Online Learning-Based Adaptive Device-Free Localization in Time-Varying Indoor Environment
Abstract
:1. Introduction
- We design a kind of fingerprint based on deep learning weights that can effectively tackle the fingerprint similarity problem.
- We propose an online learning DFL approach that can effectively adapt to time-varying environments.
- We validate our approach using data from real-world environments and demonstrate that our approach outperforms other approaches.
2. Related Work
2.1. Model-Based DFL Method
2.2. Fingerprint-Based DFL Method
3. Preliminaries
3.1. CSI Primer
3.2. OS-ELM
4. The Proposed Method
4.1. Problem Description
- (a)
- Due to the asynchronous clocks between transceivers, there exist random initial phase offsets caused by WiFi NIC initialization when the transceiver device is restarted.
- (b)
- The change of signal distribution when the transceiver is moved unintentionally.
- (c)
- Indoor multipath effect changes when the location of items in the indoor environment changes, which affects the signal propagation path.
4.2. The Overview of DFL Based on ML-OSELM
4.3. Deep Representations for the Fingerprints
- (1)
- Initialization phase
- (2)
- Online learning phase
Algorithm 1 Weight-Based Fingerprint Representations |
Input: N packet receptions for each of the q training locations of the th set of data; |
Output: q groups of fingerprints corresponding to q locations of the th set of data; |
Initialization: |
|
5. Performance Verification
5.1. Experimental Setup
5.2. Performance Evaluation of ML-OSELM-Based DFL Model
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, X.; Chen, L.; Feng, C.; Fang, D.; Xiong, J.; Wang, Z. Sensing our world using wireless signals. IEEE Internet Comput. 2019, 23, 38–45. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, Z.; Liu, Y. From RSSI to CSI: Indoor localization via channel response. ACM Comput. Surv. 2013, 46, 1–32. [Google Scholar] [CrossRef]
- Shit, R.C.; Sharma, S.; Puthal, D.; James, P.; Pradhan, B.; van Moorsel, A.; Zomaya, A.Y.; Ranjan, R. Ubiquitous localization (UbiLoc): A survey and taxonomy on device free localization for smart world. IEEE Commun. Surv. Tutor. 2019, 21, 3532–3564. [Google Scholar] [CrossRef]
- Vasisht, D.; Jain, A.; Hsu, C.Y.; Kabelac, Z.; Katabi, D. Duet: Estimating user position and identity in smart homes using intermittent and incomplete RF-data. Proc. ACM Interact. Mobile Wearable Ubiquitous Technol. 2018, 2, 1–21. [Google Scholar] [CrossRef]
- LinkSys Aware. Available online: https://www.linksys.com/noname/software-and-services/linksys-aware/ (accessed on 7 January 2023).
- Qian, K.; Wu, C.; Zhang, Y.; Zhang, G.; Yang, Z.; Liu, Y. Widar2.0: Passive human tracking with a single Wi-Fi link. In Proceedings of the International Conference on Mobile Systems, Applications, and Services, Munich, Germany, 10–15 June 2018; pp. 350–361. [Google Scholar]
- Lashkari, B.; Rezazadeh, J.; Farahbakhsh, R.; Sandrasegaran, K. Crowdsourcing and sensing for indoor localization in IoT: A review. IEEE Sens. J. 2018, 19, 2408–2434. [Google Scholar] [CrossRef]
- Renaudin, V.; Ortiz, M.; Perul, J.; Torres-Sospedra, J.; Jiménez, A.R.; Pérez-Navarro, A.; Mendoza-Silva, G.M.; Seco, F.; Landau, Y.; Marbel, R.; et al. Evaluating indoor positioning systems in a shopping mall: The lessons learned from the IPIN 2018 competition. IEEE Access 2019, 7, 148594–148628. [Google Scholar] [CrossRef]
