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Abstract: Multi-label classification has been extensively researched and utilized for several decades.
However, the performance of these methods is highly susceptible to the presence of noisy data
samples, resulting in a significant decrease in accuracy when noise levels are high. To address this
issue, we propose a robust ranking support vector machine (Rank-SVM) method that incorporates
manifold regularized matrix factorization. Unlike traditional Rank-SVM methods, our approach
integrates feature selection and multi-label learning into a unified framework. Within this framework,
we employ matrix factorization to learn a low-rank robust subspace within the input space, thereby
enhancing the robustness of data representation in high-noise conditions. Additionally, we incorpo-
rate manifold structure regularization into the framework to preserve manifold relationships among
low-rank samples, which further improves the robustness of the low-rank representation. Leveraging
on this robust low-rank representation, we extract a resilient low-rank features and employ them
to construct a more effective classifier. Finally, the proposed framework is extended to derive a
kernelized ranking approach, for the creation of nonlinear multi-label classifiers. To effectively
solve this non-convex kernelized method, we employ the augmented Lagrangian multiplier (ALM)
and alternating direction method of multipliers (ADMM) techniques to obtain the optimal solution.
Experimental evaluations conducted on various datasets demonstrate that our framework achieves
superior classification results and significantly enhances performance in high-noise scenarios.

Keywords: multi-label classification; low rank; ranking support vector machine; manifold regularized
matrix factorization; unified framework

1. Introduction

In numerous real-world applications, instances often pertain to multi-class labels.
For example, in text classification, a document may be assigned labels such as “education”
and “university”. While traditional supervised learning primarily addresses instances
belonging to a single-class label, multi-label learning tackles the scenario where instances
can be associated with multi-class labels. Over time, multi-label learning has been widely
employed in diverse research domains, including text categorization [1–3], automatic
annotation for multimedia content [4–6], and image annotation [7,8].

The class-imbalance issue in multi-label classification can manifest in two distinct
variants [9,10]. Firstly, there is a significant disparity between the number of positive
instances and negative instances for a specific class label. Secondly, in some instances,
the number of relevant labels is typically fewer than the number of irrelevant labels. To
address these issues, the pairwise loss, which optimizes imbalance-specific evaluation
metrics like the area under the ROC curve (AUC) and F measure [11,12], proves more
effective than the pointwise loss. Consequently, the application of ranking support vector
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machine (Rank-SVM) minimizes the pairwise approximate ranking loss, thereby addressing
the second aspect of the class-imbalance issue in multi-label classification. This approach
effectively mitigates the negative impact of class imbalance. However, apart from the
class imbalance problem, there are additional challenges related to noise in multi-label
classification. Data corruption and loss in high-dimensional datasets often lead to noise,
which can significantly degrade the performance of multi-label classifiers. Consequently,
several studies have proposed effective noise reduction methods. For instance, Wu et al. [13]
addressed missing labels in image annotation by improving the consistency between
predicted and provided labels to enhance the model. Similarly, Cevikalp et al. [14] utilized
a ramp loss to mitigate extreme penalties from incorrect-labels and learned a more resilient
loss function. However, majority of multi-label classification methods primarily focus on
noise within the label space, neglecting the presence of noise in the input feature space.

Manifold regularization matrix factorization is a technique employed to address noise
in the input space. Though matrix factorization [15] can effectively solve the problem of
image noise, its extensive focus on the global structure of the data while ignoring the local
structural features between samples negatively affect its robustness when dealing with
complex data. Manifold learning [16] is introduced to adaptively learn local structural
features within samples from low rank representations obtained from matrix factorization,
ultimately obtaining the most robust low rank representation. This robust low order repre-
sentation has better robustness when dealing with complex data. However, the features and
classifiers selected through manifold regularization matrix factorization are independent
of each other, resulting in suboptimal low-rank representation for multi-label classifiers.
Additionally, most of these low-rank methods are linear models, limiting their ability to
capture the intricate nonlinear relationship between input and output.

To address these challenges, we present a novel multi-label classification model that
integrates manifold regularization matrix factorization and a multi-label classifier within
a unified framework. We adopt a joint learning approach to simultaneously learn fea-
ture selection and classifier parameters. Through joint optimization, optimal features are
selected, resulting in a superior joint learning framework that outperforms individual
model predictions. This joint framework effectively determines the optimal low-rank rep-
resentation, leading to improved classification performance in high-noise data scenarios.
Furthermore, the proposed unified framework is transformed via kernel function to in-
corporate a nonlinear multi-label classifier. The objective functions of the linear joint and
standard kernel framework are solved using, the augmented Lagrange multiplier (ALM)
and alternating direction method of multipliers (ADMM) techniques to obtain efficient
values for the variables.

The overall structure of our proposed model is depicted in Figure 1. This research
work makes the following key contributions:

• Introduction of a novel approach that combines feature selection and a multi-label
SVM classifier within a multi-label classification framework. This is achieved through
the utilization of manifold regularized matrix factorization in our proposed method
to identify a robust low-rank subspace within the input space. This results in a more
resilient SVM classifier, particularly in scenarios with high-noise samples.

• Extending the proposed framework via a kernel learning approach to capture the
nonlinear relationship between inputs and outputs. By taking the derivative of the
kernel function, we establish a linear relationship between the kernel derivative and
the kernel function itself. This leads to an improved solution for the nonlinear problem.

• To effectively address our non-convex learning framework, we employ the augmented
Lagrangian multiplier (ALM) and alternating direction method of multipliers (ADMM)
techniques. These optimization methods ensure efficient convergence and provide a
solution to the optimization problem.
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Figure 1. Illustration of the framework for the proposed robust ranking kernel support vector machine
via manifold regularized matrix factorization for multi-label classification.

