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Abstract: Hepatocellular carcinoma (HCC), the most prevalent form of liver cancer, represents a
significant global health challenge due to its rising incidence, complex management, as well as
recurrence rates of up to 70% or more. Early and accurate imaging diagnosis, through modalities
such as ultrasound, CT, and MRI, is crucial for effective treatment. Minimally invasive therapies,
including thermal ablation methods such as radiofrequency ablation, microwave ablation, laser
ablation, high-intensity focused ultrasound, and cryoablation, as well as non-thermal methods like
percutaneous ethanol injection and irreversible electroporation, have shown promise in treating
early and intermediate stages of HCC. Some studies have reported complete response in more than
90% of nodules and survival rates of up to 60–85% at 5 years after the procedure. These therapies
are increasingly employed and induce specific morphological and physiological changes in the
tumor and surrounding liver tissue, which are critical to monitor for assessing treatment efficacy
and detecting recurrence. This review highlights the imaging characteristics of HCC following
non-surgical treatments, focusing on the common features, challenges in post-treatment evaluation,
and the importance of standardized imaging protocols such as the Liver Imaging Reporting and Data
System. Understanding these imaging features is essential for radiologists to accurately assess tumor
viability and guide further therapeutic decisions, ultimately improving patient outcomes.

Keywords: hepatocellular carcinoma; magnetic resonance imaging; diagnosis; follow-up; minimally
invasive treatment; morphological features; tumor recurrence; tumor viability

1. Introduction

Hepatocellular carcinoma (HCC) is the most common type of liver cancer and a
significant contributor to the global cancer burden [1]. With incidence rates rising in many
countries and an estimated overall incidence higher than one million cases within the next
three years, HCC is a major challenge for healthcare systems worldwide and an important
research focus [2].

Patients with liver cirrhosis are screened for HCC with ultrasound and any suspicion of
malignancy is clarified based on specific imaging features seen on Computed Tomography
(CT) or Magnetic Resonance Imaging (MRI) [3]. Due to the high specificity of imaging
findings, the initial diagnosis can be set solely on imaging features without requiring liver
biopsy in the majority of cases [4]. However, rare manifestations of HCC and confounding
aspects of recurrence of treated HCC may prove to be diagnostic challenges, and the high
recurrence rates of up to 70% at 5 years after treatment increase the complexity of the case
management [5–8]. Currently, practice guidelines from various scientific and professional
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groups are available to assist the radiologist in improving the diagnosis rate and staging
accuracy and are updated every few years, with new recommendations made available in
2024 [9–11].

The Liver Imaging Reporting and Data System (LI-RADS) is designed to standardize
image reporting of HCC nodules, and the 2018 version includes a section on reporting
treated HCC, named LI-RADS treatment response (LR-TR) [12]. This includes definitions
and precise instructions for size and enhancement measurements of the nodules and the
tumor viable tissue, if present. However, the minimally invasive treatment can induce
local morphological changes specific to the method, that may represent a challenge for the
radiologist in correctly assessing tumor tissue viability.

In terms of HCC management, the Barcelona Clinic Liver Cancer (BCLC) prognosis
and treatment strategy is one of the most commonly referred to guides for clinical practice
and therapeutic decision-making [13]. As per the 2022 BCLC strategy, minimally invasive
treatment is recommended for intermediate-stage patients as well as some early-stage
cases. There are multiple therapeutic options classified as minimally invasive, each with
specific indications and recommendations [14]. Patients undergoing these treatments will
be routinely monitored for tumor viability and recurrence, and since local therapies can
induce morphological changes to the adjacent tissues, correctly identifying viability may
prove challenging [15].

The purpose of this review is to highlight the most common imaging features of HCC
nodules after minimally invasive procedures and to draw attention to critical aspects that
may require additional diagnostics steps or close surveillance.

2. Minimally Invasive Therapies for HCC and Their Tissular Effects

A large variety of therapeutic choices are available for HCC patients and selection
of the optimal course is usually conducted according to BCLC criteria and patient liver
function and concurring health issues [16]. Thermal and non-thermal ablation may be used
with curative intent for patients in the very early and early stages of HCC, while patients
with intermediate disease may benefit from transcatheter arterial chemoembolization
(TACE) [16,17]. Surgical resection, liver transplantation, and molecular therapies, among
others, are options for early, intermediate, and advanced stages of the disease [18,19], but
do not fall within the scope of this paper.

Regarding the minimally invasive therapies, they rely on local tumor destruction
through various mechanisms. In most cases, the result of a successful procedure is obtaining
an area of coagulation necrosis that includes the tumor nodule and even goes beyond it by
an intended and calculated safety margin [20]. Some procedures, such as TACE, can also
induce liquefactive necrosis areas within the coagulation necrosis; this occurs due to the
infiltration of neutrophils, which dissolve the necrotic material but fail to completely clear
it from the area and this may contribute to hindering the venous or lymphatic drainage
from the treated zone [21].