- Jondhale, S.R.; Jondhale, A.S.; Deshpande, P.S.; Lloret, J. Improved trilateration for indoor localization: Neural network and centroid-based approach. Int. J. Distrib. Sens. Netw. 2021, 17, 15501477211053997. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Gao, Q.; Yue, H.; Wang, H. Device-free wireless localization and activity recognition: A deep learning approach. IEEE Trans. Veh. Technol. 2016, 66, 6258–6267. [Google Scholar] [CrossRef]
- Nkabiti, K.P.; Chen, Y. Application of solely self-attention mechanism in CSI-fingerprinting-based indoor localization. Neural Comput. Appl. 2021, 33, 9185–9198. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, B.; Yu, Z.; Zhou, X. Wi-Fi CSI-based behavior recognition: From signals and actions to activities. IEEE Commun. Mag. 2018, 56, 109–115. [Google Scholar] [CrossRef]
- Ding, J.; Wang, Y.; Si, H.; Gao, S.; Xing, J. Three-Dimensional Indoor Localization and Tracking for Mobile Target Based on WiFi Sensing. IEEE Internet Things J. 2022, 9, 21687–21701. [Google Scholar] [CrossRef]
- Khalilsarai, M.B.; Stefanatos, S.; Wunder, G.; Caire, G. WiFi-Based Indoor Localization via Multi-Band Splicing and Phase Retrieval. In Proceedings of the IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Cannes, France, 2–5 July 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Wu, Z.H.; Han, Y.; Chen, Y.; Liu, K.R. A time-reversal paradigm for indoor positioning system. IEEE Trans. Veh. Technol. 2015, 64, 1331–1339. [Google Scholar] [CrossRef]
- Xue, J.; Zhang, J.; Gao, Z.; Xiao, W. Enhanced WiFi CSI Fingerprints for Device-Free Localization With Deep Learning Representations. IEEE Sens. J. 2022, 23, 2750–2759. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, D.; He, Y.; Chen, J.; Zhou, F.; Chen, Y. Multi-Person Passive WiFi Indoor Localization with Intelligent Reflecting Surface. IEEE Trans. Wirel. Commun. 2023, 22, 6534–6546. [Google Scholar] [CrossRef]
- Kandel, L.N.; Yu, S. VWAN: Virtual WiFi ANtennas for Increased Indoor Localization Accuracy. In Proceedings of the IEEE International Conference on Industrial Internet (ICII), Orlando, FL, USA, 11–12 November 2019; pp. 258–267. [Google Scholar] [CrossRef]
- Zuo, X.; Tian, Z.; Zhou, M.; Jin, Y.; Li, Z. Two-Stage Multi-Dimensional Parameters Estimation for Device-Free Human Tracking using WiFi Signals. In Proceedings of the International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Denver, CO, USA, 10–15 July 2022; pp. 748–749. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, H. Device-Free Tracking via Joint Velocity and AOA Estimation With Commodity WiFi. IEEE Sens. J. 2019, 19, 10662–10673. [Google Scholar] [CrossRef]
- Ding, J.; Wang, Y.; Fu, S.; Si, H.; Zhang, J.; Gao, S. Multiview Features Fusion and AdaBoost Based Indoor Localization on WiFi Platform. IEEE Sens. J. 2022, 22, 16607–16616. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, W.; Li, Y. Data and knowledge twin driven integration for large-scale device-free localization. IEEE Internet Things J. 2020, 8, 320–331. [Google Scholar] [CrossRef]
- Wei, W.; Yan, J.; Wu, X.; Wang, C.; Zhang, G. A Data Preprocessing Method for Deep Learning-Based Device-Free Localization. IEEE Commun. Lett. 2021, 25, 3868–3872. [Google Scholar] [CrossRef]
- Shi, S.; Sigg, S.; Chen, L.; Ji, Y. Accurate Location Tracking From CSI-Based Passive Device-Free Probabilistic Fingerprinting. IEEE Trans. Veh. Technol. 2018, 67, 5217–5230. [Google Scholar] [CrossRef]
- Duan, Y.; Lam, K.Y.; Lee, V.C.S.; Nie, W.; Liu, K.; Li, H.; Xue, C.J. Data Rate Fingerprinting: A WLAN-Based Indoor Positioning Technique for Passive Localization. IEEE Sens. J. 2019, 19, 6517–6529. [Google Scholar] [CrossRef]
- Zeng, Y.; Wu, D.; Xiong, J.; Yi, E.; Gao, R.; Zhang, D. FarSense: Pushing the Range Limit of WiFi-Based Respiration Sensing with CSI Ratio of Two Antennas. Proc. ACM Interact. Mobile Wearable Ubiquitous Technol. 2019, 3, 1–26. [Google Scholar] [CrossRef]
