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Abstract: In petroleum engineering, accurately predicting particle settling velocity during various
stages of a well’s life cycle is vital. This study focuses on settling velocities of both spherical and non-
spherical particles in Newtonian and non-Newtonian fluids. Utilizing a dataset of 931 experimental
observations, an artificial neural network (ANN) model with a 7-42-1 architecture is developed
(one input layer, one hidden layer with 42 neurons, and one output layer). This model effectively
incorporates particle settling orientation and the inclusion of the settling area ratio, enhancing its
predictive accuracy. Achieving an average absolute relative error (AARE) of 8.51%, the ANN model
surpasses traditional empirical correlations for settling velocities in both Newtonian and power-law
fluids. Key influencing factors, such as the consistency index and particle equivalent diameter, were
identified. This approach in ANN model construction and data analysis represents a significant
advancement in understanding particle dynamics.

Keywords: settling velocity; artificial neural network; Newtonian fluid; power-law fluid; spherical
particle; non-spherical particle

1. Introduction

Particle transport plays a crucial role in various stages of a well’s life cycle in petroleum
engineering [1]. Examples include cuttings transport during drilling [2,3], sand production
during oil production [4,5], and proppant transport during fracturing stimulation [6,7].
The accurate prediction of particle settling velocity is critical to describe particle transport
characteristics in the wellbore. For instance, particles cannot be removed from the wellbore
if the fluid velocity is smaller than the particle settling velocity in a vertical well [8,9]. Simi-
larly, in horizontal sections of the wellbore or fractures, the transport distance of cuttings
or proppants is primarily determined by the particle settling velocity [10,11]. In the study
of particle dynamics, particularly in fluid mediums, two key concepts are paramount:
free and hindered settling [12,13]. Free settling occurs when particles descend through
a fluid independently, unaffected by the presence of other particles. This process is typi-
cally observed in dilute suspensions where particle interactions are minimal. Conversely,
hindered settling describes the scenario where particle concentration is high enough that
interactions between particles significantly affect their settling behavior. Hindered settling
is often characterized by reduced settling velocities compared to free settling due to mutual
interference among particles. Understanding these two settling regimes is crucial as they
provide fundamental insights into the behavior of particles in various fluid environments,
including both Newtonian and non-Newtonian fluids.

The settling characteristics of spherical particles in Newtonian fluids are well under-
stood, as only one parameter, diameter, is sufficient to describe the particle shape [14]. How-
ever, non-spherical particles and non-Newtonian fluids are more common in petroleum
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engineering, making it difficult to describe settling behaviors [15,16]. Non-spherical par-
ticles are affected not only by their shape but also their settling orientation, making their
characteristics harder to describe. Thus, additional parameters are needed to describe
non-spherical particle shapes, in addition to the equivalent diameter of the sphere with the
same volume. Parameters for evaluating particle shape, such as the Corey shape factor [17]
and circularity [18], are sometimes used. The Corey shape factor refers to the combination
of lengths of the longest, the intermediate, and the shortest mutually perpendicular axes,
commonly used in sedimentology to describe particle irregularity. Circularity measures
how closely a particle’s shape approximates a circle, with higher values indicating shapes
more akin to perfect circles. However, sphericity is emphasized as the key metric. Defined
as the ratio of the surface area of a sphere (with the same volume as the particle) to the
surface area of the particle, sphericity accurately reflects shape deviation [19]. A sphericity
value of 1 indicates a perfect sphere, with lower values signifying greater deviations. This
metric is crucial in the settling velocity correlation to incorporate the impact of particle
shape. Merely using sphericity is insufficient to describe the shape of non-spherical par-
ticles, as two particles with the same sphericity can have entirely different shapes and
settling characteristics. The orientation of a particle also affects its drag coefficient and
settling velocity. The drag force increases with the larger projected area of the particles
perpendicular to the flow direction, which in turn affects the final settling velocity. How-
ever, sphericity alone cannot account for the effect of settling direction. Settling orientation
also affects the particle settling process. And this phenomenon has been observed by many
researchers [18,20–28].

