopolymer, polysialate (Si:Al = 1:1), metakaolinite-based geopoly-
mer, poly (sialate-siloxo) (Si:Al = 2:1), calcium-based geopolymer, (Ca, K, Na)-sialate,
(Si:Al = 1, 2, 3), rock-based geopolymer, poly (sialate-multisiloxo) (1 < Si:Al ≤ 5), and fly
ash-based geopolymers [16].

Potassium hydroxide (KOH), potassium silicate (K2SiO3), sodium hydroxide (NaOH), and
sodium silicate (Na2SiO3) are utilized as alkali activators in the activation processes [17–20].
In geopolymers produced through alkali activation, the C-S-H gel observed in traditional
Portland cement is replaced by N-A-S-H or C-A-S-H gel [21,22]. The influence of this
gel is crucial in the strength mechanism of geopolymers. Additionally, the Si/Al ratios
in the structure of binders used in the mixture also impact the bonding structure [23,24].
Generally, heat curing is required for geopolymers to gain strength [25–27]. While 60–80 ◦C
is sufficient for BFS and metakaolin-based geopolymers [28,29], FA-based geopolymers
require a temperature range of 80–110 ◦C [17,30]. Factors such as curing temperature,
curing duration, binder quality depending on coal combustion, binder content, aggregate
type, water amount, activator ratio, activator type, and curing conditions are important in
the strength mechanism [17,31–33]. Geopolymer concretes exhibit early and high strength,
high-temperature resistance, freeze–thaw resistance, resistance to wetting-drying cycles,
and abrasion resistance compared to traditional concretes. They also demonstrate lower
drying shrinkage [34,35]. However, some studies indicated lower resistance to acids and
sulfates than traditional concretes [36]. Conversely, resistance to acids and heavy metals
was reported in certain studies [37,38]. According to the literature, a high CaO content in
binders is necessary to perform curing at room conditions. Therefore, FA, BFS, and LP were
used in this study. Furthermore, LP was employed to enhance the workability and early
setting time of geopolymers [39].

In a study of the physical properties of geopolymer mortar using C-class fly ash,
Kotwal et al. reported in 2015 that the density increases and the flow and compressive
strength decrease when the percentage of FA increases [40]. Kaya et al., in their 2020 study,
found that using FA resulted in an improved compressive strength [31]. In their 2019 study,
Sasui et al. further revealed that an increase in FA content led to a decrease in setting
time [41]. Moreover, in 2010, Kumar et al. investigated the effect of BFS on fly ash-based
geopolymer characteristics and proved that an increase in BFS percentage led to an increase
in compressive strength and a decrease in setting time [42]. Ozodabas et al. reported in 2013
that compressive and flexural strength were decreased when the BFS content increased [33].
In 2016, Kürüklü deduced that by increasing BFS, water absorption decreased [43]. The
2021 study of Taher et al. on the effect of LP in geopolymer established that an increase in
the amount of LP was accompanied by a decrease in dry unit weight, compressive strength,
and flexure strength [44]. In 2017, Bayiha et al. proved that the use of LP in high proportions
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leads to a decrease in compressive strength, flexure strength, and water absorption and
an increase in setting time [45]. In 2021, Kubatova et al. deduced that the setting time
increased at the same time the compressive strength and flexure strength decreased when
the percentage of LP increased [46].

The meticulous choice of materials holds utmost significance in geopolymer pro-
duction, exerting a profound impact on the ensuing material characteristics. Through
a thorough investigation, the authors identified a conspicuous gap in the existing literature
concerning the simultaneous incorporation of FA, BFS, and LP materials in the production
of geopolymers. For instance, extant research has explored the synergistic utilization of
FA and BFS in combination [10–12], the exclusive use of FA [16,17,23,27], the exclusive
utilization of BFS [15–33], and the exclusive use of LP [39,45,46]. There remains a need
for exploration into the combined incorporation of all three materials. This study endeav-
ors to explore the impact and degree of effectiveness on geopolymers’ properties when
these waste materials are used collectively. Simultaneously, the objective is to fabricate
a geopolymer characterized by both heightened performance and good workability.

In this study, aimed at promoting wider utilization of geopolymer concrete and
increasing sustainability interest in the construction sector, mortars produced using the
mixture-design [47] method underwent various physical tests, such as tests for flow table,
unit weight, water-absorption rate, and setting time. Additionally, flexural, impact and
compressive strength tests were conducted. The effects of the utilized waste materials
on geopolymer mortar were examined. Simultaneously, the mixtures were optimized,
determining the optimal mixing ratio concerning their physical and mechanical properties.

