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Abstract: Recently, Asymmetric pixel–shuffle downsampling and Blind–Spot Network (AP-BSN) has
made some progress in unsupervised image denoising. However, the method tends to damage the
texture and edge information of the image when using pixel-shuffle downsampling (PD) to destroy
pixel-related large-scale noise. To tackle this issue, we suggest a denoising method for mural images
based on Cross Attention and Blind–Spot Network (CA-BSN). First, the input image is downsampled
using PD, and after passing through a masked convolution module (MCM), the features are extracted
respectively; then, a cross attention network (CAN) is constructed to fuse the extracted feature;
finally, a feed-forward network (FFN) is introduced to strengthen the correlation between the feature,
and the denoised processed image is output. The experimental results indicate that our proposed
CA-BSN algorithm achieves a PSNR growth of 0.95 dB and 0.15 dB on the SIDD and DND datasets,
respectively, compared to the AP-BSN algorithm. Furthermore, our method demonstrates a SSIM
growth of 0.7% and 0.2% on the SIDD and DND datasets, respectively. The experiments show that
our algorithm preserves the texture and edge details of the mural images better than AP-BSN, while
also ensuring the denoising effect.

Keywords: image denoising; mural images; cross–attention; blind spot network

1. Introduction

As an important part of traditional Chinese cultural heritage and one of the oldest
forms of painting, mural painting is often painted on buildings or stone walls. It reflects
the political, economic, literary, artistic and technological development of the society at
that time. It is valuable to historical research [1]. However, due to the natural environment
and human factors, after hundreds of years, the mural paintings had problems such as
mottled images, chipped walls, and alkali returning to the clay layer, which had a serious
impact on the research [2–4]. The processing of mural images has been slow because of the
massive engineering, restricted technology, rare talent, and limited resources. It can take a
few months to a year or two to process a mural image [5,6]. Mural images are exposed to
air for a long time, and there are typical problems such as fuzzy edges, unclear outlines,
noise or color spots are obvious; that is why it is necessary to deal with the problem of
noise pollution in the processing of mural images.

Images that are affected by equipment or the external environment, or that have color
spots and noise, are classified as noisy images. Image denoising refers to recovering a
clean or noise-free image from a noisy image. Image denoising is fundamental research
in low-level vision [7]. Noise can greatly degrade the image quality, and the denoising
effect directly affects other subsequent processing steps [8]. The use of an image denoising
method in the digital processing of mural images can eliminate any extraneous noise and
spots present in mural images. Additionally, this technique may provide a groundwork for
subsequent image processing operations.

The traditional image denoising methods mainly include mean filtering [9], median
filtering [10] and wavelet transform [11], which are insufficient because they have poor
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robustness in the real world and cannot accurately and efficiently remove noise from
images [12]. With the development of deep learning, image denoising algorithms based on
deep learning have been widely used due to their efficient and convenient characteristics
and have become an effective solution to deal with image denoising.

Noise is not isolated in pixels in real scenes. There is spatial correlation between most
pixel points. In a recent study, AP-BSN [13] takes into account the connection between
noisy pixels, and the study proposes to combine PD and BSN to match noisy images in
real scenes more closely. AP-BSN first uses downsampling to decompose the noisy image
into multiple sub-images, destroys the spatial correlation of noise, and then utilizes the
correlation of the surrounding pixels to map out the original pixels under the noisy pixels.
However, the presence of larger-scale noise means that if we do not consider the texture
information but only focus on how to destroy the spatial noise, drastically destroying the
spatial correlation of noise at the same time will also cause a certain degree of damage to
the texture information of image, which will add a certain degree of difficulty to the process
of the mural images.

To this end, we propose a feature extraction network (FEN) to extract global and local
feature of the mural images, respectively, and we use two cross–attention blocks for fusion
and information interaction between the features, focusing on retaining texture information
while denoising. We evaluate this on the mainstream noisy image datasets Smartphone
Image Denoising Dataset (SIDD) [14], Darmstadt Noise Dataset (DND) [15], and our
homemade mural noise image dataset. In order to show the experimental effect better, we
design comparative experiments. Our method shows better results compared with several
representative image denoising methods, not only performing effective denoising, but also
retaining more edge and texture information. We summarize our contributions as follows:

(1) In order to further extract the feature information utilizing the image denoising
process, we design the densely dilated residual block (DDR) and non-local attention
mechanism (NLA) to extract the local and global feature information, respectively.
The denoising performance is enhanced while preserving the texture and structure
information of the image as much as possible.