To account for the settling orientation effect, researchers have utilized various methods.
For example, Hölzer and Sommerfeld [22] incorporated two additional sphericities in the
crosswise and lengthwise directions to describe the settling orientation effect, but their
study only focused on predicting the drag coefficient and did not investigate the settling
velocity. Another approach is to use the settling area ratio (S), as utilized by Song et al. [29].
However, their model is only applicable to Newtonian fluids. Some scholars have employed
numerical simulation methods to study the influence of settling orientation [25]. However,
such methods are computationally expensive. The traditional methods for predicting
settling characteristics have limitations, as they only consider either spherical or non-
spherical particles in either Newtonian or non-Newtonian fluids. In petroleum engineering,
where both types of fluids are common, the lack of formulas capable of predicting settling
velocity for both particle shapes in both types of fluids is a significant drawback of the
traditional approach. Furthermore, using different correlations for different fluids and
particle shapes adds complexity to the process. For instance, non-Newtonian fluids require
different correlations than Newtonian fluids.

Artificial intelligence (AI) technology has gained significant attention in the petroleum
engineering industry in recent years. Table 1 summarizes several studies that use AI
technology to predict the drag coefficient and settling velocity of particles. Rooki et al. [30]
developed an artificial neural network (ANN) to predict the terminal velocity of solid
spheres, taking into account the properties of the sphere and the surrounding liquid. The
ANN was trained on 88 sets of both Newtonian and non-Newtonian fluids data from
published sources, accurately predicting terminal velocity of solid spheres falling through
a wide range of power-law values (1.0 to 0.06). Goldstein and Coco [31] presented a novel
machine learning approach, specifically using genetic programming, to predict noncohesive
particle settling velocity. It utilizes a database of 985 published experimental measurements
and outperforms common predictors in the literature. The study highlights the efficiency
and accuracy of the machine learning approach in this field. Yan et al. [32] compared BPNN
and RBFNN models for predicting drag coefficients of non-spherical particles in gas–solid
flow. The RBFNN model was found to be more effective, regardless of particle sphericity.
The study provides valuable insights for fluidization studies. Mirvakili et al. [33] used
ANNs to predict the terminal falling velocity of non-spherical particles in fluids. The ANN
accurately predicted terminal velocities using 361 data points. This research offers a reliable
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method to predict particle behavior in fluid dynamics. Agwu et al. [34] developed an ANN
model to predict drill cuttings’ settling velocity in wellbores. The model considers various
shapes of cuttings and fluid properties, providing a more accurate and innovative approach
to estimating settling velocity under real-world drilling conditions. Zhu et al. [35] compared
three machine learning models to estimate sediment settling velocity. The decision tree
(DT) model outperformed other models and traditional methods in predicting velocity
for sand and gravel. Advanced modeling techniques can further improve estimation
methods. Maiti et al. [36] developed an empirical correlation to predict the settling velocity
of solids in non-Newtonian liquids using experimental methods and ANN modeling. The
study confirmed the effectiveness of ANN techniques in predicting settling velocity more
accurately than previous methods. Rushd et al. [37] used machine learning to predict
settling velocity and found support vector regression with a polynomial kernel to be the
most effective method. Their model was validated through rigorous statistical methods on
967 fluid samples, highlighting the potential of AI in fluid dynamics. In follow-up research,
they used a large dataset to evaluate machine learning models for predicting the settling
velocity of particles in Newtonian fluids, offering a more accurate and reliable method using
advanced AI techniques. Zhu et al. [28] developed ANN models to predict proppant settling
velocity and orientation in vertical fractures. Based on 588 experiments, they analyzed
the impact of proppant shape, fluid properties, and fracture wall effects on the settling
characteristics. The insights we gained can improve hydraulic fracturing performance.
Rushd et al. [38] used AI to predict the settling velocity of spherical and non-spherical
particles. Their detailed dataset improved accuracy and reliability. This study applied
AI in a field that typically relies on empirical and experimental methods. Cahyono [39]
developed seven equations using artificial neural network (ANN) methodology to predict
the settling velocity of sediment particles. Data were sourced from digitized charts by the
U.S. Interagency Committee on Water Resources, and the equations were compared with
existing ones for validation. This presents a new approach in sedimentology for predicting
settling velocities.

Table 1. Studies on prediction of drag coefficient and settling velocity of particles using AI technology.

Authors AI Model Number of
Data Points Fluid Particle Input

Parameters
Predicted
Parameter

Rooki et al. [30] ANN 88 (63 train, 25
test) Newt, PL Spherical ρ f , ρp, dp, K, n Up

Goldstein and
Coco [31] GP

985 (40 train,
472 validation,

473 test)
Newt Non-spherical dp, ν, R Up

Yan et al. [32] BPNN, RBFNN — Newt Spherical,
Non-spherical — CD

Agwu et al. [34] ANN
336 (236 train,

50 test, 50
validation)

Newt Spherical,
Non-spherical Φ, ρp, dp, µ, ρ f Up

Zhu et al. [35] FFNN, DL, DT 756 (529 train,
227 test) Newt Non-spherical dp, ν, R Up

Maiti et al. [36] ANN
54 (38 train, 11
validation, 5

test)
PL Non-spherical n, K, ρ f , ϕ, dp,

dt
Up
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Table 1. Cont.