As mentioned before, minimally invasive treatments cause significant changes to the
tumor and surrounding areas and may produce morphological and physiopathological
changes with corresponding imaging features. The remainder of this section addresses the
mechanism of action and expected effects on the tumor and adjacent liver tissue.

2.1. Thermal Ablative Therapies

Thermal ablative therapies use extreme temperatures to obtain tumor destruction.
A schematic representation of their mechanisms of action is presented in Figure 1.



Appl. Sci. 2024, 14, 9159 3 of 25

Appl. Sci. 2024, 14, x FOR PEER REVIEW 3 of 25 
 

 

Figure 1. Overview of the thermal ablative therapies and their effects. RFA = radiofrequency abla-

tion, MWA = microwave ablation, LA = laser ablation, HIFU = high-intensity focused ultrasound; 

CA = cryoablation. 

2.1.1. Radiofrequency Ablation 

Radiofrequency ablation (RFA) is commonly reserved for patients with HCC nodules 

smaller than 5 cm and several randomized trials have shown it to yield a 94% or higher 

complete response rate as well as a 54% or higher 5-year survival [22–26]. RFA essentially 

relies on tumor destruction through extreme heat obtained through high-frequency radio-

waves between 460 and 480 kHz, but the range may be extended in some cases to 375–500 

kHz or beyond [27]. The alternating electrical current travels through the path of least 

resistance and produces frictional heat (“electrical sink” effect) through ion agitation, 

which is focused inside the tumor nodule, inducing cellular damage [28]. When tempera-

tures in the tissue reach 60 °C, instant coagulation of proteins and destruction of cellular 

components is obtained; however, exceeding 100 °C causes fluids to boil with vaporiza-

tion that implies gas release in the area of ablation; this insulates the tissue and hampers 

the procedure [28,29]. Moreover, blood vessels can carry away the electrical current from 

the vicinity of the electrode, thereby decreasing the overall temperature in the region 

(“heat sink” effect), diminishing the effectiveness of the procedure and allowing for the 

possibility for some tumor cells to survive [22]. 

After several seconds of application, RFA induces an ellipsoid volume of coagulation 

necrosis in the targeted area around the electrode. Animal studies have shown that the 

histopathological changes induced by RFA are heterogeneous, with a central area of car-

bonization along the trajectory of the electrode surrounded by an area of necrosis and a 

peripheric hemorrhagic rim [30]. Moreover, the hemorrhagic rim appears to be sur-

rounded by a fibrovascular halo that thickens over time [31]. There are reports that sug-

gest that cell proliferation is stimulated within the hemorrhagic area and this mechanism 

could be responsible for the appearance of tumor recurrence [32]. Liver capsule retraction 

may be observed in the ablation of superficial tumors [33] (Figure 2). 

Figure 1. Overview of the thermal ablative therapies and their effects. RFA = radiofrequency
ablation, MWA = microwave ablation, LA = laser ablation, HIFU = high-intensity focused ultrasound;
CA = cryoablation.

2.1.1. Radiofrequency Ablation

Radiofrequency ablation (RFA) is commonly reserved for patients with HCC nodules
smaller than 5 cm and several randomized trials have shown it to yield a 94% or higher
complete response rate as well as a 54% or higher 5-year survival [22–26]. RFA essen-
tially relies on tumor destruction through extreme heat obtained through high-frequency
radiowaves between 460 and 480 kHz, but the range may be extended in some cases to
375–500 kHz or beyond [27]. The alternating electrical current travels through the path of
least resistance and produces frictional heat (“electrical sink” effect) through ion agitation,
which is focused inside the tumor nodule, inducing cellular damage [28]. When tempera-
tures in the tissue reach 60 ◦C, instant coagulation of proteins and destruction of cellular
components is obtained; however, exceeding 100 ◦C causes fluids to boil with vaporization
that implies gas release in the area of ablation; this insulates the tissue and hampers the
procedure [28,29]. Moreover, blood vessels can carry away the electrical current from the
vicinity of the electrode, thereby decreasing the overall temperature in the region (“heat
sink” effect), diminishing the effectiveness of the procedure and allowing for the possibility
for some tumor cells to survive [22].

