A PZT-Based Smart Anchor Washer for Monitoring Prestressing Force Based on the Wavelet Packet Analysis Method
Abstract
:1. Introduction
2. Principles
2.1. Smart Anchor Washer
2.2. Elastic Contact Theory between a Rigid Cylinder and a Plane
2.3. Wavelet Packet Energy Method
2.3.1. Wavelet Packet Decomposition
2.3.2. Wavelet Packet Energy and Shannon Entropy
3. Experimental Setup
4. Results and Discussion
4.1. Processing of Raw Data
4.2. Data Fitting and the Index
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dai, L.; Bian, H.; Wang, L.; Potier-Ferry, M.; Zhang, J. Prestress Loss Diagnostics in Pretensioned Concrete Structures with Corrosive Cracking. J. Struct. Eng. 2020, 146, 4020013. [Google Scholar] [CrossRef]
- Biswal, S.; Ramaswamy, A. Uncertainty Based Model Averaging for Prediction of Long-Time Prestress Losses in Concrete Structures. Constr. Build. Mater. 2017, 153, 469–480. [Google Scholar] [CrossRef]
- Kral’ovanec, J.; Prokop, J. Indirect Methods for Determining the State of Prestressing. Transp. Res. Procedia 2021, 55, 1236–1243. [Google Scholar] [CrossRef]
- Au, F.T.K.; Si, X.T. Accurate Time-Dependent Analysis of Concrete Bridges Considering Concrete Creep, Concrete Shrinkage and Cable Relaxation. Eng. Struct. 2011, 33, 118–126. [Google Scholar] [CrossRef]
- Zhang, W.; Yuan, X.; Yang, L.; Deng, M. Research on Creep Constitutive Model of Steel Cables. Constr. Build. Mater. 2020, 246, 118481. [Google Scholar] [CrossRef]
- Pirskawetz, S.M.; Schmidt, S. Detection of Wire Breaks in Prestressed Concrete Bridges by Acoustic Emission Analysis. Dev. Built Environ. 2023, 14, 100151. [Google Scholar] [CrossRef]
- Abdel-Jaber, H.; Glisic, B. Monitoring of Prestressing Forces in Prestressed Concrete Structures—An Overview. Struct. Control Health Monit. 2019, 26, e2374. [Google Scholar] [CrossRef]
- Fabo, P.; Jarosevic, A.; Chandoga, M. Health Monitoring of the Steel Cables Using the Elasto-Magnetic Method. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, New Orleans, LA, USA, 17–22 November 2002; ASME: New York, NY, USA, 2002; Volume 36258, pp. 295–299. [Google Scholar]
- Yim, J.; Wang, M.L.; Shin, S.W.; Yun, C.-B.; Jung, H.-J.; Kim, J.-T.; Eem, S.-H. Field Application of Elasto-Magnetic Stress Sensors for Monitoring of Cable Tension Force in Cable-Stayed Bridges. Smart Struct. Syst. 2013, 12, 465–482. [Google Scholar] [CrossRef]
- Rizzo, P.; di Scalea, F. Wave Propagation in Multi-Wire Strands by Wavelet-Based Laser Ultrasound. Exp. Mech. 2004, 44, 407–415. [Google Scholar] [CrossRef]
- Rizzo, P. Ultrasonic Wave Propagation in Progressively Loaded Multi-Wire Strands. Exp. Mech. 2006, 46, 297–306. [Google Scholar] [CrossRef]
- Dan, D.; Jia, P.; Li, G.; Niu, P. Experimental Study on Mechanical and Sensing Properties of Smart Composite Prestressed Tendon. Materials 2018, 11, 2087. [Google Scholar] [CrossRef] [PubMed]
- Sumitro, S.; Kurokawa, S.; Shimano, K.; Wang, M.L. Monitoring Based Maintenance Utilizing Actual Stress Sensory Technology. Smart Mater. Struct. 2005, 14, S68. [Google Scholar] [CrossRef]
- Halvonik, J.; Dolnak, J.; Borzovič, V. Long-Term Losses of Prestress in Precast Members Cast from HPC. Procedia Eng. 2013, 65, 81–86. [Google Scholar] [CrossRef]
- Kleitsa, D.; Kawai, K.; Shiotani, T.; Aggelis, D.G. Assessment of Metal Strand Wire Pre-Stress in Anchor Head by Ultrasonics. NDT E Int. 2010, 43, 547–554. [Google Scholar] [CrossRef]
- Yan, S.; Ma, H.; Li, P.; Song, G.; Wu, J. Development and Application of a Structural Health Monitoring System Based on Wireless Smart Aggregates. Sensors 2017, 17, 1641. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.-I.; Wang, J.X.; Song, G.; Gu, H.; Olmi, C.; Mo, Y.L.; Chang, K.C.; Loh, C.H. Structural Health Monitoring of Concrete Columns Subjected to Seismic Excitations Using Piezoceramic-Based Sensors. Smart Mater. Struct. 2011, 20, 125015. [Google Scholar] [CrossRef]