Authors AI Model Number of
Data Points Fluid Particle Input

Parameters
Predicted
Parameter

Rushd et al. [37]

SVR-RBF,
SVR-P, SVR-L,

RFR, SGB,
BART, KNN,
MLP, ANN

967 (774 train,
193 test)

Newt, Bin, PL,
HB Spherical dp, ρp, ρ f , τy, K,

n Up

Rushd et al. [40]

Gaussian
processes, MLP,
RBF, M5′ model

tree, RF

3328 (2330 train,
998 test)

Newt, Bin, PL,
HB

SphericalNon-
spherical

dp, Φ, ρp, ρ f , τy,
K, n Up

Zhu et al. [28] ANN 588 (470 train,
118 test) PL Non-spherical ρp, d, Lp, K, n,

W, ρ f
Up

Rushd et al. [38]
ANN, SVM,

KNN, PR, DT,
RF

2726 (2181 train,
545 test) Newt SphericalNon-

spherical dp, ρp, Φ, ρ f , µ Up

Implementing AI, particularly ANN, in predicting settling velocity is motivated by
several factors. (1) ANN can handle a broader range of variables and interactions, making
them suitable for complex systems. (2) AI can uncover patterns and relationships in data
that might not be apparent or easily modeled through traditional methods. (3) Once trained,
AI models can provide rapid predictions, which is beneficial in practical applications. AI
offers enhanced predictive accuracy, especially in systems where interactions are nonlinear
and multifaceted, such as in the settling of non-spherical particles in non-Newtonian fluids.
The ability of AI to learn from data allows it to adapt to various conditions without the
need to re-derive formulas or extensively recalibrate models. However, these studies have
limitations in terms of particle shape and fluid type. For instance, some models are only
suitable for spherical particles [30,37] or Newtonian fluids [31,32,34,35,38], while others
are only applicable to non-spherical particles in power-law fluids [28,36]. Moreover, some
studies lack experimental data for non-spherical particles in non-Newtonian fluids [40],
making it difficult to predict their settling velocity. Therefore, developing an AI model to
accurately predict spherical and non-spherical particles’ settling velocity in Newtonian
and non-Newtonian fluids is crucial in petroleum engineering. In this paper, we aim
to achieve the following objectives: (1) developing an ANN model to accurately predict
the settling velocity of both spherical and non-spherical particles in both Newtonian and
non-Newtonian fluids, (2) incorporating the impact of particle settling orientation in the
prediction of settling velocity, and (3) performing a sensitivity analysis on the various input
parameters of the proposed ANN model to evaluate their individual effects on settling
velocity prediction.

2. Dataset
2.1. Particle Settling Experiments

The details of the particle settling experiments are provided in three papers published
by our team [16,29,41]. The experimental setup for particle settling included a 1.5 m height
tube, a high-speed camera, and a computer for data acquisition. A total of 114 particles,
varying in density, shape, and size, were used. Both Newtonian and non-Newtonian fluids
were employed, as shown in Table 2. Please refer to the Supplementary Materials File S1
for a comprehensive dataset comprising a total of 931 experimental data points.
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Table 2. Experimental matrix of particle settling.

Particle Properties Fluid Properties

Shape (Sphericity)
ρp

(kg/m3) Fluid Type Rheology

K (Pa·sn) n

Sphere (1)
Cube (0.806)

Cylinder (0.697, 0.779, 0.640)
Disk (0.756, 0.873, 0.471)

2680
4450
7960

Newtonian

0.066
0.124
0.135
0.289
0.6685

1
1
1
1
1

Power-law

0.260
1.202
3.233
5.028
9.608

0.755
0.650
0.576
0.548
0.505

The dataset comprising 931 experimental data points was meticulously collected under
controlled laboratory conditions. Each experiment was repeated multiple times to ensure
consistency and to minimize experimental errors. The range of experimental conditions
was chosen to represent a wide spectrum of scenarios encountered in particle dynamics,
particularly in petroleum engineering contexts. It should be noted that uncertainties in
data acquisition are inevitable in any experimental process. These uncertainties may arise
from various sources, such as measurement errors (e.g., in the measurement of particle
size or fluid properties), environmental conditions, and intrinsic variations in the materials
used. To address these issues, experiments are conducted under consistent environmental
conditions. Moreover, multiple repetitions are performed for each experimental condition
to help average out random errors.