After several seconds of application, RFA induces an ellipsoid volume of coagulation
necrosis in the targeted area around the electrode. Animal studies have shown that the
histopathological changes induced by RFA are heterogeneous, with a central area of car-
bonization along the trajectory of the electrode surrounded by an area of necrosis and a
peripheric hemorrhagic rim [30]. Moreover, the hemorrhagic rim appears to be surrounded
by a fibrovascular halo that thickens over time [31]. There are reports that suggest that
cell proliferation is stimulated within the hemorrhagic area and this mechanism could be
responsible for the appearance of tumor recurrence [32]. Liver capsule retraction may be
observed in the ablation of superficial tumors [33] (Figure 2).
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Figure 2. MRI examination with hepatospecific intravenous contrast of a patient with HCC in
liver segment VIII, 5 months after RFA. Axial plane images: (a)—T1 weighted image with fat
suppresion; (b)—subtraction image (obtained by subtracting a T1 fat saturated image without
contrast enhancement from a T1 fat saturated image with contrast enhancement in the arterial phase;
(c)—T1 WI with fat saturation in the hepatobiliary phase (obtained 20 min after contrast injection);
(d)—T2 weighted image with fat saturation; (e)—diffusion weighted image; (f)—apparent diffusion
coefficent map). There is an area of coagulative necrosis hyperintense on T1 fat-saturated images
(arrow, (a,b)), hypointense on T2 fat sat (d), without restricted diffusion on DWI/ADC (e,f), non-
enhancing in the arterial phase ((b), subtraction) or hepatobiliary phase (c). To better depict contrast
enhancement in high-intensity T1 fat-saturated lesions, subtraction is a necessary tool. Also, there is
capsular retraction on the needle path (chevron in (a)).

In order to perform a successful procedure and ensure all viable tumor cells are
destroyed, a tumor-free margin of at least 1 cm thickness should be obtained around the
tumor nodule [28].

2.1.2. Microwave Ablation

Microwave ablation (MWA) was applied in HCC patients with tumors smaller than
5 cm, obtaining complete nodule ablation in around 90% of cases with a 3-year recurrence-
free period in around 30% of cases [34–36]; the method was also applied in patients with
tumors larger than 5 cm, with good response rates [36,37]. MWA uses electromagnetic
energy transmitting microwaves into the tissues at frequencies in the range of 300 MHz to
10 GHz, commonly at 915 MHz and 2.45 GHz [22,23]. No current is transmitted through the
patient as the energy is focused through dedicated antennas. The passing of the microwaves
causes friction of water and nearby molecules, generating heat in the process. Particular
to this method is that the heat is instantaneous and homogeneous and is produced in the
entire area where microwaves are conveyed (“near field”) [23,38]. Therefore, local factors
are less likely to influence the area and effectiveness of the MWA.

Studies on animal models and human liver explants have shown that MWA induces
histologic changes consisting of three concentric areas: central necrosis surrounded by
a thin brown capsule of cells with damaged membranes and a peripheric hemorrhagic
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rim [39,40]. Within the central area of necrosis, gas bubbles and cavitation may be observed
due to vaporization [41]. As also observed in RFA, blood clots and endothelial injuries
may be seen in small and large vessels in the ablated area [40,42]. In the following hours,
the ablation area appears to expand and reaches a maximum diameter at 12 h after the
procedure, a consequence of the cellular and DNA damage in the margins of the treated
zone [40,43]. A fibrous capsule develops around one week after MWA and resorption in
the necrosis area causes the lesion to significantly decrease in size after several weeks [43]
(Figure 3).
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Figure 3. MRI examination of an HCC nodule in the right liver lobe, treated with MWA 2 months
prior. (a) T1 weighted image with fat suppression; (b)—subtraction image; (c)—T1 WI with fat
suppression in the hepatobiliary phase (at 20 min); (d)—T2 weighted image with fat saturation;
(e)—diffusion weighted image; (f)—apparent diffusion coefficient map. Arrow in figure a points to
an ellipsoid area of ablation, with MRI features of coagulative necrosis, but low signal intensity is
observed on the T2* sequence (g), suggestive of chronic hemorrhage.

Technological advances in the devices and antennas allowed for improved success rates
in treating HCC nodules; however, since vessels with diameters up to 6–7 mm are coagulated,
vessel proximity remains a challenge in applying this therapeutic method [40,44].

2.1.3. Laser Ablation

Laser ablation (LA) requires the percutaneous insertion of an array of needles into the
tumor that allows the passing of optic fibers that will emit near-infrared light. The method
may be used for single or multinodular HCC with sizes usually up to 5 cm and yields a
response rate of up to 97% and reported overall survival rates at 3 years of up to 68% [45–47].
LA commonly uses an Nd-YAG (neodymium: yttrium-aluminum-garnet) laser with either a
shorter wavelength of 800–980 nm or a higher-tissue penetrating 1064 nm wavelength [48].
The released infrared energy induces heat in the area around the insertion. Similarly to
RFA and MWA, cell death is obtained at temperatures above 60 ◦C, but exceeding 100 ◦C
induces vaporization, which hinders the effectiveness of the method. Tissue carbonization,
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which appears at over 300 ◦C, has even more significant effects in terms of limiting heat
conduction [48] (Figure 4).
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Figure 4. MRI 5 weeks after laser ablation of an HCC nodule in the right liver lobe. The treated nodule
(arrow) is isointense on T1 fat sat (a), hyperintense on T2 fat sat (d), has no arterial enhancement on
the subtraction images (b), no restricted diffusion (high signal intensity on both DWI (e) and ADC
(f)) and low contrast uptake on the hepatobiliary phase (c).