2. Materials and Experimental Procedure
2.1. Materials
2.1.1. Fly Ash (FA)

Fly ash is a significant byproduct transported through flue gases resulting from the
combustion of pulverized coal in thermal power plants, collected in cyclones or electrostatic
filters. The molten material formed due to the high-temperature combustion of coal cools
down and transforms, through gas flow, into partially or completely spherical ash particles.
These ash particles are very fine (0.5–150 microns) and are referred to as fly ash, due to their
being carried by flue gases. The major components found in fly ash include silicon dioxide
(SiO2), aluminum oxide (Al2O3), iron (III) oxide (Fe2O3), and CaO, and their quantities vary
depending on the type of fly ash. The fly ash used in this study is class C fly ash, containing
high calcium oxide according to American Material Test Standard (ASTM) C618 [13]. The
class C fly ash used in this investigation comes from the Soma Thermal Power Plant in
Manisa, Turkey, as shown in Figure 1. In terms of grain size, 11.7% of FA passes through
a 90 µm sieve, while 26.6% passes through a 45 µm sieve; the density of FA used in this
study was 2.40 g/cm3. Its chemical and physical properties are provided in Table 1.
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Table 1. The nominal chemical composition of BFS, FA, and LP.

Oxides
(%) SiO2 AI2O3 Fe2O3 CaO SiO2/AI2O3 MgO K2O SO3 MnO TiO2

FA 28.05 13.93 6.55 45.09 2.01 - 2.12 3.45 - 0.78
BFS 35.00 16.00 1.40 37.50 2.18 5.25 - - 1.75 -
LP 4.08 1.62 0.58 43.00 2.51 9.34 0.19 - - 0.11

2.1.2. Blast Furnace Slag (BFS)

Slags are a waste-material group obtained from various metallurgical facilities. Their
chemical compositions and properties vary significantly, depending on the main product
type produced by the industrial establishments and the production method used. Slags
offer many possibilities for use in the cement and concrete sectors. Slags obtained through
conventional steel-production techniques appear as masses with a crystalline structure.
Such slags are either discarded without use or employed as road materials or concrete
aggregates. Conversely, in facilities employing modern technology for steel production,
slags with a glassy structure and some hydraulic properties are obtained. It is possible to
utilize these in cementitious systems. Among all types of slags, BFS is the most important
and widely used. The BFS used in this study was sourced from the Iskenderun plant of
Adana Cement Inc. in Turkey (Figure 1). In terms of grain size, only 0.3% of BFS passes
through a 90 µm sieve, while 3.9% passes through a 45 µm sieve; the density of BFS is
2.85 g/cm3. The chemical and physical properties of BFS are presented in Table 1.

2.1.3. Limestone Powder (LP)

In asphalt factories, aggregates of specific gradations are introduced into high-temperature
furnaces (at 150 ◦C) for a designated duration. Subsequently, these aggregates undergo
heating, and the dust particles that form on their surfaces are vacuumed, thereby acquiring
the quality of waste material, which is then stored. The resulting LP, formed through the
natural process of subjecting these aggregates to heat, attains high pozzolanic activity (at
75%) without the need for additional energy input. Consequently, the acquisition of waste
material with high pozzolanic activity, achieved without the requirement of extra energy,
holds significant importance in terms of both environmental and energy considerations.

The LP utilized in this study was sourced from the asphalt plant of Konya Meram
Municipality in Turkey (Figure 1). In terms of grain size, only 0.7% of LP passes through
a 90 µm sieve, while 4.5% passes through a 45 µm sieve. Its density is 2.70 g/cm3. The
chemical characteristics pertinent to LP are provided in Table 1.

Figure 1 illustrates the waste-binding materials employed in this investigation.

2.1.4. Alkali Activators

To start the polymerization process, a chemical activator is needed. Geopolymers are
often aluminosilicate binding materials that are activated by silicates or alkaline hydroxides
in settings with high pH [48].