(2) We construct local and global cross attention block (LGCA) and feature fusion cross
attention block (FFCA) for fusing the local and global information of feature extraction
and the feature before and after feature processing, respectively. In this way, the
interaction between feature information is enhanced.

(3) Our method is evaluated on two mainstream image denoising datasets and a home-
made mural images dataset, and our method achieves commendable performance.

2. Related Works

Existing image denoising methods can be categorized into two groups based on the
availability of clean images as data labels. They are supervised learning and unsupervised
learning. Supervised denoising requires a large number of noisy-clean image pairs, where
noisy images refer to images containing noise and clean images refer to images without
noise, these image pairs are often difficult to obtain in real scenes and require a lot of human
and material resources. A common approach is to add simulated real-world noise (e.g.,
Additive White Gaussian White Noise, AWGN) to a clean image as a pairing of a noise
image and a clean image [12,16–18]. However, there is still a gap between the real-world
and synthesized noise. The model trained using the synthesized noise is less capable of
performing in the real scenes. In some cases, it may also be difficult to obtain clean images.
In such cases, unsupervised denoising methods show a unique advantage because no clean
image is required as data labels.

2.1. Supervised Image Denoising

Zhang et al. [16] first applied deep learning to the image denoising task in DnCNN,
proposing a supervised method for processing noise using noisy-clean pairs. The method
uses Convolutional Neural Networks (CNN) to process noisy images, trains the model
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by manually adding AWGN to the clean noise, and uses residual learning to improve the
denoising performance of the network model. In the subsequent development, Zhang et al.
introduced FFDNet [17] and CBDNet [18] algorithms to adapt the network model to real
scene noise while balancing denoising and detail preservation. The shortcoming is that
CBDNet is a two-stage denoising network, which is not efficient and flexible enough. Based
on this, Anwar et al. [19] proposed RIDNet network structure, a one-stage algorithm that
is more practical for denoising, using a self-attention mechanism to adjust the feature
at the channel level, which improves the denoising effect of the model. Ren et al. [20]
proposed a novel deep network for image denoising. Unlike most existing deep network-
based denoising methods, Ren incorporated Adaptive Consistency Prior (ACP) into the
optimization problem and used an unfolding strategy to inform the design of deep the
network during the optimization process. All the above methods have some logic to follow,
but one of the main problems faced by image denoising is the lack of noisy–clean pairs in
real scenes. The collection cost of clean images is high. It is more challenging to adapt the
model to different application scenarios. Therefore, it has significant value to investigate
unsupervised learning and mine the data for potential properties.

2.2. Unsupervised Image Denoising

Lehtinen et al. [21] proposed Noise2Noise, where the network can use noisy images
to learn to transform noisy images into clean images. They held the belief that since the
input and output noise is random, going to force the learning of the relationship between
the two will have two results using CNN. With fewer training samples, the CNN learns
the transition relationship between the two noise patterns. When the number of samples
is large enough, since the noise is randomly unpredictable and stands to minimize the
loss, the convolution can learn the clean image itself. This method has the disadvantage of
requiring various noisy image pairs. Noise2Noise is only suitable for a part of the cases.
Considering this, Alexander et al. [22] proposed Noise2Void, which uses BSN to denoise
directly on a single image. The BSN assumes that the pixels of a real image are conditionally
correlated, while the noise pixels are independent of each other and are not correlated
with each other. A neural network uses this implicit information about a contaminated
pixel point to infer the true value of the contaminated portion by looking at the pixel
points around it. However, real noise does not necessarily satisfy the assumption that
pixels are independent and have zero mean, so this method is less effective in dealing
with structured noise. Laine19 [23] and Xu et al. [24] further used BSN to deal with
noise in images; the shortcoming is that the convolution’s structure restricts the network
model from utilizing the remote information to take full advantage of the global feature.
Hong et al. [25] proposed using a conditional adversarial network for adversarial training
between generators and discriminators. Still, this method is demanding on the training
data, and the model is prone to overfitting. Denoising may not be effective if multiple noise
types are present. In order to ease the loss of pixel information caused by BSN denoising,
Wang et al. [26] added a branch to Noise2Void and improved the denoising performance
of BSN by introducing non-blind point denoising. However, the method works under the
assumption of noise pixel independence and is less effective in removing noise with spatial
correlation. Neshatavar et al. [27] proposed CVF-SID to separate the noise component from
the clean image; it assumes that the noise space is uncorrelated, which does not match the
true noise distribution. Lee et al. [13] used Asymmetric PD (AP) for real-world noise to
break the spatial correlation of noise, which destroys the structural noise by separating
neighboring pixels into different small-size maps. However, the choice to use a larger PD
step size to destroy the larger scale noise can also have some impact on the image details,
destroying the texture’s coherence [28]. Therefore, maintaining a balance between image
denoising and preserving high-frequency information such as textures and edges is an
urgent problem.