2. Related Works
2.1. Multi-Label Classification

The current research on machine learning based image classification methods mainly
uses machine learning to obtain further information, such as the specific expression of
visual image features, image functions, as well as semantic relevance, for the conduct of
the research. The purpose of the study is to present a higher level image and adopt a more
distinctive way to express the characteristics of the image. However, in actual images,
different regions contain different functions. Different functions may correspond to different
semantic concepts, or images may have many semantics. This implies that multi-label
classification and image recognition are essentially multi-semantic concept classification.
Therefore, there are two common ways to solve multiple label classification tasks. One is to
divide a multiple classification problem into individual classification problems as in the
case of traditional single label classification. For example, BR [4] transforms multiple label
classification problems into many independent binary classification problems. Calibrate
label sorting (CLR) [17] recasts a multi-label classification task into a label sorting task.
Another widely used multi-label classification algorithm is the improved and mature single
label classification algorithm [18]. For example, Rank-SVM [19] applies the maximum
interval strategy to multi-label classification to minimize sorting loss while maintaining
large intervals and using kernel techniques to handle nonlinear situations. ML-KNN [20]
originates from the lazy learning technology KNN classifier. However, this method does
not consider label correlation in the process of processing multiple semantic tags separately.
In existing research on multi-label image classification, it has been found that focusing on
the correlation between labels can effectively improve the efficiency of multi-label image
classification. Therefore, the ECC combined classifier chain [21] has been improved based
on the BR algorithm. The ECC classifier chain links the classifiers that exist in the BR
algorithm. The prediction results will be added as part of the attribute vector as a sample.
In this way, each binary classifier receives the prediction results of the previous classifier,
making full use of the differences between labels. However, this algorithm also has a
disadvantage: generating many new tags after calculation. If there is too little training data,
allocating sufficient samples for each new tag is impossible, which will likely skew the data.
In addition, label combinations that are not included in the training set can significantly
reduce the efficiency of classification algorithms.

Although Rank-SVM [19] can minimize the ranking loss, its classification performance
is vulnerable to noise, leading to a dramatic decline in its classification performance.
This drawback also occurs in other ranking-based methods, such as BP-MLL [22]. Some
methods have been proposed to ameliorate this problem, such as calibrated Rank-SVM [23]
and Rank-SVMz [24]. However, little work has been conducted to solve this problem by
combining feature selection.
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2.2. Matrix Factorization

In image classification, machine learning methods commonly include sparse coding,
low rank learning, and linear and nonlinear dimensionality reduction techniques. The op-
timization model in these methods can be considered a constrained matrix factorization
problem, aiming to learn the corresponding coefficient matrix or projection matrix through
matrix factorization. Our approach seeks to learn a low-dimensional feature representation
as the input of multi-label learning, effectively overcoming the negative impact of high-
dimensional data and noise on traditional multi-label classification methods. Given a data
matrix X ∈ Rd×n, where d is the feature dimension and n is the number of data samples,
we perform the matrix factorization on X. Formally, we derive that

min
∣∣∣∣∣∣X − VUT

∣∣∣∣∣∣2
F
, s.t. VTV = I, (1)

where V ∈ Rd×r is the basis matrix and U ∈ Rn×r is the coefficient matrix, and it can
be considered as the new representation of X. The constraint VTV = I can eliminate
redundancy and irrelevant information.

There are many image classification algorithms based on matrix factorization. For ex-
ample, in [25], sparse coding was applied to natural image classification, and a spatial
pyramid matching algorithm using sparse representation was proposed. The classification
accuracy on Caltech-101 and Caltech-256 datasets shows that the spatial pyramid matching
model based on sparse coding achieves good results. Ref. [26] expands the sparse repre-
sentation theory and applies it to face recognition. Using training samples as a dictionary,
test samples can be represented as linear combinations of base vectors in the dictionary,
and further characterized by the degree of sparsity of the combination coefficients. That is,
the linear combination coefficients of base vectors consistent with the test sample category
tend to be non-zero, while the coefficients of base vectors belonging to other categories
are zero. This method obtains sparse coefficients by minimizing the ℓ1 norm, and uses
the minimum reconstruction error to classify face data. However, Ref. [26] does not study
dictionaries, and when training and testing samples are simultaneously contaminated with
noise, the implementation effect of this method will deteriorate. Ouyang [27] proposed
an improved ELM-AE architecture that exploited low-rank matrix decomposition to learn
optimal features. In this article, we introduce manifold structure regularization based on
matrix factorization. By introducing manifold learning to maintain the manifold relation-
ship between low order samples, we solve the problem of matrix factorization ignoring
local structural features between samples, allowing us to obtain the most robust low rank
representation. This robust low order representation could be utilized and applied to
ultimately obtain better classifiers.

3. Methodology

This section analyzes matrix factorization and ranking support vector machine collab-
orative learning methods in detail. Firstly, a new multi-label classification framework is
constructed based on the matrix factorization method. Then, we propose the kernelization
of a linear model.

3.1. Preliminary

In the context of a given matrix, denoted as A, its transpose is represented as AT . The
i-th row and j-th column of A are denoted as ai and aj, respectively. The vector ℓ2-norm
of ai is represented as ||ai|| (or ||ai||2). The matrix ℓ1-norm of A is denoted as ||A||1, while
the Frobenius norm is represented as ||A||F (or ||A||). The trace operator for a matrix
is denoted as Tr(·), and the rank of a matrix is represented as Rank(·). The trace norm
(or nuclear norm) of A, denoted as ||A||∗, is calculated as Tr

(√
AT A

)
or as the sum of the

i-th largest singular values of A, represented as ∑i σi(A).
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3.2. Robust Ranking Support Vector Machine

We commence with the fundamental linear Rank-SVM approach [19] method for
multi-label classification. For instance, x ∈ Rm, its real-valued prediction is obtained by
f = xW + b, where b = [b1, b2, . . . , bl ] ∈ Rl is the bias and W =

[
w1, w2, . . . , wl

]
∈ Rm×l is

the parameter matrix. To simplify the formulation, we can absorb bj into wj by appending
1 to each instance x as an additional feature. The objective of Rank-SVM is to minimize the
ranking loss while maximizing the margin. The ranking learning step can be formulated
as follows:

min
U, V, W, b

1
2

l

∑
j=1

∣∣∣∣∣∣wj
∣∣∣∣∣∣2 + C

N

∑
i=1

1∣∣Y+
i

∣∣∣∣Y−
i

∣∣ ∑
p∈Y+

i

∑
q∈Y−

i

ξ i
pq

s.t. < wp − wq, ui >+ bp − bq ≥ 1 − ξ i
pq, (2)

(p, q) ∈ Y+
i × Y−

i ,

ξ i
pq ≥ 0, i = 1, . . . , n.

where Y+
i (or Y−

i ) represents the index set of relevant (or irrelevant) labels associated
with the instance xi. The notation | · | represents the cardinality of a set, and the tradeoff
hyper-parameter C is utilized to control the complexity of the model.