Figure 1 demonstrates that various non-spherical particles differ in settling orientation,
with some particles even changing orientation during settling. At low Reynolds num-
bers, the initial settling orientation remains consistent, while at high Reynolds numbers,
the settling orientation changes continuously throughout the settling process, making it
more complex.
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Figure 1. Successive settling process of non-spherical particles with varying shapes and orientations
(based on our previous experiments. (a): cylinder-shaped particle with 20 mm diameter and 5 mm
height, (b): cylinder-shaped particle with 18 mm diameter and 6 mm height, (c): cube-shaped particle
with 8 mm length, (d): cylinder-shaped particle settling with 30 mm diameter and 3 mm height).

2.2. Dataset Characteristics and Analysis

Table 3 and Figure 2 provide an intuitive display of the experimental data points for
spherical and non-spherical particles in both Newtonian and non-Newtonian fluids. The
data points are well balanced in this study, with 378 and 553 data points in Newtonian and
non-Newtonian fluids, respectively. Notably, this dataset includes non-spherical particles
in power-law fluids, which is a significant contribution to the literature. In contrast, Rushd
et al. [40] utilized 3328 data points, but the majority are in Newtonian fluids (2732 data
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points, 82%). Consequently, the AI model’s features are primarily extracted from Newtonian
fluids in that study. Furthermore, Rushd et al. [40] did not provide settling velocity data for
non-spherical particles in non-Newtonian fluids, indicating that all data for non-spherical
particles are in Newtonian fluids.

Table 3. Data point numbers for different particles in different fluids of this study.

Particle Fluid Data Point Number

Spherical Newtonian 102
Non-spherical Newtonian 276

Spherical Power-law 98
Non-spherical Power-law 455

Total 931
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Newtonian and power-law fluids.

It could be found from Table 3 and Figure 2 that there is an imbalance in these
data towards non-spherical samples in non-Newtonian fluids. This was primarily due to
the following three reasons. (1) Experimental constraints: All data used were obtained
from our experiments. Non-spherical particles, due to their varied shapes and sizes,
inherently require more experimental observations compared to spherical ones. Similarly,
characterizing non-Newtonian fluids, represented by multiple parameters like consistency
index and flow behavior index, necessitate more extensive experimental setups. (2) Focus on
underrepresented areas: This study particularly aimed to address the less-explored domain
of non-spherical particles in non-Newtonian fluids, prevalent in petroleum engineering.
Although spherical particles and Newtonian fluids were included for comparative analysis
and to broaden the model’s applicability, our primary focus was on more complex scenarios.
(3) Existing literature: There are abundant research and highly accurate predictive formulas
available for spherical particles in Newtonian fluids, which guided our decision to focus
on areas with less available data.

3. Methodology
3.1. Data Preparation and Partitioning

This study primarily focused on parameters that significantly influence particle settling
velocity in both Newtonian and non-Newtonian fluids. The input data included particle
characteristics (like size, density, and shape), fluid properties (such as density and viscosity),
and flow dynamics parameters. These types of data were selected based on their recognized
impact on settling behavior, as documented in the existing fluid dynamics literature. The
criteria for selecting specific input variables were based on several factors. (1) Each variable
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was chosen for its direct or indirect impact on particle settling velocity, as supported by
previous research findings. (2) The variables selected were measurable and available
within the scope of experimental capabilities. (3) To ensure the model’s applicability across
different scenarios, a diverse range of variables representing various particle types and
fluid conditions was selected. (4) The selection was also influenced by the feasibility and
reliability of accurately measuring each variable under laboratory conditions.

The dataset of particle settling velocity is partitioned into two sets: a train set used
to adjust the weights and biases in the ANN model and a test set used to independently
evaluate the performance of the model. Following previous research, 80% of the dataset is
allocated to the train set, while the remaining 20% is assigned to the test set. As shown in
Table 4, the statistical properties of the train and test sets are similar.

Table 4. Statistical parameters of train and test sets for the ANN model.