Denoising is an indispensable part of a mural images’ digitization process. It has
better adaptability to the use of unsupervised denoising methods for model training when
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not having clean mural images as data labels. Therefore, we use a feature extraction
network (FEN) to extract global and local features, construct two cross-attention blocks
to fuse the information of each stage, and enhance the nonlinear expression ability of the
network through the processing of a feed-forward network (FFN). While ensuring the
image denoising effect, high-frequency information such as texture is retained as much as
possible to reduce the loss of information in the detailed part of the image.

3. Methods

In response to the loss of other high-frequency information due to the pursuit of the
denoising effect during mural restoration, we propose CA-BSN. We first illustrate the
overall algorithm in Figure 1.
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First, we use PD to sample the mural image containing large-scale noise into multiple
small-size images, and we input into masked convolution module (MCM) and feature
extraction network (FEN), respectively, to extract feature information. Then, the cross
attention network (CAN) is constructed to fuse the feature information, which includes
two independent cross-attention blocks, and feature fusion is performed separately for
different parts. Finally, the nonlinear expression ability of the model is improved by a
feed-forward network (FFN), and the denoised image is output.

3.1. Feature Extraction Network Construction

The masked convolution module (MCM) contains three branches; the small image
obtained after PD processing goes through the center mask convolution with a convolution
kernel size of 3 × 3 and 5 × 5 in two branches to obtain the local input feature and
global input feature, respectively, and through the center mask convolution layer with a
convolution kernel size of 5 × 5 in the last branch to obtain the previous feature.

Existing blind spot denoising algorithms usually overlap using multiple dilated con-
volutions containing skip connection to realize the reuse of feature information. However,
capturing the contextual information only by increasing the network sensing field is prone
to a loss of information, making some pixels not involved in the convolution operation from
beginning to end and underutilizing the feature information. In contrast to CNN, the self-
attention mechanism in Transformer [29,30] allows the model to acquire information from
arbitrary locations. This feature enables Transformer to better capture feature dependencies
over long distances and ensure global feature extraction, making up for the limitations
of the CNN in the global feature extraction process. The attention mechanism has a high
computational complexity, and in some cases, it is more efficient to use convolution. There-
fore, to fully extract and utilize the feature information in the image denoising process, we
design the feature extraction network to include two parallel branches: a densely dilated
residual block (DDR) for extracting local feature information, and a non-local attention
mechanism (NLA) for extracting global feature information. In this way, the advantages of
both mechanisms can be fully exploited to improve the performance of the model.
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3.1.1. Densely Dilated Residual Block Construction

The dilated convolution extends the field of view of the convolution filter over the
feature map by adding dilation between neighboring filter pixels during convolution, using
the expanded sense field to allow the network to extract more contextual information and
reduce computational cost. To fully utilize the information extracted from the convolution
of each layer, we propose a densely dilated residual block (DDR), which combines densely
connected residual blocks and dilated convolution under the guarantee of the denoising
performance of the mural image, which enhances the information exchange between the
layers and obtains richer feature information while reducing the number of references. The
structure of densely dilated residual block (DDR) is shown in Figure 2.
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First, the local input feature Il ∈ RH×W×C is sequentially passed through two dilated
convolution layers, Convr=2(.) and Convr=4(.), with a convolution kernel size of 3 × 3,
where r denotes the dilated rate, the convolution kernel 3 × 3 in size is the most commonly
used filter size in image denoising, and the feature obtained from each pass through the
dilated convolution layer and the feature of the previous layer are channel-summing using
concat(, ). After the two-layer feature extraction process, an overall channel-summing is
performed to obtain the feature information Ol_cat ∈ RH×W×5C. The complete calculation
process is shown in Equation (1):

Ol_cat = concat(Convr=4(concat(Convr=2(Il), Il)), concat(Convr=2(Il), Il), Il) (1)

Then, feature fusion and channel processing are performed using 1 × 1 convolution
Conv(.) on Ol_cat.

Finally, the skip connection is used to transfer the shallow feature information to the
deeper convolutional layer to output the local feature Ol ∈ RH×W×C. The computational
procedure is shown in Equation (2):

Ol = Il + (Conv(Ol_cat)) (2)

After the above steps of feature extraction and feature fusion, we obtain the locally ex-
tracted information of the image, ensuring the denoising performance of the mural image.