However, the performance of the Rank-SVM method is very sensitive to noise data
samples and may decline sharply when the noise is high. In this paper, the robustness
of feature space is used to solve the impact of noise on classification performance. Given
a data matrix X ∈ Rd×n, where d represents the feature dimension and n denotes the
number of data samples. To fully study the impact of noise on data, this paper introduces
matrix factorization to solve this problem. We decompose the noisy data X into U and V,
where V ∈ Rd×r is the basis matrix and U ∈ Rn×r is the coefficient matrix, and it can be
considered as the new representation of X. Then, training the clean data matrix U into
Rank SVM can make our model more robust and resistant to noise.

In addition, since the features selected from the matrix factorization and the multi-label
classifier are independent, the low-rank representation is not optimal for the multi-label
classification. This paper proposes a new multi-label classification model to improve the
classification performance in high noisy data scenarios, seamlessly integrating the matrix
factorization and multi-label classifier into a unified framework. Specifically, we use joint
learning to combine feature selection and classifier learning, to learn each other’s parame-
ters, and finally select the best features through joint optimization, thus realizing a joint
learning framework. The robust ranking support vector machine via matrix factorization is
as follows:

min
U, V, E, W, S, b

α

2
||E||

2.1
+

1
2∑

i,j

∣∣∣∣ui − uj
∣∣∣∣2

2sij

+ γ||U||∗ + θ||S||∗ +
1
2

l

∑
p=1

||wp||2

+ C
N

∑
i=1

1∣∣Y+
i

∣∣∣∣Y−
i

∣∣ ∑
p∈Y+

i

∑
q∈Y−

i

ξ i
pq (3)

s.t. E = X − VUT , VTV = I,

diag(S) = 0, S ≥ 0, ST1 = 1,

< wp − wq, ui > +bp − bq ≥ 1 − ξ i
pq,

(p, q) ∈ Y+
i × Y−

i , ξ i
pq ≥ 0, i = 1, . . . , n
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where S is the similarity matrix, in general, a smaller distance
∣∣∣∣ui − uj

∣∣∣∣ corresponds to
a larger weight Sij, defined as diag(S) = 0 and S ≥ 0, which implies Sii = 0 and Sij ≥ 0.
We introduced manifold learning into the proposed framework to maintain manifold rela-
tionships between low rank samples to enhance robust low rank representations. With this
robust low rank representation, we can find robust low-order features and apply them to
obtain better classifiers. VTV = I can eliminate redundancy and irrelevant information.

3.3. Kernelization

The model described in Equation (4) is a linear multi-label classifier, limiting its
effectiveness in capturing nonlinear relationships between the input and output. To address
this limitation, we propose the utilization of kernel methods to develop nonlinear multi-
label classifiers. The kernel function is then introduced into our proposed framework via the
dual formulation of the problem in Equation (4) using the Karush–Kuhn–Tucker theorem.
Dual variables are then added to transform the constrained problem into an unconstrained
problem which can be optimized using the Lagrangian function as shown below:

L(U, V, E, S, w, ξ, τ, η) =
α

2
||E||

2.1
+

1
2∑

i,j

∣∣∣∣ui − uj
∣∣∣∣2

2sij

+ γ||U||∗ + θ||S||∗ +
1
2

l

∑
p=1

||wp||2

+ C
N

∑
i=1

1∣∣Y+
i

∣∣∣∣Y−
i

∣∣ ∑
p∈Y+

i

∑
q∈Y−

i

ξ i
pq (4)

+
u
2

∣∣∣∣∣∣∣∣E − X + VUT +
M1

u

∣∣∣∣∣∣∣∣2
F

−
N

∑
i=1

∑
p∈Y+

i

∑
q∈Y−

i

τi
pq

(
< wp − wq, ui > +bp − bq − 1 + ξ i

pq

)

−
N

∑
i=1

∑
p∈Y+

i

∑
q∈Y−

i

ηi
pqξ i

pq

We now seek a saddle point of the Lagrangian, which would be the minimum for the
primal variables {w, b, ξ} and the maximum for the dual variable τ. To find the minimum
over the primal variables we require,

∂bp L = 0 =⇒
N

∑
i=1

∑
j∈Y+

i

∑
q∈Y−

i

ci
jqτi

jq = 0

ci
jq =


0 if j ̸= p and q ̸= p,
+1 if j = p,
−1 if q = p.

(5)

Similarly, for ξ we require

∂ξ i
pq

L = 0 =⇒ C∣∣Y+
i

∣∣∣∣Y−
i

∣∣ = τi
pq + ηi

pq (6)

Similarly, for w we require

∂wp L = 0 =⇒ wp =
N

∑
i=1

 ∑
j∈Y+

i

∑
q∈Y−

i

ci
jq τi

jq

ui (7)
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Let φ(·) be a feature mapping function that maps x from Rd to a Hilbert space H.
Consequently, the optimization problem described in Equation (4) can be reformulated as
follows:

min
U, V, E, W, S, b

max
τi

jq

α

2
||E||

2.1
+

1
2∑

i,j

∣∣∣∣ui − uj
∣∣∣∣2

2sij + γ||U||∗

+ θ||S||∗ −
1
2

l

∑
p=1

N

∑
h,i=1

βh
pβi

p φ(uh)φ(ui)
T

+
N

∑
i=1

∑
p∈Y+

i

∑
q∈Y−

i

τi
pq (8)

s.t. E = X − VUT , VTV = I

diag(S) = 0, S ≥ 0, ST1 = 1

τi
jq ∈ [0, C],

N

∑
i=1

∑
j∈Y+

i

∑
q∈Y−

i

ci
jqτi

jq = 0, f or p = 1, . . . , l

where βi
p = ∑

j∈Y+
i

∑
q∈Y−

i

ci
jqτi

jq and wp =
N
∑

i=1
βi

pui

Define K
(
ui, uj

)
= φ(ui)φ

(
uj
)T to be the kernel matrix (or Gram matrix) in the RKHS.