- Agrawal, B.N.; Elshafei, M.A.; Song, G. Adaptive Antenna Shape Control Using Piezoelectric Actuators. Acta Astronaut. 1997, 40, 821–826. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, T.; Song, G.; Gu, H. Active Interface Debonding Detection of a Concrete-Filled Steel Tube with Piezoelectric Technologies Using Wavelet Packet Analysis. Mech. Syst. Signal Process. 2013, 36, 7–17. [Google Scholar] [CrossRef]
- Kong, Q.; Fan, S.; Bai, X.; Mo, Y.L.; Song, G. A Novel Embeddable Spherical Smart Aggregate for Structural Health Monitoring: Part I. Fabrication and Electrical Characterization. Smart Mater. Struct. 2017, 26, 95050. [Google Scholar] [CrossRef]
- Li, N.; Wang, F.; Song, G. New Entropy-Based Vibro-Acoustic Modulation Method for Metal Fatigue Crack Detection: An Exploratory Study. Measurement 2020, 150, 107075. [Google Scholar] [CrossRef]
- Kong, Q.; Hou, S.; Ji, Q.; Mo, Y.L.; Song, G. Very Early Age Concrete Hydration Characterization Monitoring Using Piezoceramic Based Smart Aggregates. Smart Mater. Struct. 2013, 22, 85025. [Google Scholar] [CrossRef]
- Kong, Q.; Song, G. A Comparative Study of the Very Early Age Cement Hydration Monitoring Using Compressive and Shear Mode Smart Aggregates. IEEE Sens. J. 2016, 17, 256–260. [Google Scholar] [CrossRef]
- Zhou, L.; Zheng, Y.; Song, G.; Chen, D.; Ye, Y. Identification of the Structural Damage Mechanism of BFRP Bars Reinforced Concrete Beams Using Smart Transducers Based on Time Reversal Method. Constr. Build. Mater. 2019, 220, 615–627. [Google Scholar] [CrossRef]
- Kong, Q.; Robert, R.H.; Silva, P.; Mo, Y.L. Cyclic Crack Monitoring of a Reinforced Concrete Column under Simulated Pseudo-Dynamic Loading Using Piezoceramic-Based Smart Aggregates. Appl. Sci. 2016, 6, 341. [Google Scholar] [CrossRef]
- Wang, F.; Chen, Z.; Song, G. Monitoring of Multi-Bolt Connection Looseness Using Entropy-Based Active Sensing and Genetic Algorithm-Based Least Square Support Vector Machine. Mech. Syst. Signal Process. 2020, 136, 106507. [Google Scholar] [CrossRef]
- Huo, L.; Chen, D.; Kong, Q.; Li, H.; Song, G. Smart Washer—A Piezoceramic-Based Transducer to Monitor Looseness of Bolted Connection. Smart Mater. Struct. 2017, 26, 25033. [Google Scholar] [CrossRef]
- Gu, H.; Song, G.; Dhonde, H.; Mo, Y.L.; Yan, S. Concrete Early-Age Strength Monitoring Using Embedded Piezoelectric Transducers. Smart Mater. Struct. 2006, 15, 1837. [Google Scholar] [CrossRef]
- Chen, J.; Li, P.; Song, G.; Ren, Z. Piezo-Based Wireless Sensor Network for Early-Age Concrete Strength Monitoring. Optik 2016, 127, 2983–2987. [Google Scholar] [CrossRef]
- Sharma, S.; Mukherjee, A. Monitoring Freshly Poured Concrete Using Ultrasonic Waves Guided through Reinforcing Bars. Cem. Concr. Compos. 2015, 55, 337–347. [Google Scholar] [CrossRef]
- Kocherla, A.; Duddi, M.; Subramaniam, K.V.L. Embedded PZT Sensors for Monitoring Formation and Crack Opening in Concrete Structures. Measurement 2021, 182, 109698. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Li, J.; Kang, F. Embedded PZT Aggregates for Monitoring Crack Growth and Predicting Surface Crack in Reinforced Concrete Beam. Constr. Build. Mater. 2023, 364, 129979. [Google Scholar] [CrossRef]
- Wang, T.; Song, G.; Wang, Z.; Li, Y. Proof-of-Concept Study of Monitoring Bolt Connection Status Using a Piezoelectric Based Active Sensing Method. Smart Mater. Struct. 2013, 22, 87001. [Google Scholar] [CrossRef]
- Tao, W.; Shaopeng, L.; Junhua, S.; Yourong, L. Health Monitoring of Bolted Joints Using the Time Reversal Method and Piezoelectric Transducers. Smart Mater. Struct. 2016, 25, 25010. [Google Scholar] [CrossRef]