Literature data regarding the histological effects of laser ablation on either liver ex-
plants or animal models is scarce. However, follow-up imaging studies describe similar
findings to other thermal ablative therapies such as RFA and MWA [49,50]. Ultrasound
examination in the days following LA reveals a central zone of vaporization surrounded
by a thin halo of carbonization and a peripheral thick rim of coagulation [45].

Coagulation necrosis is the desired effect and its volume depends on the energy
delivered [51]. Incomplete or partial necrosis may be observed in a variety of cases such as
tumor subtype, growth pattern, and nodule size [52,53]. Moreover, in vivo animal studies
showed LA-induced heat stress-related apoptosis in HCC cells as well as hepatocytes via
caspase-3/7 activation [54]. Interestingly, new information suggests that laser ablation
might stimulate HCC growth due to heat stress via PI3K/mTOR/AKT signaling [55]. These
data must be further analyzed and should also be sought in other thermal ablative methods.

2.1.4. High-Intensity Focused Ultrasound

High-intensity focused ultrasound (HIFU) is based on the transmission of mechanical
waves emitted by piezoelectric transducers and focused through acoustic lenses; the ul-
trasounds are emitted at a low frequency (0.8–1.6 MHz) on a specific target [56]. Single or
multi-focal HCC disease may be addressed through this method, though success rates with
complete ablation are reported in 50 to 100% of cases [57,58]. Data on the improvement in
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survival are scarce, and studies on the application of HIFU in HCC generally yield small
populations. One of the major advantages of HIFU is that it does not require puncturing
the tumor [59] and the heat is quickly generated so dissipation through blood vessels is
negligible [23]; however, in order to optimize the ultrasound transmission window, several
invasive gestures may be applied, such as rib removal, instillation of saline solution in the
pleura or peritoneal cavity, or filling the lumina of the stomach or colon [56]. Conversely,
the method might prove useful in patients with advanced liver disease and ascites where
other minimally invasive procedures are not indicated.

The effects of HIFU are mixed, and include both thermal and mechanical effects.
Thermal effects are caused by the ultrasound energy that raises the temperature and
induces coagulative necrosis. Excessive temperatures may be obtained and vaporization
may also be achieved through this method [60]. The mechanical effects are represented by
acoustic cavitation, a process that implies the creation of microbubbles that subsequently
expand and implode, inducing extreme pressure variations that injure the adjacent cells, a
process called the “popcorn effect” [60].

HIFU has been deemed safe and effective in ablating small HCC by various studies;
despite this, it may face difficulties when attempting the treatment of nodules in areas of
the liver that require interventions to optimize acoustic transmission [57,58,61].

2.1.5. Cryoablation

Cryoablation (CA) uses the Joule–Thomson effect to cool the area of ablation by
releasing high-pressure argon gas through a cryoprobe [62]. This leads to the formation
of an iceball at temperatures below −150 ◦C that is subsequently thawed [63]. Although
cryoablation is not widely used, a randomized controlled trial has shown that 97% of HCC
patients undergoing cryoablation had no tumor progression 1 year after the procedure and
the overall survival rate at 5 years was 40% [64]. One of the advantages of cryoablation is
that real-time observation of the ablated area may be performed through imaging methods,
such as CT or US [65]. Technical success is considered when the iceball is at least 5 mm
larger than the nodule in any direction [65]. However, small ablation volumes may be
achieved with ease using CA in the case of small tumor nodules [66].

CA is effective through two distinct mechanisms. On the one hand, it has direct effects
on tumor tissue by forming ice crystals in the intra- and extracellular space as well as
an increase in osmotic pressure, causing cell destruction and irreversible damage to cell
organelles [24,63]. Then, during thawing, the ice crystals converge into larger ones that
further advance cellular injuries; moreover, due to osmotic pressure, water is displaced
towards the intracellular space, expanding it and rupturing the cell membrane [63]. On the
other hand, the indirect effects relate to the altering of blood flow towards the tumor due
to damage to the endothelium of adjacent vessels. This leads to blood vessel thrombosis
causing ischemia and cell death in the tributary volume of the vessel [24,46]. A “cold sink”
effect was described in CA, and therefore lesions near larger blood vessels may be more
difficult to treat.

Cryobiology has studied the effects of CA on living tissue and has shown that freezing
triggers an anti-tumor response causing a T-cell response to the tumor [67,68]. This effect,
labeled “cryoimmunology”, is a secondary advantage to using this ablative technique and
the mechanisms involved are still being investigated.