Consequently, the kernel framework is established as follows

min
U, V, E, W, S, b

max
τi

jq

α

2
||E||

2.1
+

1
2∑

i,j

∣∣∣∣ui − uj
∣∣∣∣2

2sij + γ||U||∗

+ θ||S||∗ −
1
2

l

∑
p=1

N

∑
h,i=1

βh
pβi

pK
(
ui, uj

)
+

N

∑
i=1

∑
p∈Y+

i

∑
q∈Y−

i

τi
pq (9)

s.t. E = X − VUT , VTV = I

diag(S) = 0, S ≥ 0, ST1 = 1

τi
jq ∈ [0, C],

N

∑
i=1

∑
j∈Y+

i

∑
q∈Y−

i

ci
jqτi

jq = 0, for p = 1, . . . , l

3.4. Optimization

Since our model involves the ℓ2.1-norm, the problem’s orthogonal and nonnegative
constraints are still challenging. Therefore, this article proposes a new and effective op-
timization method based on ALM to solve the problem. We aim to introduce auxiliary
variables to separate constraints and keep their equivalence during optimization. Specifi-
cally, we introduce two auxiliary variables H = S and Z = U and transform the objective
function into the following form

L(U, V, E, S, Z, H, w, ξ, τ, η M1, M2, M3)

=
α

2
||E||2.1 +

1
2

tr
(

UT LsU
)
+ γ||Z||∗

+
u
2

∣∣∣∣∣∣∣∣E − X + VUT +
M1

u

∣∣∣∣∣∣∣∣2
F
+

u
2

∣∣∣∣∣∣∣∣Z − U +
M2

u

∣∣∣∣∣∣∣∣2
F

+
u
2

∣∣∣∣∣∣∣∣H − S +
M3

u

∣∣∣∣∣∣∣∣2
F
+ θ||H||∗ (10)
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− 1
2

l

∑
p=1

N

∑
h,i=1

βh
pβi

pK
(
ui, uj

)
+

N

∑
i=1

∑
p∈Y+

i

∑
q∈Y−

i

τi
pq

s.t. VTV = I, diag(S) = 0, S ≥ 0, ST1 = 1

τi
jq ∈ [0, C],

N

∑
i=1

∑
j∈Y+

i

∑
q∈Y−

i

ci
jqτi

jq = 0, for p = 1, . . . , l

where u is the regularization parameter that determines the penalty for infeasibility,
M1 ∈ Rd×n, M2 ∈ Rn×r and M3 ∈ Rn×n are the Lagrangian multipliers that penalize
the gap between the target and the auxiliary variable.

With the transformation, we can adopt alternative optimization to iteratively solve the
problem. Specifically, we optimize the objective function with respect to one variable while
fixing the remaining variables. The iteration steps are detailed as follows.

(1) Update U: By fixing the other variables, the optimization formula for U becomes

min
U

1
2∑

i,j

∣∣∣∣ui − uj
∣∣∣∣2

2Sij +
u
2

∣∣∣∣∣∣∣∣E − X + VUT +
M1

u

∣∣∣∣∣∣∣∣2
F

+
u
2

∣∣∣∣∣∣∣∣Z − U +
M2

u

∣∣∣∣∣∣∣∣2
F
− 1

2

l

∑
p=1

N

∑
h,i=1

βh
pβi

pK
(
ui, uj

) (11)

According to Karush–Kuhn–Tucker (KKT) condition and K(Ui, Uj) = exp(−γ
∣∣∣∣ui − uj

∣∣∣∣2),
it can be verified that the optimal solution should be

ui = sylvester

(
N

∑
j=1

Sij + u + γ
N

∑
j=1

K
(
Ui, Uj

)
Aij, UVTV,

N

∑
j=1

ujSij − U

(
ET

i: − XT
i: +

MT
1i:

U

)
V

+U
(

Zi: +
M2i:

U

)
+ γ

N

∑
j=1

K
(
Ui, Uj

)(
Uj
)

Aij

)
(12)

(2) Update V: By fixing the other variables, the optimization formula for V becomes

min
V

u
2

∣∣∣∣∣∣∣∣E − X + VUT +
M1

u

∣∣∣∣∣∣∣∣2
F

(13)

Considering VTV = I, the above formula can be rewritten as

min
V

∣∣∣∣∣∣∣∣VUT −
(

X − E − M1

U

)∣∣∣∣∣∣∣∣2
F

(14)

This problem is commonly referred to as the orthogonal procrustes problem, for which
the global optimal solution can be obtained through the singular value decomposition of

UT
(

X − E − M1
u

)T
. To be more specific, given

[V1 S1 U1] = SVD

(
UT
(

X − E − M1

U

)T
)

(15)

The following formula can update V

V = U1V1
T (16)
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(3) Update E: By fixing the other variables, the optimization formula for E becomes

min
E

α

2
||E||2.1 +

U
2

∣∣∣∣∣∣∣∣E −
(

X − VUT − M1

U

)∣∣∣∣∣∣∣∣2
F

(17)

Let T =
(

X − VUT − M1
u

)
, τ = α

2¯ , and we further have

min
E

τ||E||2.1 +
1
2
||E − T||2F (18)

To solve the above equation, we introduce the following lemma, also presented in [28],
with detailed proof.

Lemma 1. Given a matrix W = {w1, w2, . . . , wn} ∈ Rm×n and a positive scalar λ, then X∗ is
the optimal solution of

min
E

λ||X||2.1 +
1
2
||X − W||2F (19)

and the column of X∗

X∗
i =

{
∥Wi∥−λ
∥Wi∥

Wi , if λ < ∥Wi∥
0 , otherwise

(20)

According to Lemma 1, the solution of the above problem is

E(:, i) =

{
∥Ti∥−τ
∥Ti∥

Ti , if τ < ∥Ti∥
0 , otherwise

(21)

(4) Update Z: By fixing the other variables, the optimization formula for Z becomes

min
Z

γ||Z||∗ +
u
2

∣∣∣∣∣∣∣∣Z − U +
M2

u

∣∣∣∣∣∣∣∣2
F

(22)

We first introduce the soft thresholding (shrinkage) operator

Sε[q] = max(|q| − ε, 0)sgn(q) (23)

where sgn(q) represents the sign function. By applying the shrinkage operator element-
wise to the singular values of U − M2

u , the optimal update for Z can be expressed as follows:

Z = U1S γ
u
[S1]VT

1 (24)

in which U1, S1 and V1 are the SVD factorization[
U1, S1, VT

1

]
= SVD

(
U − M2

u

)
(25)