1. The polymerization procedure in this research used sodium hydroxide (NaOH) and
sodium silicate (Na2SiO3) solutions as alkali activators. Local sources were contacted
in order to obtain these substances. Purified water was used to dissolve sodium
hydroxide (NaOH) until the molarity reached 10.

a. Sodium Hydroxide (NaOH)

2. A part of the heat is usually lost as the NaOH solution is being prepared, and another
part is used up when the solution evaporates. Since NaOH is the most accessible
and inexpensive alkali hydroxide, it is the preferred option for use as a hydroxide
activator in geopolymer synthesis.

b. Sodium Silicate (Na2SiO2)
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Among the alkalis utilized in geopolymer formation, the density of Na2SiO3 ranges
from 1410 to 1435 g/cm3. The Na2SiO3 solution, one of the alkali activators employed in
this study, is an alkali with a solid content of 40%, containing Na2O and SiO2. The alkali
solutions, formed by mixing Na2SiO3 and NaOH solutions, were prepared several hours in
advance before being used in the study.

2.1.5. Aggregate

In the preparation of geopolymer mortar, quartz sand was used as aggregate. The
sand’s specific gravity was 2.706, the largest particle diameter was 4.75 mm, and the
water-absorption value was 2.07%.

2.2. Procedures
Finding Mixing Ratios

Constrained mixture design allows users to first analyze the effects of the factors on
each material feature by carrying out a manageable number of trials [47,49,50].

In this research, three different waste materials—FA, BFS, and LP—were used to
produce a geopolymer mortar. A total of ten mixes were designed using the mixture
method in the Minitab statistical software program version 19.1. The ranges of binder
ratios in Table 2 were chosen after extensive research of the literature on the potential effect
of the materials used in this study. According to Altawil in 2022, with a decrease in the
percentage of CaO, the compressive strength of the geopolymer decreases [51]; accordingly,
in this study, the CaO ratio was maintained at more than 40%. According to Aktürk, LP
provides great positive results in the workability and setting time of geopolymers, but
a large increase in LP negatively affects the compressive strength [39]; accordingly, a CaO
ratio between 20% and 30% was used. In this case, the Si:Al ratio was maintained at
more than 2, thus producing a calcium-based geopolymer. These percentages can be used
to determine nonlinear associations between factors and characteristics examined in the
mixture-design method. Table 2 illustrates the mixing ratios and their control levels, In
Figure 2 The blue dots represent the ten selected mixtures representing the mixture binder
ratios as defined for this experiment.

Table 2. Binder ratios (%) from mixture-design method.

Mixture No.
Binder

FA (%) BFS (%) LP (%)

1 55.00 25.00 20.00
2 45.00 35.00 20.00
3 45.00 25.00 30.00
4 50.00 30.00 20.00
5 50.00 25.00 25.00
6 45.00 30.00 25.00
7 48.33 28.33 23.33
8 51.66 26.66 21.66
9 46.66 31.66 21.66
10 46.66 26.66 26.66

2.3. Geopolymer Production

Certain parameters for all prepared mixtures were chosen and maintained, following
the literature. These parameters included an aggregate/binder ratio of 2.5, an SS/SH
ratio of 1.5, a molarity of 10, a liquid/binder ratio of 0.5, superplasticizer addition at
2% of the total binder, and additional water content at 14.5% of the total binder. The
geopolymer mortar specimens produced within the study were consistently cured under
similar conditions, maintaining a constant ambient temperature of 23 ◦C ± 2 ◦C throughout
the entire curing period.



Appl. Sci. 2024, 14, 553 6 of 18Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 18 
 

 
Figure 2. Matrix of simplex design plots. 

2.3. Geopolymer Production 
Certain parameters for all prepared mixtures were chosen and maintained, following 

the literature. These parameters included an aggregate/binder ratio of 2.5, an SS/SH ratio 
of 1.5, a molarity of 10, a liquid/binder ratio of 0.5, superplasticizer addition at 2% of the 
total binder, and additional water content at 14.5% of the total binder. The geopolymer 
mortar specimens produced within the study were consistently cured under similar con-
ditions, maintaining a constant ambient temperature of 23 °C ± 2 °C throughout the entire 
curing period. 

2.4. Preparation, Casting, and Curing of Test Specimens 
From each prepared mixture, three cubes measuring 50 × 50 × 50 mm, six beams 

measuring 80 × 100 × 400 mm, and three cylindrical specimens with dimensions Ø100/50 
mm were prepared. The prepared specimens were cured at room temperature (23 °C ± 2 
°C) for 28 days. On the 28th day, the experiments described above were conducted on the 
specimens (Figure 3). 

  
(a) Geopolymer beams specimens (b) Geopolymer cubes specimens 

Figure 3. Specimens prepared from geopolymer mortar. Dimensions: 80 × 100 × 400 mm (beams) 
and 50 × 50 × 50 mm (cubes). 