3.1.2. Non-Local Attention Mechanism Introduction

In order to enhance the model to extract and utilize the global information of the
image and retain the texture information of the image, we introduce a non-local attention
mechanism (NLA) to adjust the processing based on the dynamic weights of the input
image feature. The structure of the non-local attention mechanism (NLA) is shown below
in Figure 3.
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Our non-local attention mechanism (NLA) is divided into two main steps. First, calcu-
late the attention block; then, output the global feature. The specific steps are as follows.

Step 1. Calculate the attention block.
The attention block is a structure of interactive operations through Value (V), Key (K),

Query (Q) matrices, as shown in Figure 4 below.
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In neural networks, deep convolution can use fewer parameters than normal convo-
lution by performing a separate convolution operation for each channel. Therefore, after
changing the number of feature channels in the 1 × 1 convolution, we use deep convolution
instead of the previously used convolution for arithmetic processing.

In attention block, first, for the input V ∈ RH×W×C, K ∈ RH×W×C and Q ∈ RH×W×C

matrices, the feature are extracted using 1 × 1 convolution ConvV,K,Q(.) and 3 × 3 deep
convolution DConvV,K,Q(.), respectively, and the V, K and Q dimensions are changed to
{V′, K′, Q′} ∈ R(H×W)×C using the Reshape operation R(.). The process is computed as
shown in Equations (3)–(5):

V′ = R(DConvV(ConvV(V))) (3)

K′ = R(DConvK(ConvK(K))) (4)

Q′ = R(DConvQ(ConvQ(Q))) (5)

Then, the matrix (K′)T after transposition of K′ is multiplied with the matrix Q′, and
the mapping operation is performed using the Softmax function to obtain the correlation
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weight A ∈ RC×C between the two input matrices. This step of the computation is shown
in Equation (6):

A = Softmax((K′)
TQ′) (6)

Finally, the weight matrix is calculated using weight A and V′. The calculation process
is shown in Equation (7):

gA(V, K, Q) = Conv(R(V′A)) (7)

Step 2. Export global feature.
The input feature is Inl ∈ RH×W×C. Different components Vnl , Knl and Qnl are input

into the attention block to get the weight matrix to establish the correlation between the
global features. We use the skip connection to ensure the learning performance of the
network model to output global feature Onl ∈ RH×W×C. The calculation process is shown
in Equation (8):

Onl = gA(Vnl , Knl , Qnl) + Inl (8)

By using non-local attention mechanism (NLA) based on the self-attention mechanism,
the extraction of global feature information can be enhanced to make up for the shortcom-
ings of densely dilated residual block (DDR) in global feature extraction and retain as much
as possible the texture and edge information of the mural image that is easily lost in the
process of local feature extraction.

3.2. Cross Attention Network Construction

We construct a cross attention network (CAN), which contains LGCA and FFCA
to fuse feature and enhance the interaction between feature information. LGCA fuses
local and global features, and FFCA fuses local–global feature outputs by LGCA and the
previous feature.

3.2.1. Local and Global Cross Attention Block Construction

The constructed cross attention block can effectively handle the relationship be-
tween two distinct features and enhances information extraction by integrating data from
multiple sources, surpassing the general self-attention mechanism in performance. Our
LGCA primarily consists of layer normalization (LN) and attention block, as illustrated in
Figure 5 below.
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Specifically, we first use the features Ol and Onl obtained from densely dilated residual
block (DDR) and non-local attention mechanism (NLA) as different inputs, which are
processed by the normalization layer LN(.). The Ol is mapped into matrices VLGCA and
KLGCA, and Onl is mapped into matrix QLGCA.

The VLGCA, KLGCA and QLGCA obtained from different feature mappings are input
into the attention block, the weight matrix is calculated, and a layer of skip connections
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is added to output the feature matrix OLG ∈ RH×W×C obtained from cross attention. The
calculation process is shown in Equation (9):

OLG = gA(VLGCA, KLGCA, QLGCA) + Onl (9)

We can enhance the interaction of the mural images’ local and global information and
better fuse important information by dealing with the relationship between different features.

3.2.2. Feature Fusion Cross Attention Block Construction

We construct an FFCA to fuse the feature information before and after feature extrac-
tion fully. Like LGCA, the FFCA extracts feature information based on attention blocks,
and strengthen the global relevance of previous and later features by enhancing the infor-
mation interaction previous and later feature processing. The specific structure is shown in
Figure 6.
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First, the feature OLG output from LGCA and the previous feature IFF ∈ RH×W×C are
used as inputs to cross attention block, and the feature matrices VFFCA, KFFCA and QFFCA
are obtained after the normalization layer.