(5) Update S: By fixing the other variables, the optimization formula for S can be
derived as

min
S

1
2∑

i,j

∣∣∣∣Ui − Uj
∣∣∣∣2

2Sij +
u
2

∣∣∣∣∣∣∣∣H − S +
M3

u

∣∣∣∣∣∣∣∣2
F

s.t. diag(S) = 0, S ≥ 0, ST1 = 1

(26)

where
∥∥Ui − Uj

∥∥2
2 = Gij, then

min
S

1
2

Tr
(

GTS
)
+

µ

2

∥∥∥∥S −
(

H +
M3

µ

)∥∥∥∥2

F
(27)
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We denote N = H − M3
µ

min
Si

∥Si − (Ni − Gi/2µ)∥2
2

s.t. diag(S) = 0, S ≥ 0, ST1 = 1
(28)

Considering the constraints

min
Si

∑
s
∥Si − (Ni − Gi/2µ)∥2

2 − η
(

1TSi − 1
)
− ζTSi

s.t. diag(S) = 0
(29)

Taking the derivative with respect to Si and setting it to zero

Si − (Ni − Gi/2µ)− η1 − ζ = 0 (30)

The j entry of Si is shown below

Sij −
(

Nij − Gij/2¯
)
− η − ζi = 0 (31)

According to KKT conditions

Sij =
((

Nij − Gij/2µ
)
+ η

)
+ (32)

(6) Update H: By fixing the other variables, the optimization formula for H becomes

min
H

θ||H||∗ +
u
2

∣∣∣∣∣∣∣∣H − S +
M3

u

∣∣∣∣∣∣∣∣2
F

(33)

To begin, we introduce the soft thresholding (shrinkage) operator

Sε[q] = max(|q| − ε, 0)sgn(q) (34)

where sgn(q) represents the sign function. By applying the shrinkage operator to the
singular values of S − M3

u element-wisely, the optimal updation of H is given by

H = U1S θ
u
[S1]VT

1 (35)

in which U1, S1 and V1 are the SVD factorization[
U1, S1, VT

1

]
= SVD

(
S − M3

u

)
(36)

(7) Update τ: By fixing the other variables, the optimization formula for τ becomes

max
τi

jq

−1
2

l

∑
p=1

N

∑
h,i=1

βh
pβi

pK
(
ui, uj

)
+

N

∑
i=1

∑
p∈Y+

i

∑
q∈Y−

i

τi
pq

s.t. τi
jq ∈ [0, C],

N

∑
i=1

∑
j∈Y+

i

∑
q∈Y−

i

ci
jqτi

jq = 0, for p = 1, . . . , l (37)

Then, we can obtain the optimal solution of Equation (37) through the general
Quadratic programming solution method or SMO algorithm.

(8) Update u, M1, M2 and M3: Finally, we need to update the ALM parameters

M1 = M1 + u
(

E − X + VUT
)

(38)

M2 = M2 + u(Z − U) (39)

M2 = M2 + u(Z − U) (40)
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u = ρu (41)

where the parameter ρ > 1 is the learning rate that controls the convergence speed. The
flowchart of the proposed approach is presented in Algorithm 1.

Algorithm 1 The proposed approach.

1: Input: Training set {X1, . . . , Xn} ∈ Rd×n, parameter α, γ, θ
2: Initialize: M1 = M2 = M3 = 0, U = 0, V = 0, E = 0, Z = 0, S = 0, H = 0
3: while not converged do
4: Fix others and update U by Equation (12)
5: Fix others and update V by Equation (16)
6: Fix others and update E by Equation (21)
7: Fix others and update Z by Equation (24)
8: Fix others and update S by Equation (32)
9: Fix others and update H by Equation (35)

10: Fix others and update τ by solving Equation (37)
11: end while
12: Output: The correlation matrices U, V and τ.

4. Experiments

In this section, we verified the effectiveness of our proposed model by conducting
a series of comparative experiments on six widely used multi-label benchmark data sets
with five states of the art multi-label classification methods. First, a brief description of
the dataset as well as the experimental evaluation metrics are provided. Five advanced
multi-label classification methods are selected and discussed. Comparative experiments
were conducted on standard dataset with and without noise. The classification performance
of the proposed algorithm as well as the comparative methods were analysed, evaluated
and reported accordingly.

4.1. Datasets and Experimental Setting

Datasets description: To evaluate the performance of our proposed method, we
selected several multi-label data sets in different scenarios in the real world for experiments.
Table 1 summarizes the details of the selected multi-label data sets comprising multiple data
containing multi-variable characteristics and labels. Therefore, they are a group of rather
complex data, resulting in increased computational complexity in the learning process.

• Image contains 2000 samples from the image domain, and these samples have 5 labels.
• Scene contains 2407 samples from the image domain, and these samples have 6 labels.
• Yeast contains 2417 samples from the biology domain, and these samples have 14 labels.
• Cal500 contains 502 samples from the music domain, and these samples have 174 labels.
• Rcv1s1 contains 6000 samples from the text domain, and these samples have 101 labels.
• Core116k4 contains 13,837 samples from the image domain, and these samples have

162 labels.

Evaluation metrics: In evaluating the performance of multi-label classification learning
methods, the correlation between multiple labels for each instance must be considered.
This makes the evaluation of muti-label classification cumbersome compared to traditional
single-label classification. The evaluation methods used in current classification learning
tasks can be categorized into sample-based and label-based measurements. The label-based
indicators are designed to calculate the metrics for each individual label and then aggregate
them to obtain the overall label indicators using either macro or micro averaging techniques.
In addition, in multi-label classification learning, the measure of evaluation by each instance
is generally used. The multi-label classification algorithm mainly calculates the inconsistent
ratio between the predicted label and the actual label of each instance. Then the evaluation
is performed with metrics such as Hamming loss, accuracy, F1 measure, ranking loss, etc.
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Table 1. Statistics of the experimental datasets. (“Cardinality” indicates the average number of
labels per example. “Density” normalizes the “Cardinality” by the number of possible labels. “URL”
indicates the source URL of the dataset).