2.2. Non-Thermal Ablative Therapies

Non-thermal ablative therapies rely on various mechanisms to achieve tumor destruc-
tion. An overview of the principles is presented in Figure 5.
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Figure 5. Overview of the non-thermal ablative therapies and their effects. PEI = percutaneous
ethanol injection; IRE = irreversible electroporation; cTACE = conventional transarterial chemoem-
bolization; DEB-TACE = drug eluting beads transarterial chemoembolization; TARE = transarterial
radioembolization. DEB = drug eluting beads. 90Y = Yttrium-90 microshperes. Additional panel in
IRE shows disruption of cellular membranes.

2.2.1. Percutaneous Ethanol Injection

Percutaneous Ethanol Injection (PEI) was demonstrated to be an effective method in
treating HCC nodules smaller than 3 cm in diameter, with an initial complete response of
up to 96% and 5-year survival rates of up to 63% in patients with smaller tumors [69]. The
injection is generally performed under local anesthesia with US guidance and is repeated
in various areas of the nodule until it appears hyperechoic, due to the microbubbles in
the solution [70]. Due to the lack of standardization regarding the number and location
of the injections, as well as injected quantity and rate, some variance in effectiveness may
be observed.

After injection, ethanol diffuses into the cells, causing dehydration and protein de-
naturation leading to coagulation necrosis [71] (Figure 6). The area of necrosis extends
around the injection site and should be observed to reach the periphery of the nodule
in order to obtain complete ablation. Repeated injections might be necessary in order to
improve efficacy, and stronger substances with a higher infiltrative effect are also in use [72].
In patients with liver cirrhosis, ethanol diffuses with ease in the tumor nodule due to it
being relatively soft compared to the hardened adjacent liver parenchyma [73]. Ethanol
causes endothelial damage and subsequent thrombosis of the feeding vessels, leading
to ischemia in the tumor nodule [74]. Animal studies have shown that necrosis can be
observed on the needle track when doses higher than 0.3 mL/kg bodyweight are used; also,
a fibroblastic reaction occurs in the periphery of the injected area, and may be observed
after 5 to 7 days [75].
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Figure 6. Left hepatectomy and partial right liver lobe resection. MRI examination of a patient who
underwent PEI for an HCC nodule (arrow) in the liver segment VIII 5 months prior. The treated
nodule has no contrast enhancement in the arterial (b) or hepatobiliary (c) phase, has low signal
intensity on both T1 (a) and T2 (d) fat saturated images, has peripheral restricted diffusion (e,f), and
an adjacent wedge-shaped area of hypoperfusion (dotted arrow).

The effectiveness of PEI in causing blood vessel occlusion favored its use alongside
other ablative techniques such as RFA, where the heat sink effect is diminished, therefore
improving the therapeutic success [74].

2.2.2. Irreversible Electroporation

Irreversible electroporation (IRE) is a relatively new, non-thermal therapeutic method
for HCC in patients with nodules that usually measure less than 3 cm. IRE is usually
reserved for patients that cannot be treated with other minimally invasive methods due
to the nodule depth or proximity to major vessels [76]. IRE was successful in obtain-
ing complete ablation in over 90% of nodules and prolonging survival [77–79]. From a
technical standpoint, the NanoKnife® system, created by AngioDynamics, which is the
widely available commercial solution, uses a direct current of low energy but with high
voltage (1000–3000 V) that is generated between the inserted electrodes [80]. The 19-gauge
electrodes are parallel-inserted with local anesthesia and under US or CT guidance [81].

The application of IRE causes the appearance of minuscule pores in the cellular
membranes in random locations within the ablation area [82]. These pores will expand in
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size, increasing membrane permeability and ultimately dissolving the membrane while
also triggering apoptosis. The procedure seems to be independent of blood flow, hence
its application in nodules near blood vessels [82]. The area of ablation is characterized
by hemorrhagic necrosis and edema, and apoptosis contributes to the extent of the cell
damage [76]. Large blood vessels, bile ducts, and nerves adjacent to the ablation area appear
unaffected [83]. However, minor blood vessels may demonstrate vascular congestion [84].

IRE of HCC nodules also triggers an immunological reaction; a recent study has shown
that shortly after the application of IRE, an increase in immune cells such as white blood
cells, monocytes, neutrophils, and natural killer cells was identified in peripheral blood; a
decrease of regulatory T-cells was also noted, signifying that cytotoxic cells are favored and
this immune profile might lead to tumor growth restriction [85]. Neutrophil infiltration of
the treated region was detected shortly after the procedure [84].