Then, the VFFCA, KFFCA and QFFCA are fed into attention block, the features obtained
from the cross attention block are fused with the input features using channel summation,
and the output features are obtained by processing the number of channels through a
1 × 1 convolutional layer. The computational procedure is shown in Equation (10):

OFF = Conv(concat(OLG,gA(VFFCA, KFFCA, QFFCA), IFF)) (10)

Fusing feature information from different paths using two different cross attention
blocks enhances the information exchange between features and can fully utilize the local
and global information in the denoising process.

3.3. Feed Forward Network Introduction

The feed-forward network (FFN) consists of a feed-forward module (FFM) and
four 1 × 1 convolutional layers; the structure is shown in Figure 7.
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We use the feed-forward module (FFM) to enhance the nonlinear expression of FFCA.
The computational procedure is shown in Equation (11):

OCA = OFF + Conv(GELU(DConv(Conv(LN(OFF))))) (11)

where GELU belongs to the class of activation functions, and OCA ∈ RH×W×C denotes the
result obtained by OFF after feed-forward module (FFM) processing. Finally, the output
after denoising is calculated by superimposing multiple 1 × 1 convolutions.

After the above steps of the cross fusion of different path information, the high-
frequency information is retained as much as possible while guaranteeing the denoising
effect, which enables our method to achieve better performance results in mural image
denoising. The overall CA-BSN architecture is shown in Figure 8.
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Figure 8. The architecture of mural image denoising method based on Cross Attention and
Blind-Spot Network.

The original noise-containing mural image is sampled into multiple small images after
PD, and the sampled image is passed through a 1 × 1 convolutional layer used for linear
transformations. First, the feature information is passed through a masked convolution
module (MCM) containing three parallel center mask convolutions, and the local input
features and global input features obtained after mask convolution are processed using
the densely dilated residual block (DDR) and non-local attention mechanism (NLA) in
feature extraction network (FEN), respectively. Then, the local and global features obtained
after feature extraction are fused by LGCA, and the feature output from LGCA and the
previous feature obtained after the 5 × 5 mask convolution are fused by FFCA. Finally,
the feature information is passed through a feed-forward network (FFN) consisting of a
feed-forward module (FFM) and multiple 1 × 1 convolutions, which is used to upsample
multiple processed small-size maps into a single denoised mural image.

We train the CA-BSN using the loss L1. The computational procedure is shown in
Equations (12) and (13):

L = ∥Iout − Iin∥1 (12)

Iout = PD−1(CA(PD(Iin))) (13)

We first use PD to break the spatial connection between the noises of neighboring
pixels, decompose the noisy image Iin into smaller images, then use the whole network CA
for denoising, and finally combine the outputs through PD−1 to get the denoising result
Iout with the same size as the original image.
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4. Experiments

In this section, we first describe the datasets and evaluation metrics during the experi-
ments, then describe the implementation details, followed by a comparative study with
previous related denoising algorithms to compare the denoising effect of our algorithmic
model, and finally design an ablation study to validate the impact of each module in
CA-BSN on the overall performance.

4.1. Dataset and Evaluation Metric

Our approach is evaluated on two real-world datasets, SIDD and DND, which are
mainstreams in image denoising. The SIDD is a set of about 30,000 noise-containing images
obtained from five representative smartphone cameras in ten scenes under different lighting
conditions, along with the corresponding clean images. We selected sRGB images from
SIDD-Medium with 320 noisy-clean pairs for model training. We use sRGB images from
the SIDD validation set and benchmarks with 40 images per category, each of which can be
cropped to 1280 image blocks of 256 × 256 size, for validation and evaluation. The DND
consists of 50 noisy images, including indoor and outdoor scenes, there are no clear images,
and the denoising results can only be obtained by an online system. Since our method does
not need to consider clean images, the DND can be used directly as a training and test set.

Our method belongs to a kind of unsupervised denoising, self-supervised denoising.
In order to better adapt the model to mural images and demonstrate the denoising effect of
CA-BSN on mural images, we construct a small mural dataset. We retain the mural dataset
used in the lab in the past and obtained some electronic images by collecting classic books
and official museum displays, and extended the dataset by cropping, rotating, and flipping,
which are the ground-truth data.