- Huo, L.; Wang, F.; Li, H.; Song, G. A Fractal Contact Theory Based Model for Bolted Connection Looseness Monitoring Using Piezoceramic Transducers. Smart Mater. Struct. 2017, 26, 104010. [Google Scholar] [CrossRef]
- Greenwood, J.A.; Williamson, J.B.P. Contact of Nominally Flat Surfaces. Proc. R. Soc. London Ser. A. Math. Phys. Sci. 1966, 295, 300–319. [Google Scholar]
- Majumdar, A.; Bhushan, B. Fractal Model of Elastic-Plastic Contact between Rough Surfaces. J. Tribol. 1991, 113, 1–11. [Google Scholar] [CrossRef]
- Wang, F.; Huo, L.; Song, G. A Piezoelectric Active Sensing Method for Quantitative Monitoring of Bolt Loosening Using Energy Dissipation Caused by Tangential Damping Based on the Fractal Contact Theory. Smart Mater. Struct. 2017, 27, 15023. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Lee, J.-S. A Micromechanical Model for Nonlinear Acoustic Properties of Interfaces between Solids. J. Appl. Phys. 2007, 101, 43501. [Google Scholar] [CrossRef]
- Broda, D.; Staszewski, W.J.; Martowicz, A.; Uhl, T.; Silberschmidt, V. V Modelling of Nonlinear Crack--Wave Interactions for Damage Detection Based on Ultrasound—A Review. J. Sound Vib. 2014, 333, 1097–1118. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, M.; Su, Z.; Xiao, Y. Quantitative Evaluation of Residual Torque of a Loose Bolt Based on Wave Energy Dissipation and Vibro-Acoustic Modulation: A Comparative Study. J. Sound Vib. 2016, 383, 156–170. [Google Scholar] [CrossRef]
- Wang, F.; Song, G. Bolt Early Looseness Monitoring Using Modified Vibro-Acoustic Modulation by Time-Reversal. Mech. Syst. Signal Process. 2019, 130, 349–360. [Google Scholar] [CrossRef]
- Wang, F.; Ho, S.C.M.; Song, G. Monitoring of Early Looseness of Multi-Bolt Connection: A New Entropy-Based Active Sensing Method without Saturation. Smart Mater. Struct. 2019, 28, 10LT01. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, Y.; Dai, J.; Liang, Y. Multi-Bolt Looseness State Monitoring Using the Recursive Analytic Based Active Sensing Technique. Measurement 2022, 191, 110779. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Liu, L.; Huo, L. Prestress Monitoring of a Steel Strand in an Anchorage Connection Using Piezoceramic Transducers and Time Reversal Method. Sensors 2018, 18, 4018. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, L.; Liu, L.; Huo, L. Tension Monitoring of Wedge Connection Using Piezoceramic Transducers and Wavelet Packet Analysis Method. Sensors 2020, 20, 364. [Google Scholar] [CrossRef] [PubMed]
- Esteban, J.; Rogers, C.A. Energy Dissipation through Joints: Theory and Experiments. Comput. Struct. 2000, 75, 347–359. [Google Scholar] [CrossRef]
- Popov, V.L. Contact Mechanics and Friction; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Zhou, H.; He, Z.; Sun, L.; Zhang, D.; Zhou, H.; Li, X. Improved Power Normalized Cepstrum Coefficient Based on Wavelet Packet Decomposition for Trunk Borer Detection in Harsh Acoustic Environment. Appl. Sci. 2021, 11, 2236. [Google Scholar] [CrossRef]
- Rioul, O. This Is IT: A Primer on Shannon’s Entropy and Information. In Information Theory: Poincaré Seminar 2018; Duplantier, B., Rivasseau, V., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 49–86. ISBN 978-3-030-81480-9. [Google Scholar]
- Rizal, A.; Hidayat, R.; Nugroho, H.A. Comparison of Multilevel Wavelet Packet Entropy Using Various Entropy Measurement for Lung Sound Classification. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 77–82. [Google Scholar] [CrossRef]
- Tu, W.; Zhong, S.; Zhang, Q.; Shen, Y.; Incecik, A. Quality Evaluation of Organic Protective Paints Using Terahertz Pulse Imaging Technology Based on Wavelet Packet Energy Method. Ocean Eng. 2023, 267, 113282. [Google Scholar] [CrossRef]
- GB/T 14370-2007; Anchorage, Grip and Coupler for Prestressing Tendons. Chinese Standard: Beijing, China, 2007.