2.2.3. Transarterial Chemoembolization

Transarterial chemoembolization (TACE) is the standard treatment for patients with
BCLC stage B and is one of the most widespread and studied therapeutic options for
HCC [86]. The method implies a transarterial approach to the liver nodule under fluo-
roscopic guidance. Conventional TACE (cTACE) uses a lipiodol drug-charged emulsion
followed by an embolizing substance (Figure 7), while a separate technique uses drug-
eluting beads (DEB) that release a chemotherapeutic agent over longer periods of time [87]
(Figure 8). There are numerous reports of outcomes following TACE, and it appears that
DEB-TACE provides a better tumor response than cTACE; the complete response, disease
stability, and mortality are overall similar between the two techniques [88].
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Figure 7. Unenhanced CT scan of a patient with HCC in the right liver lobe, 1 day after cTACE
(a), and MRI scan of the same patient 5 weeks later (T1 weighted dual echo: “in phase”—(b) “out
of phase”—(c)). The lipiodol used in conventional TACE is hiperdense on CT (a), and has signal
intensity similar to fat on T1 dual-echo images (arrow)—“in phase” high signal intensity and “out of
phase” signal drop.

TACE induces necrosis through a combination of the cytotoxic effect of the injected
drugs and the ischemia secondary to the arterial occlusion. The necrosis seems to be
greater in supraselective TACE compared to lobar TACE and is directly proportional to the
tumor diameter [89]. However, smaller nodules are often hypovascular, a factor negatively
affecting the effectiveness of the method [89]. The obtained necrosis is coagulative and is
associated with moderate liquefaction and fluid accumulation; infiltration with immune
cells may appear in the periphery and areas of cystic changes may be seen after the
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treatment of larger nodules [90]. The presence of liquefactive necrosis may favor bacterial
infection, therefore antibiotics may be required in larger tumors [91].
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Figure 8. MRI scan of a patient 1 month after DEB-TACE for HCC in liver segments VIII–VII. (a)—T2
WI with fat saturation; (b)—T1 WI with fat saturation; (c)—T1 WI with fat saturation after intravenous
contrast. The treated nodule (arrow) is completely necrotic (non-enhancing, (c)), with high signal
intensity on T2 (a) and T1 (b), demonstrating both coagulative and liquefactive necrosis.

2.2.4. Yttrium-90 Radioembolization

Yttrium-90 (90Y) transarterial radioembolization (TARE) is performed by injecting the
microspheres (20–60 µm in diameter) loaded with the isotope through an endovascular
arterial approach [92]. The feeding vessel is not occluded in comparison to cTACE and DEB-
TACE; after the injection, the microspheres are taken over by the tumor tissue and emit fatal
β-radiation for up to 2 weeks but with a small penetrance (smaller than 3 mm), therefore
limiting the negative effects on the healthy hepatocytes [92–94]. 90Y radioembolization
has shown objective response rates of up to 88.3% and up to 86.6% overall survival at
3 years [95]. Moreover, 90Y radioembolization appears to be better tolerated than cTACE
and yields a longer time to progression of the disease than cTACE [96].

After TARE, the treated nodule may be stationary in size, or show either a decrease
or increase in diameter; tumoral size increase usually occurs within the first month and is
related to the associated edema and hemorrhage [97]. Therapeutic success is defined as the
appearance of coagulative necrosis and usually occurs within the first 4 months [98]. How-
ever, transient necrotic areas with a patchy pattern may be seen early after the procedure.
Also, a thin and smooth granulation tissue forms around the necrotic area and usually
resolves after 4–5 months [97]. Capsular retraction may be seen in nodules closer to the liver
surface and is considered a consequence of the fibrosis secondary to the radiation [97,99].

A summary of the advantages, limitations, and performance of the thermal and
non-thermal ablative therapies is provided in Table 1.



Appl. Sci. 2024, 14, 9159 12 of 25

Table 1. Overview of the minimally invasive treatments for HCC [46,47,63,73,100–111].

Ablative Method BCLC Stage Advantages Limitations Histological
(Imaging) Result

Overall Survival at
5 Years

Thermal ablative methods

RFA 0-A Better control for
larger nodules

Not recommended for
superficial or near-hilum

lesions
Heat sink effect

Coagulation necrosis
(H-iso T1, hT2) 40–68%

MWA 0-A

Higher ablation
volume

Minimal heat sink
effect

Ablation volume may be
difficult to estimate

More complications in
larger nodules

Coagulation necrosis
(H-iso T1, hT2) 50–60%

LA 0-A

Better control for
larger nodules

Better accessibility to
nodules

Relatively small zone of
ablation, requiring multiple
fibers to achieve sufficient

volume

Coagulation necrosis
(H-iso T1, hT2) 15–34%

HIFU 0-A
Minimal heat sink

effect
Less invasive

Possible damage to
adjacent structures

Longer procedure time

Coagulation necrosis
(H-iso T1, hT2) 15–60%

CA 0-A
Less painful

Area of CA visible on
CT/MRI

Cryoshock syndrome is a
possible complication

Coagulation necrosis
(H-iso T1, hT2) 23–59%

Non-thermal ablative methods

PEI 0-A Simple, cheap,
accessible

Risk of local progression
Difficulty to obtain safety

margins

Coagulation necrosis
(H-iso T1, hT2) up to 47%

IRE 0-A
No heat sink effect

Applicable to
near-hilum lesions

Possible technical difficulty
in needle positioning

Cardiac gating is required

Coagulation necrosis
(H-iso T1, hT2) 14–56%

cTACE 0-B

Combination of local
chemotherapy and

tumor
devascularization

Vascular or biliary
complications may occur

Difficult in anatomical
variants

Postembolization syndrome
may occur

Poor response in
hypovascular nodules

Coagulation and
liquefactive necrosis
(H- and hT1, H- and

hT2)