Datasets Examples Features Labels Cardinality Density Domain URL

Image 2000 294 5 1.240 0.248 image URL 2
Scene 2407 294 6 1.074 0.179 image URL 1
Yeast 2417 103 14 4.237 0.303 biology URL 1

Cal500 502 68 174 26.044 0.150 Music URL 1
Rcv1s1 6000 944 101 2.880 0.029 Text URL 1

Core116k4 13,837 500 162 2.867 ± 0.033 0.018 ± 0.001 image URL 1
URL 1: http://mulan.sourceforge.net/datasets-mlc.html, accessed on 8 July 2023. URL 2: http://palm.seu.edu.
cn/zhangml, accessed on 8 July 2023.

In this paper, we used the following five evaluation metrics for the multi-label learning
classification. Given a test set D = {(Xi, Yi), 1 ≤ i ≤ m}, where Y represents the label
datasets of dimension q and X represents the instance datasets of dimension p.

(1) Hamming loss quantifies the proportion of example-label pairs that are misclassified.

Hammingloss =
1
m

m

∑
i=1

|h(Xi)∆Yi|
q (42)

where ∆ denotes the symmetric difference between two sets. h(Xi) represents the trained
predictive function that generates a set of predictive labels based on the value of Xi.
Therefore, a lower Hamming loss value indicates a higher degree of similarity between the
predicted and actual values, signifying improved classifier performance.

(2) Subset accuracy measures the fraction that the predicted label subset and the
ground-truth label subset are the same.

Subset Accuracy =
1
m

m

∑
i=1

[h(Xi) = Yi ] (43)

(3) Example-F1 is the average F1 measure that is the harmonic mean of recall and
precision over each instance.

Example-F1 =
1
m

m

∑
i=1

2
∣∣P+

i ∩ Y+
i

∣∣∣∣P+
i

∣∣+∣∣Y+
i

∣∣ (44)

where Y+
i (or Y−

i ) represents the index set of the ground-truth relevant (or irrelevant) labels
associated with Xi, and P+

i (or P−
i ) denotes the index set of the predicted relevant (or

irrelevant) labels associated with Xi.
(4) Micro-F1 is an indicator used to measure the accuracy of multivariate classification

learning. It first averages the element values corresponding to each confusion matrix, yields
the TP, FP, TN, and FN, and then calculates the micro-precision and micro-recall.

Micro-F1 = B

(
q

∑
i=1

tpi,
q

∑
i=1

f pi,
q

∑
i=1

tni,
q

∑
i=1

f ni

)
(45)

where tpi and f pi represent each sample’s true positive and false positive, respectively,
and f ni and tni represent the false negative and true negative.

(5) Ranking loss measures the average fraction of the label pairs that an irrelevant
label ranks higher than a relevant label over each instance.

Ranking Loss =
1
m

m

∑
i=1

|SetRi|∣∣Y+
i

∣∣∣∣Y−
i

∣∣ (46)

http://mulan.sourceforge.net/datasets-mlc.html
http://palm.seu.edu.cn/zhangml
http://palm.seu.edu.cn/zhangml
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where SetRi =
{
(p, q)

∣∣ fp(xi) ≤ fq(xi), (p, q) ∈ Y+
i × Y−

i
}

.
Selecting the most suitable comparative algorithm based on the specific field of re-

search and available resources can help demonstrate the effectiveness and advantages of
the method proposed in this paper. We considered the most representative RANK-SVM
algorithm from traditional multi label classification algorithms, and ML-KNN and CPNL
algorithms from SVM’s unique multi label extensions. We also looked at MLR and RBRL
algorithms from the latest multi label methods. The evaluation performance of our pro-
posed algorithm is compared with several excellent multi-label classification methods
listed below.

• Rank-SVM [19] is an adaption of the maximum margin strategy for MLC.
• ML-KNN [20] is a multi-label delayed learning method based on the traditional

K-nearest neighbor (KNN) algorithm.
• CPNL [29] is a recent method proposed as a cost-sensitive loss function to address

the issue of class imbalance and leverages correlations between negative and positive
labels to improve performance.

• MLR [30] converts MLC task into the pairwise label ranking problem.
• RBRL [31] (robust low-rank learning) is a technique that integrates Rank-SVM and

binary relevance. Additionally, the thresholding step is incorporated into the ranking
learning component of Rank-SVM via binary relevance. This enables model training
to occur in a single unified step, rather than sequentially.

4.2. Results under Original Data

In this section, the experimental results of our proposed method and the above-
mentioned multi-label classification algorithms are analyzed and discussed in detail. We
evaluated the performance of our proposed method and the other comparative multi-
label classification algorithms on different data sets using Example-F1, Micro-F1 and
Hamming loss evaluation metrics. The specific results of this experimental evaluation are
summarized in Tables 2–4. In terms of the evaluation index (↑), a higher value represents
better performance of the model. Conversely, (↓) indicates that a lower value corresponds
to better model performance. In addition, Table 5 summarizes the average ranking of these
comparative methods by each indicator on all data sets, while Figure 2 intuitively illustrates
the overall average ranking of these comparative methods on all indicators.

Table 2. Comparative results of competitive algorithms on the datasets using the Example-F1 metric (↑).

Example-F1 Rank-SVM ML-KNN CPNL MLR RBRL Proposed

Image 0.3401 0.4278 0.3234 0.6423 0.6455 0.6573
Scene 0.5487 0.6473 0.6276 0.7379 0.7412 0.7444
Yeast 0.6034 0.6042 0.6277 0.6228 0.6421 0.6562

Cal500 0.3442 0.2758 0.2841 0.3882 0.3881 0.3912
Rcv1s1 0.3145 0.3056 0.3427 0.3459 0.3523 0.3607

Core116k4 0.0712 0.0823 0.0812 0.0924 0.0944 0.0976

Table 3. Comparative results of competitive algorithms on the datasets using the Micro-F1 metric (↑).

Micro-F1 Rank-SVM ML-KNN CPNL MLR RBRL Proposed

Image 0.4267 0.6015 0.3702 0.6457 0.6477 0.6572
Scene 0.6203 0.5961 0.6177 0.7298 0.7354 0.7501
Yeast 0.6123 0.5676 0.6425 0.6541 0.6538 0.6565

Cal500 0.3369 0.3064 0.2502 0.3846 0.3869 0.3962
Rcv1s1 0.3201 0.3342 0.3014 0.3792 0.3811 0.3824

Core116k4 0.1258 0.1023 0.0964 0.1396 0.1349 0.1425
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Table 4. Comparative results of competitive algorithms on the datasets using the Hamming loss
metric (↓).