2.5. Property of Tests 
The initial and final setting times of geopolymer mortar were measured according to 

ASTM C 403/C 403 M [52]; a flow table was measured in accordance with ASTM C230 [53]; 
a compressive strength test was carried out according to ASTM C39-05 [54]; and flexural 
strengths were obtained according to ASTM C293 [55]. İmpact was measured according 
to ACI 544 [56] and water absorption was evaluated according to ASTM C642 [57]. Dry 
unit weights and water absorption of the 28 day specimens were determined using Archi-
medes’s principle. This method involves weight measurements of saturated specimens in 
air (at 70% humidity) and in water (at 23 ± 2 °C) for 2 days, along with the determination 
of their dry weights achieved through oven drying at 100 °C for 3 days. 

Figure 2. Matrix of simplex design plots.

2.4. Preparation, Casting, and Curing of Test Specimens

From each prepared mixture, three cubes measuring 50 × 50 × 50 mm, six beams mea-
suring 80 × 100 × 400 mm, and three cylindrical specimens with dimensions Ø100/50 mm
were prepared. The prepared specimens were cured at room temperature (23 ◦C ± 2 ◦C)
for 28 days. On the 28th day, the experiments described above were conducted on the
specimens (Figure 3).
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2.5. Property of Tests

The initial and final setting times of geopolymer mortar were measured according to
ASTM C 403/C 403 M [52]; a flow table was measured in accordance with ASTM C230 [53];
a compressive strength test was carried out according to ASTM C39-05 [54]; and flexural
strengths were obtained according to ASTM C293 [55]. İmpact was measured according to
ACI 544 [56] and water absorption was evaluated according to ASTM C642 [57]. Dry unit
weights and water absorption of the 28 day specimens were determined using Archimedes’s
principle. This method involves weight measurements of saturated specimens in air (at
70% humidity) and in water (at 23 ± 2 ◦C) for 2 days, along with the determination of their
dry weights achieved through oven drying at 100 ◦C for 3 days.

3. Results
3.1. Initial and Final Setting Time of Fresh Mortar

The results of the initial and final times of the geopolymer mortar samples produced in
the study are presented in Figure 4 and Table 3. In the experiment conducted to determine
the initiation and termination times, it was observed that the initiation times ranged from
12 min to 15.3 min and the termination times ranged from 18 min to 30 min. The mixture
denoted as mix No. 2 exhibited the earliest initiation time, whereas mix No. 1 exhibited the
longest termination times. With an increase in the quantity of FA, the initiation time of the
geopolymer mortar decreased. Consequently, there remained a considerably limited time
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for the workability of the geopolymer mortar—an undesirable circumstance. It was found
that the inclusion of LP may have yielded favorable results in improving the workability and
initiation time of the geopolymer mortar. The experimental results indicated a reduction in
setting time and workability as the proportions of FA and BFS increased, as illustrated in
Figure 5, which depicts the relationship between the mixing ratio of the materials and the
setting time.
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Table 3. Experimental test results.

Specimen
Initial
Setting

Time (Min)

Final
Setting

Time (Min)

Flow Table
(mm)

Compressive
Strength

(MPa)

Flexural
Strengths

(MPa)

Impact
Resistance
(kNmm)

Water
Absorption

(%)

Dry Unit
Weight
(g/cm3)

1 15.00 30.00 220.00 7.17 1.98 10.02 10.17 2.06
2 12.00 19.00 185.00 14.61 2.82 30.06 9.02 2.10
3 15.00 20.00 193.00 9.57 2.22 20.04 8.78 2.08
4 14.00 18.00 185.00 12.54 2.02 16.63 9.27 2.07
5 15.00 19.00 180.00 10.10 1.63 16.63 9.49 2.06
6 15.00 19.00 195.00 12.02 1.69 16.63 8.64 2.08
7 13.00 18.00 210.00 14.95 2.55 30.06 8.58 2.09
8 14.00 20.00 200.00 13.69 2.90 33.36 8.87 2.04
9 15.00 20.00 220.00 16.16 2.88 33.36 8.31 2.11

10 15.30 22.30 235.00 14.96 2.52 16.63 8.23 2.08
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In the polymerization process necessary for creating geopolymers, Si-O-Al and Si-O-Si
bonds are formed. The binding materials, FA, and BFS, containing a substantial amount of
SiO2, and AL2O3, react with the Ca activator solution, resulting in the formation of Si-O-Al
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and Si-O-Si bonds, thereby accelerating the polymerization and reducing the setting time
by creating Ca-Al-Si gels. Consequently, unlike the hydration of conventional mortar, FA
and BFS have been observed to decrease the setting time of geopolymer mortars, a finding
consistent with those of earlier studies [41,58–60]. Conversely, LP has been identified to
increase the setting time of geopolymer mortars, aligning with similar conclusions drawn
in previous research [39,45,46].