24–54%

DEB-TACE 0-B

Superior
chemotherapeutic

effect
Fewer adverse effects

related to the
chemotherapeutic

drugs

Coagulation and
liquefactive necrosis
(H- and hT1, H- and

hT2)

33–61%

TARE 0-B
Increased radiation
dose with curative

effect
Radiation-related hepatitis Coagulation necrosis

(H-iso T1, hT2) up to 40%

RFA = radiofrequency ablation, MWA = microwave ablation, LA = laser ablation, HIFU = high-intensity fo-
cused ultrasound; CA = cryoablation; PEI = percutaneous ethanol injection; IRE = irreversible electroporation;
cTACE = conventional transarterial chemoembolization; DEB-TACE = drug eluting beads transarterial chemoem-
bolization; TARE = transarterial radioembolization; H = hyperintensity, iso = isointensity; h = hypointensity.

3. Imaging in the Follow-Up of Treated HCC
3.1. Considerations on the MRI Scanning Protocol in HCC Follow-Up

Although each imaging center is free to use a protocol that makes the best use of their MRI
machine and equipment, and is most useful for image interpretation, during the last years the
LI-RADS recommendations have become standard and are widely applied [112–114]. Briefly,
the guideline requires T1 in- and out-of-phase images, T2 with or without fat suppression,
and 3D thin (less than 5 mm slice thickness) multiphase T1 contrast-enhanced imaging (with
unenhanced, late arterial, and portal venous phase) using either gadobenate dimeglumine or
gadoxetate disodium with appropriate delayed or transitional and hepatobiliary phases (at
approximately 20 min after contrast injection) [12].
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Regarding the choice of contrast agent, some authors showed that gadoxetate dis-
odium has superior sensitivity in the diagnosis of HCC, while other studies cite similar
lesion-to-liver contrast ratios, therefore yielding similar diagnostic powers [115–118].

Within LI-RADS, it is also suggested that diffusion-weighted imaging (DWI), subtrac-
tion imaging, and multiplanar acquisition are considered as optional images. Increasing
the flip angle of the late 3D T1 fat saturated images may increase the contrast between the
liver parenchyma and the tumoral lesion [119].

DWI brings a well-recognized advantage in the positive and differential diagnosis
of tumors. DWI showed superior reliability compared to analysis of the hepatobiliary
phase in the detection of small hypovascular HCCs located in the proximity of blood
vessels [120]. Calculation of apparent diffusion coefficient (ADC) values may be useful in
predicting the therapeutic response, as significantly lower ADC values were associated
with poor or incomplete post-TACE tumor responses [121]. Moreover, ADC was shown to
predict survival rates after TACE [122]. However, as shown in the previous sections, the
treated nodule may show great inhomogeneity due to the variety of physical and biological
processes induced by the treatment. Therefore, when measuring average ADC values in
the treated nodule, the heterogeneous structure may influence the findings and lead to false
results [123].

Subtraction imaging may be particularly useful in discriminating viable tumor tis-
sue from other T1-WI hyperintensities within the treated nodule, such as the peripheral
rim occurring after thermal ablation [124]. A high percentage of patients may show hy-
perintensity on the non-enhanced T1-WI within the ablation zone and subtraction of the
unenhanced set of images from the arterial phase images may be crucial in the differential
diagnosis [125,126].

3.2. Expected Post-Treatment Imaging Features in the Absence of Viable Tumor Tissue

Coagulative necrosis is defined as the type of cell death secondary to the decrease or
complete stop of blood flow. In consequence, contrast-enhanced MRI will show no uptake.
The size of the necrosis should be similar to or larger than the tumor nodule when compared
to the pre-therapeutic scans. Within the ablated area, MRI depicts heterogeneous T1-WI
hyperintense or isointense areas and a relatively low signal intensity on T2-WI [33]. A target
appearance may be seen after thermal ablation, where a central area of T2 hyperintensity
corresponding to tissue loss is surrounded by a lower T2-WI intensity and higher T1-
WI hyperintense concentric area represented by the coagulation necrosis; the latter may
itself be surrounded by a third area of T2-WI hyperintensity with T1-WI isointensity [30].
These target areas evolve with a signal drop in T1-WI in the coagulative necrosis area,
while the third concentric area might develop contrast enhancement due to the infiltration
by inflammatory cells and may grow thicker over time, while the coagulative necrosis
decreases in size [30]. It is commonly accepted that these MRI features of the necrosis are
similar in RFA and MWA.