In order to obtain random and natural noisy images, we analyze the noise characteris-
tics of the images, which are mainly characterized by irregular distribution and size, spatial
correlation of noise, and mixing of multiple types of noise. Therefore, we chose to add
Gaussian noise, Poisson noise and Perlin noise. The specific formulas are as follows:

yT−1 = xT−1 + αN(µ, σ2) + (1 − α)Poisson(λ) (14)

xT = yT−1 + Perlin(scale, octaves, persistence, lacunarity) (15)

where T denotes the number of times the noise was added, y is an intermediate variable,
and xT is the data obtained after xT−1 has been added by the Gaussian, Poisson, and
Perlin noise. Item α is the random mixing ratio of Gaussian and Poisson noise ranging
from 0.3 to 0.7. N

(
µ, σ2) denotes the Gaussian noise with mean µ and standard devi-

ation σ. The mean value ranges from −1.0 to 1.0 and standard deviation from 9 to 25.
Poisson(λ) denotes Poisson noise with intensity λ and a random range of intensity from 8 to
12. Perlin(scale, octaves, persistence, lacunarity) denotes the equation for two-dimensional
Perlin noise distribution, where the scale has a random range of 8 to 12, octaves of 4 to 8,
persistence between 0.3 and 0.7, and lacunarity of 1.5 to 3.0. By superimposing the noise on
each image several times, we obtain a batch of mural noise images that satisfy the image
noise properties but are still natural.

Since our method does not use ground truth data, we directly use the noisy mural
dataset for training and testing. The ground truth data are used to compare metrics. The
mural images in our paper are sRGB data containing 15,000 patches of size 224 × 224,
mainly Buddhist culture and ancient scenes. Partial samples of the dataset are shown in
Figure 9.

In order to verify the denoising effect of the model, we use the Peak Signal-to-Noise
Ratio (PSNR) and the Structural Similarity Index Measure (SSIM) as objective evaluation
metrics. PSNR is used to measure the quality of the image, and SSIM measures the similarity
of the two images. Higher PSNR and SSIM values indicate improved output image quality.
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4.2. Implementation Details

The computer hardware environment used during the overall experiment is the Intel(R)
Xeon(R) Silver 4110 CPU @ 2.10 GHz, 64 GB of RAM, and NVIDIA Quadro RTX 6000
graphics card; the software environment is the Windows 10 operating system; and the
runtime environments are Python3.10, PyTorch2.0 and Pycharm2022.3.3. The experiment
uses the Adam optimizer with the initial learning rate set to 10−4, and the batch size is set
to 32. The total number of rounds of model training is 30, and the learning rate is multiplied
by 0.1 at round 20. In this paper, the asymmetric pixel–shuffle downsampling proposed
by AP-BSN is followed, and the PD stride is set to 5 in the training phase and 2 in the
testing phase.

4.3. Comparison Experiment

In order to verify the feasibility and effectiveness of our proposed CA-BSN, we de-
signed comparison experiments of image denoising. Table 1 demonstrates the comparison
results of several methods on the SIDD and DND datasets for the objective evaluation index
parameters. Figure 10 shows the visualization results of some of the methods in Table 1 on
the DND and SIDD.

The methods we compared include non-learning based, supervised denoising, and
unsupervised methods. As can be seen from Table 1, RIDNet has achieved impressive
performance in denoising. However, our analysis focuses on unsupervised denoising, and
although RIDNet’s performance is noteworthy, it is not suitable for the denoising of mural
images due to the difference in categories and the limitation of the application scenarios,
which are worse in the application of mural images. Our method outperforms previous
unsupervised representative methods in both SIDD and DND, demonstrating excellent
denoising performance. Specifically, our proposed CA-BSN improves the PSNR by 0.95 and
0.15 on the two datasets, and the SSIM also grows by 0.7% and 0.2%, respectively, compared
to the AP-BSN algorithm.

In Figure 10, we show two images from the DND and four images from the SIDD
processed by different denoising models. Figure 10a shows the original noisy image, which
we zoomed in locally for a more visual comparison with the other methods. Because of
our limited time and equipment resources, we choose CBDNet, which saves more training
time and model computation compared to RIDNet, as a comparative method to show the
test effect. The supervised learning-based method CBDNet cannot clearly discriminate
the image’s high frequency details due to its model’s characteristics, which leads to the
situation that the edge information is prone to be deficient, and the model’s generalization
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ability in different scenes is weak. In the unsupervised denoising model, for the direct
observation method using a single noisy image, CVF-SID does not take into account the
spatial correlation of the real noise, only considers the separation of the noise from the clean
image, and the real noise cannot be removed entirely. Figure 10c shows that this approach
can blur image edges. The AP-BSN algorithm simply loses some pixel information using
dilated convolution and destroys the texture information of the image using PD with
a large step size, as seen in Figure 10d. AP-BSN performs poorly in the detailed parts
such as edges. Our proposed CA-BSN algorithm designs spatial correlation and remote
dependency into the network, preserving the detailed information as much as possible.
According to Figure 10e we can see that compared with other algorithms, the edges of the
images processed by our CA-BSN are clearer and show better denoising effect.