Model Variables and Datasets
Statistical Parameters

Mean Standard
Deviation Min Max

Particle density (kg/m3)
Train set 4961 2680 2171 7960
Test set 5243 2680 2303 7960

Particle equivalent diameter (m) Train set 0.00678 0.001 0.00377 0.01594
Test set 0.00665 0.001 0.00363 0.01594

Sphericity Train set 0.793 0.471 0.149 1
Test set 0.792 0.471 0.140 1

Settling area ratio Train set 0.765 0.282 0.246 1.174
Test set 0.749 0.282 0.234 1.174

Fluid density (kg/m3)
Train set 1098 1000 116 1250
Test set 1088 1000 114 1250

Consistency index (Pa·sn) Train set 2.354 0.066 3.024 9.608
Test set 2.705 0.066 3.293 9.608

Flow behavior index
Train set 0.771 0.505 0.204 1
Test set 0.751 0.505 0.205 1

3.2. Development of the ANN Model

This study utilizes a three-layer ANN model with a common structure consisting of
an input layer, a hidden layer, and an output layer. While adding more hidden layers
may improve the model’s performance, it also raises the potential for overfitting when
dealing with a small dataset. Guided by the principle of Occam’s Razor, where simpler
models are preferred due to their generalizability and lower risk of overfitting, this study
employs a one-hidden-layer ANN model. The input layer of the model includes seven
nodes, with each node representing an input parameter that has an impact on the settling
velocity of the particles. In the output layer, one node represents the particle settling velocity.
However, determining the optimal number of nodes in the hidden layer is not guided by any
theory and relies mainly on experience. The architecture of the ANN model is illustrated
in Figure 3.

To train the ANN model for predicting settling velocity, we set the learning rate to
0.001 and used the mean squared error as the loss function. The hidden and output layers
were activated using ReLU and Sigmoid functions, respectively. We trained the model
for 1000 epochs to optimize its performance. In order to determine the optimal node
number in the hidden layer, we minimized the difference between predicted and measured
settling velocity. In our study, we indeed utilized K-fold cross-validation for training the
model. Specifically, we employed 10-fold cross-validation, a standard machine learning
approach, to ensure our model’s robustness and generalizability. This method involved
partitioning the dataset into ten equal-sized subsets. Each iteration used one subset as the
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test set, while the remaining nine subsets were combined to form the training set. This
process was repeated ten times, with each subset serving as the test set exactly once. The
use of K-fold cross-validation allowed us to mitigate the potential biases associated with
the random sampling of the training and test sets, thus enhancing the reliability of our
model’s performance assessment. The average R2 value and the standard deviation of
the R2 values from these iterations provided a comprehensive measure of the model’s
predictive accuracy and consistency. Our results showed that the ANN model performed
best when the hidden layer contains 42 nodes. These parameters were carefully chosen to
ensure that the model was accurate and reliable in predicting settling velocity in various
petroleum engineering applications.
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The accuracy of the proposed ANN model was assessed using the average absolute rel-
ative error (AARE) (Equation (1)), root mean square error (RMSE) (Equation (2)), and mean
absolute error (MAE) (Equation (3)) between measured and predicted settling velocity.

Average absolute relative error (AARE):

AARE =
1
N

n

∑
i=1

∣∣∣∣∣ Ûp,i − Up,i

Up,i

∣∣∣∣∣ (1)

Root mean square error (RMSE):

RMSE =

√
1
N

n

∑
i=1

(
Ûp,i − Up,i

)2 (2)

Mean absolute error (MAE):

MAE =
1
N

n

∑
i=1

∣∣Ûp,i − Up,i
∣∣ (3)

where Ûp,i is the particle settling velocity predicted by the ANN model, Up,i is the measured
particle settling velocity, and N is the total number of experimental data.
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4. Results and Discussion

Table 5 and Figure 4 demonstrate that the average absolute relative error (AARE) in
the train and test sets is 8.48% and 8.64%, respectively. To evaluate the impact of the settling
area ratio, we compared the prediction accuracy of the ANN model with and without the
input of the settling area ratio. Our findings show that the prediction accuracy could be
enhanced by including the settling area ratio as an input, which validates that settling
orientation is a critical factor affecting particle settling velocity. The weights and biases
used in the ANN model are provided in Appendix A.

Table 5. Summary of ANN performance in train and test sets.

Models Data Set AARE RMSE MAE

ANN with input S Train 0.0848 0.016 0.010
Test 0.0864 0.026 0.015

ANN without input S Train 0.1092 0.018 0.011
Test 0.1022 0.026 0.016
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Table 6 and Figure 5 illustrate the accuracy of the proposed ANN model in compari-
son to other empirical correlations [16,29,42,43]. Although the model proposed by Song
et al. [29] provides precise predictions in Newtonian fluids, it is unsuitable for power-law
fluids. In contrast, the ANN model can accurately predict the settling velocity of both
spherical and non-spherical particles in both Newtonian and power-law fluids.