3.2. Flow Table

The flow-table test for the geopolymer was conducted following ASTM-C230/C 230M-
14. After placing the geopolymer mortar into the mold, the mold was lifted and the handle
of the testing apparatus was rotated five times in 15 s. The spread of the mixture was then
measured using a meter in two different axes, and the average of the recorded values was
noted [53].

The results were determined for all mixtures, and these values are shown in Figure 6.
The relationship between mixing ratios and flow-table values is depicted in Figure 7.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 18 
 

identified to increase the setting time of geopolymer mortars, aligning with similar con-
clusions drawn in previous research [39,45,46]. 

Table 3. Experimental test results. 

Specimen 
Initial Set-
ting Time 

(Min) 

Final Set-
ting Time 

(Min) 

Flow Table 
(mm) 

Compressive 
Strength 

(MPa) 

Flexural 
Strengths 

(MPa) 

Impact  
Resistance 
(kNmm) 

Water  
Absorption 

(%) 

Dry Unit 
Weight 
(g/cm3) 

1 15.00 30.00 220.00 7.17 1.98 10.02 10.17 2.06 
2 12.00 19.00 185.00 14.61 2.82 30.06 9.02 2.10 
3 15.00 20.00 193.00 9.57 2.22 20.04 8.78 2.08 
4 14.00 18.00 185.00 12.54 2.02 16.63 9.27 2.07 
5 15.00 19.00 180.00 10.10 1.63 16.63 9.49 2.06 
6 15.00 19.00 195.00 12.02 1.69 16.63 8.64 2.08 
7 13.00 18.00 210.00 14.95 2.55 30.06 8.58 2.09 
8 14.00 20.00 200.00 13.69 2.90 33.36 8.87 2.04 
9 15.00 20.00 220.00 16.16 2.88 33.36 8.31 2.11 

10 15.30 22.30 235.00 14.96 2.52 16.63 8.23 2.08 

3.2. Flow Table 
The flow-table test for the geopolymer was conducted following ASTM-C230/C 

230M-14. After placing the geopolymer mortar into the mold, the mold was lifted and the 
handle of the testing apparatus was rotated five times in 15 s. The spread of the mixture 
was then measured using a meter in two different axes, and the average of the recorded 
values was noted [53]. 

The results were determined for all mixtures, and these values are shown in Figure 6. 
The relationship between mixing ratios and flow-table values is depicted in Figure 7. 

 
Figure 6. The flow-table values of the geopolymer mortar. 

  
Figure 7. The relationship between the mixing ratio of the material used and the flow-table values. 

0

10

20

30

1 2 3 4 5 6 7 8 9 10Fl
ow

 T
ab

le
va

lu
es

 
(c

m
)

Specimen

Figure 6. The flow-table values of the geopolymer mortar.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 18 
 

identified to increase the setting time of geopolymer mortars, aligning with similar con-
clusions drawn in previous research [39,45,46]. 

Table 3. Experimental test results. 

Specimen 
Initial Set-
ting Time 

(Min) 

Final Set-
ting Time 

(Min) 

Flow Table 
(mm) 

Compressive 
Strength 

(MPa) 

Flexural 
Strengths 

(MPa) 

Impact  
Resistance 
(kNmm) 

Water  
Absorption 

(%) 

Dry Unit 
Weight 
(g/cm3) 

1 15.00 30.00 220.00 7.17 1.98 10.02 10.17 2.06 
2 12.00 19.00 185.00 14.61 2.82 30.06 9.02 2.10 
3 15.00 20.00 193.00 9.57 2.22 20.04 8.78 2.08 
4 14.00 18.00 185.00 12.54 2.02 16.63 9.27 2.07 
5 15.00 19.00 180.00 10.10 1.63 16.63 9.49 2.06 
6 15.00 19.00 195.00 12.02 1.69 16.63 8.64 2.08 
7 13.00 18.00 210.00 14.95 2.55 30.06 8.58 2.09 
8 14.00 20.00 200.00 13.69 2.90 33.36 8.87 2.04 
9 15.00 20.00 220.00 16.16 2.88 33.36 8.31 2.11 

10 15.30 22.30 235.00 14.96 2.52 16.63 8.23 2.08 

3.2. Flow Table 
The flow-table test for the geopolymer was conducted following ASTM-C230/C 

230M-14. After placing the geopolymer mortar into the mold, the mold was lifted and the 
handle of the testing apparatus was rotated five times in 15 s. The spread of the mixture 
was then measured using a meter in two different axes, and the average of the recorded 
values was noted [53]. 