- Zhou, R.; Hou, H.; Gong, Z.; Chen, Z.; Tang, K.; Zhou, B. Adaptive Device-Free Localization in Dynamic Environments Through Adaptive Neural Networks. IEEE Sens. J. 2021, 21, 548–559. [Google Scholar] [CrossRef]
- Lei, Q.; Zhang, H.; Sun, H.; Tang, L. Fingerprint-Based Device-Free Localization in Changing Environments Using Enhanced Channel Selection and Logistic Regression. IEEE Access 2018, 6, 2569–2577. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Xiong, H.; Dou, D.; Miao, C.; Zhang, D. HandGest: Hierarchical Sensing for Robust in-the-air Handwriting Recognition with Commodity WiFi Devices. IEEE Internet Things J. 2022, 9, 19529–19544. [Google Scholar] [CrossRef]
- Yan, J.; Wan, L.; Wei, W.; Wu, X.; Zhu, W.P.; Lun, D.P.K. Device-Free Activity Detection and Wireless Localization Based on CNN Using Channel State Information Measurement. IEEE Sens. J. 2021, 21, 24482–24494. [Google Scholar] [CrossRef]
- Liang, N.Y.; Huang, G.B.; Saratchandran, P.; Sundararajan, N. A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans. Neural Netw. 2006, 17, 1411–1423. [Google Scholar] [CrossRef]
- Mirza, B.; Kok, S.; Dong, F. Multi-layer online sequential extreme learning machine for image classification. In Proceedings of the Extreme Learning Machine, Hangzhou, China, 15–17 December 2015; pp. 39–49. [Google Scholar]
- Zhang, J.; Li, Y.; Xiao, W.; Zhang, Z. Non-iterative and fast deep learning: Multilayer extreme learning machines. J. Franklin Inst. 2020, 357, 8925–8955. [Google Scholar] [CrossRef]
- Halperin, D.; Hu, W.; Sheth, A.; Wetherall, D. Tool release: Gathering 802.11 n traces with channel state information. ACM SIGCOMM Comp. Commun. Rev. 2011, 41, 53. [Google Scholar] [CrossRef]
- Davies, L.; Gather, U. The identification of multiple outliers. J. Am. Stat. Assoc. 1993, 88, 782–792. [Google Scholar] [CrossRef]
Methods | Hyperparameters |
---|---|
The proposed method | Activation Function: sigmod; Hidden Layer Nodes: 85 |
SVM | Kernel: Gaussian; Box Constraint: 466.01; Kernel Scale: 29.72 |
Random Forest | NumTrees: 160; MinLeafSize: 5 |
Decision Tree | MinParent: 10; MinLeaf: 4 |
BPNN | Activation Function: sigmod; Hidden Layer Nodes: 100 |
Location Number | Actual Position | Estimated Position by Existing Approach | Estimated Position by Proposed Approach | RMSE with Existing Approach (in Meter) | RMSE with Proposed Approach (in Meter) |
---|---|---|---|---|---|
1 | (2.4, 2.1) | (2.1, 1.2) | (2.2, 1.9) | 0.96 | 0.35 |
2 | (1.8, 3.6) | (1.2, 2.6) | (1.0, 4.0) | 1.10 | 0.89 |
3 | (2.4, 2.7) | (3.4, 1.4) | (2.7, 3.5) | 1.69 | 0.88 |
4 | (1.2, 0.9) | (3.3, 1.6) | (2.6, 1.8) | 2.29 | 1.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, J.; Chen, X.; Chi, Q.; Xiao, W. Online Learning-Based Adaptive Device-Free Localization in Time-Varying Indoor Environment. Appl. Sci. 2024, 14, 643. https://doi.org/10.3390/app14020643
Xue J, Chen X, Chi Q, Xiao W. Online Learning-Based Adaptive Device-Free Localization in Time-Varying Indoor Environment. Applied Sciences. 2024; 14(2):643. https://doi.org/10.3390/app14020643
Chicago/Turabian StyleXue, Jianqiang, Xingcan Chen, Qingyun Chi, and Wendong Xiao. 2024. "Online Learning-Based Adaptive Device-Free Localization in Time-Varying Indoor Environment" Applied Sciences 14, no. 2: 643. https://doi.org/10.3390/app14020643
APA StyleXue, J., Chen, X., Chi, Q., & Xiao, W. (2024). Online Learning-Based Adaptive Device-Free Localization in Time-Varying Indoor Environment. Applied Sciences, 14(2), 643. https://doi.org/10.3390/app14020643