In order to test the denoising effect of our method on the mural dataset, we compare it
with the current more popular unsupervised denoising methods, and the results on the
evaluation metrics are shown in Table 2.

In order to verify the specific performance effect of our proposed method in the
process of mural image denoising, we select several images from the mural dataset for
effect demonstration and visually compare the different unsupervised methods in Table 2.
The results are shown in Figure 11.

We have chosen three unsupervised methods, Noise2Void, CVF-SID and AP-BSN, to
compare with our method. As can be seen from the figure, compared with the three methods,
our denoising method has better performance on the mural image, the color spots in the
image are removed more completely, and the texture information, which is not very distin-
guishable from the surrounding noise, is also well preserved, reducing the loss, and the
texture part is shown more clearly.

Figure 12 displays the denoising effect of CA-BSN on mural images.

Table 1. Quantitative comparison of different denoising models on SIDD and DND. We use “AP-BSN”
in the paper to represent “AP − BSN + R3” in paper [13]. Therefore, the “AP-BSN” here is consistent
with the value of “AP−BSN+R3” in the paper. By default, we get the official evaluation results from
SIDD and DND benchmark websites. R indicates that the result is reported by R2R [31]. † indicates
that we have retrained the model in the same way as our implementation details. The highest value
is highlighted in bold for each type of denoising model.

Method
SIDD DND

PSNR (dB) SSIM PSNR (dB) SSIM

Non-learning based BM3D [32] 26.65 0.685 34.51 0.851

Supervised
DnCNN [16] 23.66 0.583 32.43 0.790
CBDNet [18] 33.28 0.868 38.05 0.942
RIDNet [19] 38.70 0.950 39.25 0.952

Unsupervised

GCBD [33] - - 35.58 0.922
Noise2Void R [22] 27.98 0.668 - -

UIDNet [25] 32.48 0.897 - -
CVF-SID [27] 34.71 0.917 36.50 0.924
AP-BSN † [13] 35.64 0.929 - -
AP-BSN [13] 35.97 0.925 38.09 0.937

Ours 36.92 0.932 38.24 0.939

Table 2. Quantitative comparison of different denoising models on mural images dataset. The highest
value is highlighted in bold for denoising models.

Method PSNR (dB) SSIM

Noise2Void [22] 27.98 0.667
CVF-SID [19] 35.27 0.904
AP-BSN [15] 36.90 0.915

Ours 37.02 0.927
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Figure 10. Comparison of visual quality of DND and SIDD images. The upper two rows are examples
from the DND dataset, and the lower four rows are from the SIDD dataset. (a) Noisy (b) CBDNet
(c) CVF-SID (d) AP-BSN (e) Ours. Best viewed zoomed in. For quantitative comparison, we mark
per-sample PSNR/SSIM w.r.t. the ground-truth image at the upper left of each patch.
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4.4. Ablation Study

In order to validate the impact that each module brings to the denoising of mural
images in our method, we designed ablation studies based on two evaluation metrics,
PSNR and SSIM, on the mainstream SIDD.

We verify the effect of different convolution kernel sizes and masked sizes of masked
convolution layers in the masked convolution module (MCM) on model training. The role
of the convolution kernel in the masked convolution layer is to extract features, and the
mask is mainly used for blind spot mapping in the subsequent network, demonstrating
the impact on model performance and the number of parameters through changes in
convolution kernel and masked size. The specific details are shown in Table 3.

Table 3. Ablation study with different convolution kernels and masked sizes. The highest value is
highlighted in bold for denoising models.

Masked Conv1 Masked Conv2 Masked Conv3
PSNR (dB) SSIM Params (M)

Kernel Masked Kernel Masked Kernel Masked

5 × 5 1 × 1 5 × 5 1 × 1 5 × 5 1 × 1 35.50 0.926 0.94
3 × 3 1 × 1 3 × 3 1 × 1 5 × 5 1 × 1 35.67 0.930 0.88
3 × 3 1 × 1 5 × 5 1 × 1 3 × 3 1 × 1 35.77 0.929 0.86
3 × 3 1 × 1 5 × 5 1 × 1 5 × 5 2 × 2 36.62 0.920 0.82
3 × 3 1 × 1 5 × 5 1 × 1 5 × 5 1 × 1 36.62 0.932 0.91

“Masked Conv1” denotes the masked convolution used to extract local features,
“Masked Conv2” denotes the masked convolution used to extract global features, and
“Masked Conv3” denotes the masked convolution used to extract previous features. The
size of the convolution kernel affects the extraction of features, the small convolution kernel
is suitable for extracting the detailed information of the image, and the large convolution
kernel is suitable for extracting the overall information of the image. The larger the size of
the convolution kernel, the higher the number of parameters in the computational equation.
The size of the mask affects some information in the pixels of the image; when a larger
mask is used, the texture information of the image may be lost due to occlusion. The larger
the masked size, the less data are involved in the computation.