Table 6. Comparison of ANN model with empirical correlations.

Model
AARE of Train Set AARE of Test Set

Newtonian Power-Law Newtonian Power-Law

Haider and Levenspiel [42] 15.47% / 15.52% /
Madhav and Chhabra [43] / 89.14% / 87.53%

Song et al. [29] 3.96% / 3.89% /
Xu et al. [16] / 14.03% / 13.85%

ANN model in this study 9.69% 7.63% 8.41% 8.79%

Note: ‘/’ in Table 6 represents that this model is unsuitable for this fluid type.
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The inclusion of Newtonian fluid and spherical particle data slightly reduced the ANN
model’s precision compared to high-accuracy models specific to these conditions. However,
it significantly enhanced the model’s accuracy for non-Newtonian fluids. For instance,
the prediction error for non-Newtonian fluids was markedly lower than existing models.
In conclusion, while the dataset imbalance slightly affected the model’s performance
in predicting Newtonian fluid and spherical particle settling velocities, it considerably
improved its applicability and accuracy for non-spherical particles in non-Newtonian
fluids. As for the sensitivity of this imbalance, it could be found that an imbalance in the
dataset can influence a model’s performance and generalizability. These analyses involved
testing the model’s performance with varied proportions of spherical and non-spherical
particles, as well as Newtonian and non-Newtonian fluids. The results indicated that while
there is some sensitivity to these variations, the overall predictive accuracy of the model
remained robust across different scenarios. This suggests that the proposed model can
generalize well despite the uneven distribution of data points.
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To compare with other advanced algorithms, K-fold cross-validation (K = 10) is used to
determine the most suitable model for this study. The evaluation focused on the coefficient
of determination as a measure of model accuracy, defined as Equation (4):

R2 =
SSregression

SStotal
(4)

where SSregression is the regression sum of squares, representing the fit error of the regression
model, and SStotal is the total sum of squares, indicating the dispersion of the total data.
Different machine learning algorithms were trained and tested for a comparative analysis
with the ANN model, including DT [44], RFR [45], XGBOOST [46], KNN [47], and SVM [48].
The results of this evaluation are summarized in Table 7, which shows the average values
and standard deviations for six models obtained through K-fold cross-validation. The
findings indicate that the ANN model exhibits high accuracy and relative stability. Based
on these results, the ANN model is used for further research.

Table 7. Model accuracy compared with other models.

Models Average R2 Value from K-Fold
Cross-Validation

Standard Deviation of R2 Values from
K-Fold Cross-Validation

DT 0.8016 0.0580
RFR 0.9374 0.0112

XGBOOST 0.9679 0.0093
KNN 0.8922 0.0204
SVM 0.9083 0.0287

ANN (one-hidden-layer) 0.9706 0.0085

Using advanced models like SVR could obtain higher accuracy; however, considering
the broader context of our research and its specific objectives, the ANN model is used for
the following reasons: (1) Consistency with initial research design: this study was initially
conceptualized and executed with an ANN-based approach and was structured around this
methodology. (2) Balance between accuracy and complexity: while the SVR model showed
marginally better performance, the ANN model still provides high accuracy. Additionally,
ANN offers a balance between predictive power and model interpretability, which aligns
with our research aims. (3) Scope of study: comprehensive revisions to include a different
AI model would require substantial changes in the analysis and the manuscript’s narrative,
which might shift the focus away from the original scope of our research.

The calculation method proposed by Agwu et al. [34], known as the connection
weights algorithm, is demonstrated in Equation (5). It involves summing the products
of weights associated with the connections among input, hidden, and output layers in
ANN model.

RIx =
M

∑
y=1

wxywyz (5)

where RIx is the relative importance of input variable x, M is the total number of hidden
neurons, wxy is the weight of the connection between input and hidden layers, and wyz
represents the weight of the connection between hidden and output layers.