The results were determined for all mixtures, and these values are shown in Figure 6. 
The relationship between mixing ratios and flow-table values is depicted in Figure 7. 

 
Figure 6. The flow-table values of the geopolymer mortar. 

  
Figure 7. The relationship between the mixing ratio of the material used and the flow-table values. 

0

10

20

30

1 2 3 4 5 6 7 8 9 10Fl
ow

 T
ab

le
va

lu
es

 
(c

m
)

Specimen

Figure 7. The relationship between the mixing ratio of the material used and the flow-table values.

As shown in Table 3, the results for the mixtures range between 18 and 23.5 cm. Mix
No. 10 yielded the best workability, with a value of 23.5 cm.

Polymerization forms Si-O-Al and Si-O-Si bonds. As the FA and BFS quantity in the
binder increases, Ca-Al-Si gels form, due to the concurrent increase in SiO2, AL2O3, and
CaO content. Consequently, more activator solution is required for the polymerization pro-
cess, leading to a decrease in flow values. This has been supported in previous studies—i.e.,
an increase in FA and BFS ratios is associated with a decrease in workability [61–64]. Con-
versely, an increase in the LP ratio is correlated with an increase in the spread workability
value. This result has also been proven in previous studies [65,66].

3.3. Compressive Strength

For the compressive strength test, cubes with dimensions of 50 × 50 × 50 mm were
prepared and the experiments were conducted following ASTM C39-05 standards [54].
The 50 × 50 × 50 mm cube samples were subjected to the compressive strength test after
a curing period of 28 days, and the obtained results are shown in Table 3.
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Upon examining Table 3, it is observed that the compressive strength values ranged
from 7.17 to 16.16 MPa. The mixture providing the highest compressive strength value
was mix No. 9, with a value of 16.16 MPa. The mixture with the lowest compressive
strength was mixed No. 1, with a value of 7.17 MPa. The experiments revealed a decrease
in compressive strength with an increase in the ratios of FA and LP. This is believed to
be attributable to the presence of undesirable residual materials in the obtained fly ash.
Consequently, it was observed that a complete reaction between FA and the activator
solution did not occur.

The low SiO2 and Al2O3 content in LP resulted in the formation of fewer bonds (Si-O-
Al and Si-O-Si) that constitute geopolymers, negatively impacting compressive strength,
as supported by previous studies [44]. Moreover, the lower reactivity of clay and feldspar
minerals in LP, which requires a longer time for the formation of the reaction and gel
structure, may contribute to the lower strength [67–70]. The nearly zero-charge layered
structure of kaolinite on the surface slows down the penetration of alkalis into the structure,
leading to the formation of a weak structure in most clay-based geopolymers. Kaolinite
does not fully participate in the polymer structure [67,70,71]. An increase in the BFS ratio
resulted in an increase in compressive strength, attributed to the high content of SiO2 and
Al2O3 minerals in BFS. This observation aligns with previous studies [42,72–79]. Figure 8
provides a comparison graph of the compressive strengths of the mixtures, and Figure 9
illustrates the relationship between geopolymer mixture ratios and compressive strength.
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3.4. Flexural Strengths

For the flexural test, three beams with dimensions of 80 × 100 × 400 mm were prepared
for each mixture and flexural tests were conducted. After curing for 28 days, the beam
samples were tested; the test results are presented in Table 3.
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Upon examining Table 3, it is observed that the flexural strength values ranged from
1.69 to 2.9 MPa. Similar to the situation with compressive strength, an increase in the
ratios of FA and LP led to a decrease in flexural strength, consistent with the findings of
Taher et al. in 2021 [44]. Additionally, an increase in the BFS ratio resulted in an increase
in flexural strength. The maximum flexural strength was observed in mix No. 8, with
a value of 2.9 MPa, while the mixture with the lowest flexural strength was mix No. 5, with
a value of 1.63 MPa. Figure 10 provides a comparison graph of the flexural strengths of
the mixtures, and Figure 11 illustrates the relationship between the mixture ratios of the
materials used in the geopolymer mortar and flexural strength.
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values.