Hamming loss Rank-SVM ML-KNN CPNL MLR RBRL Proposed

Image 0.2869 0.3174 0.3402 0.1768 0.1712 0.1695
Scene 0.1427 0.1203 0.1557 0.1143 0.1117 0.1103
Yeast 0.2314 0.3104 0.2253 0.2027 0.2019 0.2006

Cal500 0.1582 0.1732 0.1794 0.1763 0.1642 0.1578
Rcv1s1 0.0413 0.0326 0.0415 0.0397 0.0326 0.0304

Core116k4 0.0214 0.0212 0.0463 0.0218 0.0245 0.0201

Table 5. Average ranks of the comparative methods on all datasets in terms of each evaluation metric.

Average Rank Rank-SVM ML-KNN CPNL MLR RBRL Proposed

Example-F1 5.50 4.83 4.66 2.83 2.16 1.00
Micro-F1 4.50 5.00 5.50 2.66 2.33 1.00

Hamming loss 4.66 4.66 5.66 2.83 2.16 1.00
Overall 4.88 4.83 5.27 2.77 2.21 1.00

Figure 2. Overall average ranks of the competitive methods on all evaluation metrics.

Table 2 presents the evaluation performance of each comparative algorithm on the dataset
using Example-F1 evaluation metric. From the results in the table, it can be observed that,
compared to the other multi-label classification methods, our proposed method demonstrated
superior performance with respect to the Example-F1 evaluation index on the six multi-label
datasets. In particular, the evaluation performance of the proposed algorithm on the Image,
Scene, Yeast, Cal500, Rcv1s1 and Core116k4 datasets is improved by 11.4%, 9.41%, 10.34%,
1.3% and 0.73%, respectively, compared with the other comparative algorithms.

Similarly, Table 3 captures the performance of our proposed method and that of the
comparative algorithms using the Micro-F1 evaluation metric. In images, scenes, and yeast
datasets, the algorithm proposed in this paper obtained a better performance, whilst RBRL
and MLR algorithms also demonstrated relatively good performance. This can be attributed
to the fact that, RBRL algorithm combines sorting support vector machines and binary
correlation with robust low-order learning, whereas the MLR algorithm is systematically
studied from two complementary perspectives: the consistency of learning algorithm and
the generalized error bound. These two make the classifier more robust when dealing
with complex datasets. Our proposed algorithm recorded performance values which are
1.15%, 2.03% and 0.24% higher than that of MLR algorithm, and 0.95%, 1.47% and 0.27%
higher than the RBRL algorithm, respectively. The proposed algorithm’s ability to combine
feature selection with a multi label SVM classifier culminates in the generation of a more
robust SVM classifiers under complex samples. In a nutshell, with respect to the Micro-F1
evaluation metric, our method demonstrated a significant superior experimental results in
high-dimensional feature space.
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The performance analysis of our proposed method and the other comparative algo-
rithms on the selected experimental dataset with respect to the Hamming loss metric is
recorded in Table 4. Hamming loss is used to examine the misclassification of samples
on a single marker, where relevant markers do not appear in the predicted marker set or
irrelevant markers appear in the predicted marker set. Generally, our proposed method
significantly outperformed the other comparative algorithms in almost all the dataset used
for the experiment. However, the improvement was not significant on the Core116k4
dataset, which may be largely attributed to the large sample size of the dataset.

As shown in Table 5 and Figure 2, the algorithm proposed in this paper achieved better
performance than other methods in terms of overall indicators. In summary, compared to
several state-of-the-art MLC methods, our proposed algorithm achieved superior performance.

Furthermore, the experimental results on the performance of the RBF and polynomial
kernels on the Image, Scene, Yeast, Cal500, Rcv1s1, and Core116k4 datasets with respect to
Example-F1, Micro-F1 and Hamming loss evaluation metrics are illustrated in Figure 3. It
can be seen from Figure 3 that, the Gaussian kernel achieved better evaluation metric results
for the Image, Scene, Yeast and Cal500 datasets while the polynomial kernel performed
better in the case of Rcv1s1 and Core116k4 datasets. However, the Gaussian kernel function,
which is considered a universal kernel, also performed well on Rcv1s1 and Core116k4
datasets. This implies that, in instances where the number of features is small and the
number of samples is normal, Gaussian kernel function is suitably selected. On the other
hand, the polynomial kernel may be a better choice in situations where the number of
features and samples are large.

Figure 3. Performance of each kernel on the datasets. (a) Example-F1, (b) Micro-F1, (c) Hamming loss.

4.3. Results under Different Noises

To evaluate the effectiveness of our proposed approach on noisy datasets, we in-
troduced manifold regularization matrix factorization. This enhancement enables our
method to handle multi-label classification tasks even when the dataset is affected by
noise interference.
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Figure 4 presents the performance of our proposed method as well as the other com-
parative multi-label classification methods on salt and pepper noise induced image, scene,
yeast, Rcv1s1 and Core116k4 datasets with respect to Example-F1, Micro-F1 and Hamming
loss evaluation metrics. In the noise induced image and scene datasets, the proposed algo-
rithm obtained a better performance compared to the relatively good performance achieved
by RBRL and MLR algorithms. This may be attributed to the fact that, RBRL algorithm
combines sorting support vector machines and binary correlation with robust low-order
learning, which can achieve the effect of resisting noise to a certain extent. The MLR
algorithm is systematically studied from two complementary perspectives: the consistency
of learning algorithm and the generalized error bound. It can also solve the error problem
caused by data corruption to a certain extent. CPNL, ML-KNN and Rank-SVM algorithms
showed poor performance in image datasets with noise because they focus too much on
label space and ignore the impact of noise on classifiers. In the case of the Yeast dataset
without the noise, the difference in performance between the proposed method and other
algorithms is not significant. This is because, these methods can still learn prominent or
relevant features of the Yeast image. However, as the noise level increases, the effectiveness
of our proposed method becomes increasingly obvious. Likewise, with low noise level in
the Rcv1s1 and Core116k4 datasets, the evaluation performance of the proposed method
compared to RBRL and MLR algorithms is not obvious, but in the case of at least 20% noise
pollution, the proposed method demonstrates superior performance than other algorithms
with respect to the three evaluation indicators of Example-F1, Micro-F1 and Hamming
loss. This is due to the introduction of the manifold regularization matrix factorization in
the proposed method, capable of finding robust low-rank subspaces in the input space to
demonstrate strong robustness on high-noise datasets.