Figure 6 displays the relative importance of different input variables on particle
settling velocity. The consistency index (x6) has the greatest impact, followed by the
particle diameter (x2), fluid density (x5), settling area ratio (x4), particle density (x1), flow
behavior index (x7), and sphericity (x3). The absolute values determine the importance,
whereas the sign (positive or negative) indicates the direction of the effect of each input
on the output. As depicted in Figure 6, an increase in the consistency index, settling area
ratio, and fluid density results in a decrease in particle settling velocity. Conversely, an
increase in particle diameter, particle density, flow behavior index, and sphericity lead
to an increase in particle settling velocity. An increase in particle density (x1) results in
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a higher gravitational force, leading to an increased settling velocity. A larger particle
diameter (x2) also increases gravitational force, enhancing the settling velocity. The cubic
relationship between diameter and volume implies a stronger positive influence of diameter
compared to density. As sphericity (x3) increases, particles become more sphere-like, thus
increasing their settling velocity. However, this effect is less pronounced due to minor
variations in sphericity within our experimental data range. A larger settling area ratio (x4)
increases the cross-sectional area facing resistance, thus significantly impacting the settling
velocity. Higher fluid density (x5) generates greater buoyancy, reducing the settling velocity
of particles. The consistency index (x6) relates to the viscosity in non-Newtonian fluids.
A higher consistency index means greater resistance, significantly affecting the settling
velocity. Higher flow behavior index values indicate a closer resemblance to Newtonian
fluids, showing a positive correlation with settling velocity.
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5. Conclusions

In this study, we successfully developed an ANN model for predicting the settling ve-
locity of both spherical and non-spherical particles in various fluid environments. Utilizing
an extensive dataset of 931 data points, we demonstrated the robustness and accuracy of
the model. Key achievements of our research include:

(1) The development of an ANN model structured as 7-42-1, which achieved an
average absolute relative error of 8.51%, highlighting its precision in predicting settling
velocities.

(2) A detailed assessment of the impact of each input variable on the settling velocity
revealed the consistency index to be the most negatively impactful factor, while particle
diameter showed the greatest positive influence.

(3) The proposed model’s predictions for particle settling velocities were reasonably
accurate for both spherical and non-spherical particles in Newtonian and non-Newtonian
fluids, showcasing its effectiveness when compared to empirical models.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app14020826/s1. File S1: Experimental data of particle settling
velocity-931 data.xlsx.
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Nomenclature

CD drag coefficient
dp particle diameter, m
dt column diameter, m
K consistency index of power-law fluid, Pa·sn

Lp length of rod particle, m
M total number of hidden neurons
n flow behavior index of power-law fluid
N total number of experimental data
R submerged specific gravity
Re particle Reynolds number
RIx relative importance of input variable x
S settling area ratio
Up particle settling velocity, m/s
Ûp,i predicted particle settling velocity
Up,i measured particle settling velocity
W fracture width, m
wxy weight of the connection between input and hidden layers
wyz weight of the connection between hidden and output layers
x1 particle density
x2 particle diameter
x3 sphericity
x4 settling area ratio
x5 fluid density
x6 consistency index
x7 flow behavior index
Greek letters
Φ sphericity
ρ f fluid density, kg/m3

ρp particle density, kg/m3

ν kinematic viscosity of fluid, m2/s
µ viscosity of Newtonian fluid, Pa·s
τy yield stress, Pa
Abbreviations
AARE average absolute relative error
AI artificial intelligence
ANN artificial neural network
BART Bayesian additive regression tree
Bin Bingham fluid
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BPNN back propagation neural network
DL deep learning
DT decision tree
FFNN feed forward neural network
HB Herschel–Bulkley fluid
KNN K-nearest neighbor
GP genetic programming
MAE mean absolute error
MLP multilayer perceptron
Newt Newtonian fluid
PL power-law fluid
PR polynomial regression
RBF radial basis function
RBFNN radial basis function neural network
RF random forest
RFR random forest regression
RMSE root mean square error
SGB stochastic gradient boosting
SVM support vector machine
SVR-L support vector regression with linear
SVR-P support vector regression with polynomial
SVR-RBF support vector regression with radial basis function

Appendix A Weights and Biases of the ANN Model for Particle Settling Velocity

Table A1. Weights and biases of the ANN model for particle settling velocity.