The impact that the binding materials (FA, BFS, and LP) that were used in the pro-
duction of the geopolymer mortar had on the compressive strength of the mortar was
comparable to the impact they had on the flexural strength of the mortar.

3.5. Impact Resistance

To ascertain the impact resistance of concrete, the weight-dropping method, a simple
and widely preferred technique, was employed. A load of 5.6 kg was released from
a height of 180 mm onto a beam specimen measuring 80 × 100 × 400 mm (Figure 12). The
impact energy applied to the specimens was calculated according to the formulas provided
below [80,81].

The weight employed in the impact experiment was dropped from a height of 180 mm
onto beam elements with dimensions of 80 × 100 × 400 mm, after a curing period of
28 days. The experimental outcomes are presented in Table 3.

Impact resistance = n × U (1)

H = gt2/2 (2)

U = m V2/2 (3)
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V = g t (4)

M = W/g (5)

Let H stand for the height of the fall (mm), V for the hammer’s impact velocity (mm/s),
W for the hammer’s weight (N), m for the hammer’s mass (kg), g for the acceleration caused
by gravity (mm/s2), t for the hammer’s fall time from a height of 180 mm, and n for the
number of blows.
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Figure 12. Impact test setup.

Impact experiments were conducted on specimens obtained from the prepared mixtures
under identical conditions (hammer mass, weight, and height). The specimens were subjected
to an impact energy of 10.02 kN/mm, calculated according to the aforementioned formulas.

Upon examining Figure 13, it is observed that the impact-resistance values of the
mixtures ranged between 10 and 33.3 kNmm. Similar to compressive and flexural strength,
a decrease in impact resistance was noted with the increase in the ratios of FA and LP.
Simultaneously, an increase in the BFS ratio resulted in an augmentation of impact resis-
tance. The maximum impact resistance, 33.3 kNmm, was attained in mix No. 8 and mix
No. 9. The mixture yielding the lowest impact resistance was mix No. 1 with a value of
10 kNmm, as depicted in Figure 14, which illustrates the effects of the constituent materials
on impact resistance.
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The impact resistance of the prepared geopolymer mortar aligned consistently with
the factors influencing flexural and compressive strength.

3.6. Water Absorption

The water-absorption test was conducted on cylindrical specimens with dimensions
of Ø100 × 50 mm, following a curing period of 28 days for geopolymers; the outcomes are
shown in Table 3.

Upon examining Figure 15, it is observed that water-absorption values varied, between
8.23% and 10.17%. An increase in the FA ratio corresponded to an elevation in water-
absorption values. This phenomenon was attributed to the greater surface area of fly ash
compared to those of BFS and LP, necessitating a higher activator solution for exhibiting
pozzolanic properties.
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Figure 15. The water-absorption values of the geopolymer mortar.

Furthermore, the particles of BFS and LP, being smaller than those of fly ash, were
noted to reduce voids in the geopolymer mix, resulting in a decrease in water absorption
with increasing ratios, corroborating findings of previous studies [48]. This study supports
the conclusion that the smaller size of BFS and LP particles, in comparison to fly ash,
contributes to a reduction in water absorption in the geopolymer mix. The maximum water-
absorption rate obtained from the experiments was 10.17% for mix No. 1, as illustrated
in Figure 16, which depicts the impact of the materials constituting the mixture on water-
absorption quantities.
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3.7. Dry Unit Weight

Within the scope of the study, geopolymer cubes of dimensions 50 × 50 × 50 mm
were produced. After a curing period of 28 days, their weights were measured in a dry
state (air-dried) using a precision balance, and their dry unit weights were calculated. The
results are presented in Figure 17.
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Figure 17. The dry unit weights of the geopolymer mortar.

Upon examining Figure 17, it is observed that the dry unit weight values of the mortars
varied between 2.04 and 2.11 g/cm3. The heaviest dry weight obtained from the tests was
2.11 g for every cubic centimeter in mix No. 9, as shown in Figure 18. This tells us how
different materials that make up this mixture affect its density when everything is dry and
not full of water (or wet).
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unit weight was observed. This outcome matched what Kaya et al. found in 2020 [31]. The
size of particles in BFS and LP is less than that in FA. This leads to making geopolymers
with fewer empty spaces inside them. Therefore, it was found that as more BFS and LP
were added, the dry weight increased.