- Wang, W.; Ding, J. Wavelet Network Model and Its Application to the Prediction of Hydrology. Nat. Sci. 2003, 1, 67–71. [Google Scholar]
Number of Tests | Tension Force (t) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||||||||
1st | 0 | 1.223 | 2.007 | 2.962 | 4.050 | 5.202 | 6.013 | 7.055 | 8.010 | 9.005 | |||||||
2nd | 0 | 0.912 | 1.748 | 2.870 | 3.828 | 4.976 | 5.987 | 6.842 | 8.084 | 8.902 | |||||||
3rd | 0 | 1.341 | 1.931 | 2.961 | 4.076 | 5.026 | 6.070 | 7.037 | 7.956 | 8.986 | |||||||
4th | 0 | 0.774 | 1.870 | 2.929 | 3.981 | 5.041 | 6.014 | 7.111 | 8.104 | 8.979 | |||||||
5th | 0 | 1.526 | 2.199 | 3.488 | 4.342 | 5.463 | 6.403 | 7.388 | 8.346 | 9.440 | |||||||
Number of Tests | Tension Force (t) | ||||||||||||||||
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | |||||||||
1st | 10.110 | 11.085 | 12.033 | 13.210 | 14.175 | 15.275 | 16.070 | 17.140 | 18.010 | ||||||||
2nd | 9.792 | 10.782 | 12.077 | 12.927 | 13.807 | 14.937 | 15.814 | 16.863 | 17.917 | ||||||||
3rd | 10.011 | 11.011 | 12.191 | 12.991 | 14.006 | 15.014 | 16.011 | 17.131 | 17.969 | ||||||||
4th | 9.874 | 11.071 | 11.952 | 13.064 | 14.037 | 14.945 | 16.159 | 16.935 | 18.006 | ||||||||
5th | 10.345 | 11.382 | 12.261 | 13.264 | 14.401 | 15.361 | 16.396 | 17.238 | 18.306 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhang, L.; Mo, D.; Wu, X. A PZT-Based Smart Anchor Washer for Monitoring Prestressing Force Based on the Wavelet Packet Analysis Method. Appl. Sci. 2024, 14, 641. https://doi.org/10.3390/app14020641
Wang L, Zhang L, Mo D, Wu X. A PZT-Based Smart Anchor Washer for Monitoring Prestressing Force Based on the Wavelet Packet Analysis Method. Applied Sciences. 2024; 14(2):641. https://doi.org/10.3390/app14020641
Chicago/Turabian StyleWang, Long, Liuyu Zhang, Di Mo, and Xiaoguang Wu. 2024. "A PZT-Based Smart Anchor Washer for Monitoring Prestressing Force Based on the Wavelet Packet Analysis Method" Applied Sciences 14, no. 2: 641. https://doi.org/10.3390/app14020641
APA StyleWang, L., Zhang, L., Mo, D., & Wu, X. (2024). A PZT-Based Smart Anchor Washer for Monitoring Prestressing Force Based on the Wavelet Packet Analysis Method. Applied Sciences, 14(2), 641. https://doi.org/10.3390/app14020641