Hidden
Layer

Neuron

Input Layer Weights
Input Layer

Bias
Hidden Layer

Weights
Hidden

Layer Biasρp de Φ S ρf K n

h1 −0.469 0.213 −0.423 0.002 0.201 −0.894 −0.071 −0.170 0.866

−0.145

h2 0.104 −0.211 −0.125 −0.408 0.169 0.182 −0.018 0.583 −0.778
h3 0.361 0.899 0.770 0.268 0.001 −0.238 −0.060 −0.256 1.008
h4 −0.150 −0.378 0.701 0.371 0.717 0.081 −0.475 −0.262 −1.063
h5 −0.017 −0.371 −0.249 0.241 −0.146 0.025 0.168 −0.101 0.134
h6 −0.488 −0.419 0.034 0.008 0.038 −2.229 0.366 0.008 0.376
h7 0.226 0.448 0.311 0.202 0.142 0.004 −0.116 −0.146 0.301
h8 0.107 −0.140 −0.321 0.021 0.303 0.016 −0.346 −0.045 0.291
h9 −0.057 −0.085 0.084 0.185 −0.032 −0.018 0.092 0.139 −0.159

h10 −0.112 −0.187 −0.020 0.124 −0.048 −6.756 0.428 −0.059 1.579
h11 0.079 0.173 −0.665 −0.052 0.425 −0.099 −0.163 0.465 −1.203
h12 0.358 −0.814 −0.449 −0.242 0.399 0.524 0.057 0.733 −0.696
h13 −0.086 −0.293 −0.234 0.115 0.082 −0.305 0.076 −0.084 0.295
h14 0.453 −0.457 0.117 −0.766 −0.052 0.120 0.119 −0.036 1.323
h15 −0.603 0.605 −0.084 0.147 0.401 −0.012 −0.020 0.133 −0.842
h16 0.179 0.374 0.079 −0.017 −0.189 0.185 0.242 −0.137 0.209
h17 0.012 −0.336 −0.317 0.045 −0.298 0.088 −0.284 0.000 −0.109
h18 0.446 −0.936 0.026 −0.021 −0.132 −0.095 −0.124 0.312 −0.579
h19 0.075 −0.262 −0.455 0.158 −0.506 0.036 0.043 0.367 −0.993
h20 −0.412 −0.821 −0.047 −0.149 0.057 0.595 0.259 0.091 −1.560
h21 −0.184 0.002 0.225 0.221 0.001 0.382 0.213 0.121 −0.084
h22 −0.230 −0.321 −0.313 0.139 0.045 −0.169 −0.348 0.000 −0.188
h23 0.304 −0.061 0.083 0.210 0.153 −0.140 0.008 0.129 −0.275
h24 −0.065 −1.518 0.311 −0.002 −0.110 −0.192 −0.217 0.622 −1.151
h25 −0.024 −0.338 −0.264 −0.054 0.066 −3.483 0.599 0.095 1.548
h26 −0.219 −0.704 −0.084 0.453 0.553 0.870 −0.076 0.372 −0.830
h27 −0.239 0.068 0.273 −0.297 −0.331 −0.283 −0.321 0.000 −0.095
h28 −0.010 −2.243 −0.082 −0.021 0.088 0.370 −0.002 0.326 −2.814
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Table A1. Cont.

Hidden
Layer

Neuron

Input Layer Weights
Input Layer

Bias
Hidden Layer

Weights
Hidden

Layer Biasρp de Φ S ρf K n

h29 −0.118 −0.158 0.391 −0.762 −0.252 0.072 0.272 0.130 1.900
h30 0.022 0.125 0.562 0.436 0.082 −0.760 0.101 −0.219 0.473
h31 −0.074 0.283 0.461 0.404 0.057 −0.176 −0.254 −0.360 0.514
h32 −0.089 0.243 −0.205 −0.913 0.191 −0.155 −0.232 0.367 1.113
h33 −0.996 0.341 0.251 −0.039 −0.234 −0.320 −0.220 0.503 −1.164
h34 −0.211 −0.441 0.153 0.078 0.365 −0.045 −0.130 0.454 −1.031
h35 0.191 0.077 0.239 0.246 0.045 −0.926 0.156 −0.198 0.515
h36 0.193 −0.336 0.114 −0.290 −0.323 −0.093 −0.161 −0.069 0.078
h37 −0.168 −0.167 0.349 0.082 0.460 0.368 −0.416 0.051 −0.861
h38 −0.038 −0.233 −0.309 −0.343 −0.269 −0.228 −0.032 0.000 0.054
h39 0.149 −0.041 0.268 0.180 −0.410 −5.645 0.373 −0.302 1.799
h40 0.118 −0.262 0.113 −0.180 −0.325 0.667 −1.171 −0.167 1.072
h41 0.120 −1.208 0.386 −0.026 0.378 −0.627 0.173 −0.025 −1.049
h42 −0.037 0.092 −0.286 0.256 0.364 0.327 0.051 0.145 −0.352
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