The consolidated results of experiments conducted on prepared geopolymer mortars
are shown in Table 3.

Upon reviewing Table 3, it is evident that sample mix No. 9, which provides the highest
dry unit weight, also yields the highest compressive strength value. This is attributed
to porosity; the sample with the highest porosity exhibited lower dry unit weight and
compressive strength, while simultaneously presenting a higher void ratio and higher
water-absorption values.

4. Conclusions

As a result of this study, which was conducted to investigate the impact of fly ash
(FA), blast furnace slag (BFS), and limestone powder (LP) on the mechanical and physical
characteristics of geopolymer mortar, the following conclusion were reached:

(1) An increase in FA content led to an augmentation in water absorption, accompanied
by a decrease in dry unit weight, compressive strength, flexural resistance, impact
resistance, and initial setting-time values.

(2) The dry unit weight, flexural strength, compressive strength, and resistance to impacts
all rose significantly as the percentage of BFS in the material increased. Both the initial
setup time and the amount of water that was absorbed reduced simultaneously.

(3) The properties of the material—dry unit weight, flexural strength, compressive
strength, impact resistance, and water absorption—decreased as the LP content in-
creased, while the initial setting time increased.

(4) The presence and increased quantity of LP enhanced the workability of geopolymer,
due to the fineness and the spherical shape of LP particles for all prepared mixtures.

(5) The amount of additional water used in the production of geopolymer mortar was
observed to be crucial and influential on its mechanical and physical properties.

(6) Despite the fixed amount of additional water in mortar production, an increase
in water quantity in supplementary studies positively impacted workability but
adversely affected compressive strength and the initial setting time.

(7) In the future, it is recommended that studies should concentrate on the basic science
of geopolymers to discover the process of chemical reactions that occur during the
procedure of setting and hardening.

5. Future Research Needs

Based on the experiences gained from this study in the production of geopolymer mor-
tar using BFS, LP, or FA, the following recommendations will contribute to future research:

(1) As mentioned earlier, FA is classified into F and C classes, according to ASTM stan-
dards. In this study, only C-class FA was utilized. It is recommended that more studies
be conducted making use of F-class FA and applying statistical approaches that are
more thorough, in order to investigate the mechanical and physical characteristics
of geopolymer.

(2) The FA that was used in this experiment was derived from the Soma Thermal Power
Plant, which is situated in the city of Manisa in Turkey. It is recommended that similar
studies be conducted using different ash samples from various thermal power plants.
Because thermal power plants have varying burning potentials, the findings may be
considerably impacted by these differences.

(3) In addition to the experimental studies conducted in this research, a comprehensive
study could be carried out by applying other tests on geopolymer mortar, such as
tests for air content, sulfate resistance, shrinkage measurement, ultrasonic transit time,
elastic modulus, and abrasion resistance.
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(4) The influence of mixture materials on the mechanical characteristics of geopolymer
mortar could be examined for long-term curing periods.

(5) One of the major challenges in geopolymer production, identified in this study, is the
short initial setting time. Since the initial setting times obtained in the study were very
short, it is possible to extend the setting times by using different additive materials or
chemical admixtures.

(6) Considering that Si-O-Si bonds are strong in geopolymer formation, materials with a
high SiO2 ratio, such as metakaolin, silica fume, or fly ash class-F, could be used to
obtain geopolymers with superior mechanical properties.
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Turkey, 2009.

17. Atis, C.D.; Gorur, E.B.; Karahan, O.; Bilim, C.; Ilkentapar, S.; Luga, E. Very high strength (120 MPa) class F fly ash geopolymer
mortar activated at different NaOH amount, heat curing temperature and heat curing duration. Constr. Build. Mater. 2015, 96,
673–678. [CrossRef]

18. Okoye, F.N.; Durgaprasad, J.; Singh, N.B. Fly ash/Kaolin based geopolymer green concretes and their mechanical properties.
Data Brief 2015, 5, 739–744. [CrossRef] [PubMed]

19. Yu, X.; Jiang, L.; Xu, J.; Zu, Y. Effect of Na2SiO3 content on passivation and corrosion behavior of steel in a simulated pore solution
of Na2SiO3-activated slag. Constr. Build. Mater. 2017, 146, 156–164. [CrossRef]
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