Figure 5 shows the corresponding changes in the Gaussian noise on the Image, Scene,
Yeast, Rcv1s1, and Core116k4 datasets with respect to the performance of Example-F1,
Micro-F1, and Hamming loss evaluation metrics. In the case of the Image dataset, a trend
similar to salt and pepper noise scenario was observed. Thus, the proposed algorithm,
RBRL, and MLR, performed appreciably in noisy environments because all three methods
consider the error problem caused by data corruption. Furthermore, due to the introduc-
tion of matrix decomposition in the algorithm proposed in this article, robust low-rank
subspaces are considered in the input space. As a result, the proposed algorithm is less
susceptible to Gaussian noise, hence the superior results. In the Scene and Yeast datasets,
the CPNL algorithm also achieved good results, which may be attributed to its extension of
BR to solve the problems of category imbalance and label correlation, making the model
more robust. However, under different noise levels, our proposed algorithm still have the
lowest reduction rate. The algorithm significantly decreases with increasing noise density
in the Rcv1s1 and Corel16k7 datasets. However, our method achieved better results than
the other algorithms with respect to the evaluation metrics. This is indicative of the fact that,
our proposed method has been tested on datasets with Gaussian noise and exhibits good
robustness. The experimental results further demonstrate that this method can effectively
improve the performance of multi label classifiers.
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Figure 4. Mean Example-F1, Micro-F1 and Hamming loss of different methods corrupted by varying
levels of random “salt & pepper” noise on (a–c) Image, (d–f) Scene, (g–i) Yeast, (j–l) Rcv1s1, (m–o)
Core116k4 datasets.
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Figure 5. Mean Example-F1, Micro-F1 and Hamming loss of different methods corrupted by
varying levels of random “Gaussian” noise on (a–c) Image, (d–f) Scene, (g–i) Yeast, (j–l) Rcv1s1,
(m–o) Core116k4 datasets.

4.4. Parameter Sensitivity and Convergence

In this section, we conducted parameter sensitivity analysis on the proposed method.
We analyze the sensitivity of this method to the regularization parameters α, γ and θ in the
loss function Equation (10). Figure 6 shows the impact of these regularization parameters
on the Example-F1 indicator of our proposed method on the Scene dataset. In Figure 6a,
we determine α = 1 and change γ and θ within a similar range

[
10−2, 104]. When θ = 1,

the value of γ does not affect the experimental effect. In Figure 6b, we determine that γ = 1.
When α = 10 and θ = 1, the experimental results are good. In Figure 6c, we determine θ = 1.
When α = 1 and γ = 10, the results are better. In Figure 6d–f, When α = 0.1, γ = 10 and θ = 1,
The Micro-F1 indicator yields better results. In Figure 6g–i, When α = 100, γ = 100 and
θ = 100, The Hamming-Loss indicator yields better results. From the figure, it can be seen
that when we keep the values of these three parameters within a specific range, the final
performance of the method on Example-F1, Micro-F1 and Hamming-Loss is not sensitive to
the selection of parameters. It can be seen from Figure 6 that the proposed method is very
sensitive to hyperparameters. In addition, the performance is best at some intermediate
values of α, γ and θ.
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Figure 6. The performance of our proposed method on the Scene dataset through pair-wise com-
parison for parameters α, γ and θ. (a) Example-F1 for (γ, θ) pair, (b) Example-F1 for (α, θ) pair,
(c) Example-F1 for (α, γ) pair, (d) Micro-F1 for (γ, θ) pair, (e) Micro-F1 for (α, θ) pair, (f) Micro-F1 for
(α, γ) pair, (g) Hamming Los for (γ, θ) pair, (h) Hamming Los for (α, θ) pair, and (i) Hamming Los for
(α, γ) pair.

From Equations (38)–(40), the KKT conditions can be obtained: E − X + VUT = 0,
Z − U0, H − S = 0. This can be used to determine the following convergence conditions:∣∣∣∣E − X + VUT

∣∣∣∣
∞ < ε, ||Z − U||∞ < ε, ||H − S||∞ < ε. As such, the convergence curves

of Figure 7 were drawn on the Scene and Yeast datasets. The observation results in Figure 7
indicate that our method converges quickly within finite iterations.
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Figure 7. The evolution of the objective values of our proposed method on the Scene (a) and Yeast
(b) datasets.

5. Conclusions

This paper presents a novel approach for ranking support vector machines, which is
based on manifold regularization matrix factorization. The proposed method combines
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feature selection with multi-label learning, creating a unified framework. Within this
framework, matrix factorization is introduced to learn low-rank robust subspaces in the
input space, thereby enhancing the robustness of data representation in the presence of
high levels of noise. Furthermore, by preserving the manifold relationship among low-rank
samples, the framework incorporates manifold structure regularization to further improve
the robustness of the low-rank representation. Subsequently, using this robust low-rank
representation, we extract low-order features that are more resilient and employ them
to construct superior classifiers. In other words, these methods enable our classification
model to perform better in the presence of original noise. To validate the feasibility of
the proposed algorithm, we conducted extensive experiments on real-world multi-label
datasets. We compared our algorithm against five commonly used multilabel classification
algorithms using multiple evaluation metrics. The experimental results demonstrate that
the proposed method outperforms state-of-the-art methods across all evaluation metrics.
In the future, we plan to introduce deep learning methods to further enhance multi-label
classification models.

To further develop our approach, firstly, different models may be appropriate for
different fields. Regardless of the data type, the goal of feature extraction is to find the most
representative and informative features in order to improve the performance of machine
learning models. The dimensions, processing techniques, and final feature composition
that need to be considered vary for different types of data. Therefore, the adaptation of
different models on different datasets is a question worthy of further research. Secondly,
when dealing with the increasingly large and complex data, the generalization ability and
scalability of our model may need to be improved. Chen et al. [32] introduced graph convo-
lutional networks to handle multi label image recognition tasks, utilizing the relationships
between labels to improve classification performance. Durand et al. [33] proposed a deep
convolutional network to handle this incomplete multi label learning problem. These
methods are very inspiring for us, and in the future, we can also introduce deep learning
methods to further improve multi label classification models.
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