In order to verify the superiority of our designed feature extraction network (FEN)
and cross attention network (CAN), we designed an ablation study using the substitution
method as shown in Table 4.

Table 4. Ablation study with feature extraction and fusion. The highest value is highlighted in bold
for denoising models.

Cases FEN CAN PSNR (dB) SSIM FLOPS (G) Params (M)

(a) NLA NLA LGCA FFCA 36.80 0.912 32.8 0.94
(b) DDR DDR LGCA FFCA 36.52 0.898 28.3 0.82
(c) DDR NLA concat FFCA 36.71 0.920 27.2 0.88
(d) DDR NLA LGCA concat 36.77 0.892 27.7 0.90
(e) DDR NLA LGCA FFCA 36.92 0.932 30.4 0.91

Case (e) is our method, Case (a) is to replace both parts of the feature extraction with
global feature extraction using attention mechanism, Case (b) is to replace both parts of the
feature extraction with local feature extraction using convolution operation, and Case (c)
and Case (d) are to replace the cross-feature fusion part with the common “concat” in turn.
Table 4 shows the model performance and the amount of computation for different settings.
Experiments show that the feature extraction combining the convolution and attention
mechanisms is more effective for model training.
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We designed an ablation study to verify the effect of different convolutional layers for
the number of 1 × 1 convolutional layers for multiple after feed-forward modules (FFMs)
in the feed-forward network (FFN). The details are shown in Table 5.

Table 5. Ablation study with different number of convolutional layers. The highest value is high-
lighted in bold for denoising models.

Method PSNR (dB) SSIM Params (M)

1 × Conv 35.50 0.926 0.95
2 × Conv 35.67 0.932 0.94
4 × Conv 36.92 0.932 0.96
6 × Conv 36.87 0.929 0.97

The “1 × Conv” indicates that only one 1 × 1 convolutional layer is used in the final
feature extraction for channel processing and information interaction, and according to the
parameters in the table, we can see that the use of four 1 × 1 convolutional layers is better,
and the method we use has better performance.

To verify the effect of using different modules on the image denoising performance,
we designed an ablation study with different modules, as shown in Table 6.

Table 6. Ablation study using different modules. The highest value is highlighted in bold for
denoising models.

Cases LGCA FFCA FFN PSNR (dB) SSIM

(a)
√

× × 32.25 0.733
(b)

√
×

√
32.51 0.787

(c)
√ √

× 36.42 0.894
(d)

√ √ √
36.92 0.932

The “×” indicates that the module was not used in that experiment, and “
√

” indicates
that the module was added. Case (a) is our baseline; here, we only consider whether the
module is used or not, without considering other factors (e.g., parameter settings). Since
the benchmarks only consider local and global performance, they are not highly utilized
for features before and after image processing. When we connect the FFN and FFCA, i.e.,
Cases (b) and (c), the model achieves an increase of 0.26 dB and 4.17 dB, respectively. Based
on the results of the parameters of PSNR and SSIM in the table, it can be seen that Case (d)
using LGCA, FECA and the feed-forward network (FFN) have better performance.

5. Conclusions

In this paper, we propose CA-BSN for denoising mural images, aiming to denoise
the image while preserving the texture details of the image. First, we propose a mask
convolution module (MCM) containing a parallel three-branch structure that feeds the first
two branches into the feature extraction network (FEN) for the image’s local and global
features, respectively. Then, the two results are subjected to local and global cross-attention
fusion, and FFCA is used to fuse the features before and after full text processing. Finally,
the denoising results are output after the nonlinear mapping of feed forward module (FFM)
and multilayer 1 × 1 convolution layers. The texture and edge information of the image
are preserved as much as possible while ensuring the denoising performance. Experiments
prove that our method outperforms some of the previous methods and demonstrates the
excellent results of the CA-BSN model on a large amount of mural image data.

In the future, we hope that our work can be further researched under the conditions
of the existing results to preserve the texture information as much as possible and to
implement the methodology into specific applications to try our best to improve the
digitization of murals.
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