After HIFU-treated HCC, it was reported that a discrepancy between the predicted
ablation area and the area identified by MRI may occur, the latter being almost half of the
expected size [127]. There is a paucity of studies regarding the MRI features after HIFU
due to the limited application of this method.

MRI imaging features after CA are similar to findings after RFA or MWA. Generally,
in the days after the procedure, the ablation zone appears hypointense in T1-WI and hyper-
intense in T2-WI, with heterogeneous areas represented by focal hemorrhage [128]. If large
vessels are not punctured, the bleeding is small and evolves in the weeks after the proce-
dure; it can be identified as iso- to hyperintense T1-WI foci and is usually hypointense in
T2-WI [129]. The coagulation necrosis appears similar to other thermal ablative procedures;
however, a significantly intense T2-WI signal could suggest fluid accumulation within
the nodule [129]. A peripheral area of inflammatory response is seen after CA, evolving
into fibrosis within the following months. Vascular changes may be identified around
the nodule in the form of wedge-shaped areas of increased contrast uptake, which are
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produced by the arterial hyperperfusion secondary to portal venous flow reduction [130]. If
imaging follow-up is performed at 24 h after the procedure, persistent tumor enhancement
may be seen; the contrast uptake is gradual and is thought to be caused by reperfusion
through injured vessels within the ablation area [131]. This is specific to cryoablation due
to the mechanism of inducing the coagulative necrosis. Contrast enhancement after cryoab-
lation within the tumor nodule may be a normal finding if the uptake is less intense and
slower than in the adjacent unablated areas, and this usually resolves within the following
months [132].

HCC nodules successfully treated with PEI will show iso- or hyperintensity on T1-WI
and uniform hypointensity on T2-WI [71]. However, PEI-treated nodules are associated
with persistent fan-shaped T2-hyperintense areas in the vicinity caused by perfusion abnor-
malities; this was found to be secondary to ethanol infiltration in the peritumoral normal
tissues, which caused arterioportal shunts that lasted several months [133]. Additionally,
ethanol-related direct toxic effects on healthy liver cells around the treated nodule were
identified, causing coagulative necrosis and secondary fibrosis [134]. These T2-hyperintense
areas might partly obscure the presence of viable tumor tissue, so careful analysis of these
areas is recommended [135].

Imaging follow-up after successful HCC treatment with IRE may show features dis-
tinctive to those after thermal ablations. More specifically, persistent contrast enhancement
may be seen in the absence of tumor tissue within the ablation zone in the peritumoral
liver parenchyma [136]. This may make it difficult to properly assess the ablation area;
however, the necrotic area should not present enhancement if no viable tissue is present.
An animal study has shown that using IR-prepared images can help delineate a central
area of IRE and a peripheral area of reversible electroporation [137]. The same study
concluded that temporary contrast enhancement is possible in the IRE zone due to the
formation of membrane pores that permitted the uptake of the contrast agent, as well as in
the reversible electroporation zone, where the contrast persists in the intracellular space
due to electrotransfer [138].

Nodules treated with 90Y present specific MRI findings. The peripheral rim often
seen around the area of necrosis due to granulation tissue developing adjacent to the
coagulative necrosis can measure up to 5 mm after 90Y; after thermal ablative techniques, a
thickness of around 1 mm is expected [139]. This is considered to appear due to the effect
of radiation emitted in the peripheral vessels and may be seen for up to 6 months after
the procedure [140,141]. Small areas of contrast enhancement may be identified within the
90Y treated nodule and should be monitored unless they are larger than 5 mm, when it is
considered to be viable tissue [98].

3.3. Transient Hyperemia

Transient hyperemia is usually visualized as a T2-WI hyperintense rim; the rim might
show contrast enhancement, and corresponds to a hemorrhagic area within the congested
sinusoid vessels that surround the necrosis [30]. This may be seen in most local regional
therapies due to the extension of the aggressive factor (heat, cold, radiation) beyond the
treated margins (Figure 9). On DWI, this rim may appear hyperintense with corresponding
hypointensity on the ADC map due to the associated cytotoxic edema [142]. Transient
hyperemia usually resolves within 6 months when the agent is long-lasting, such as 90Y
microspheres, or sooner if the effects are limited to the procedure event [143–145].
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Figure 9. MRI scan: (a)—T2 weighted with fat suppression; (b)—subtraction; (c)—T1 weighted with
fat suppression after contrast injection, in the portal venous phase. Transient hyperemia (dotted
arrow in (a) and (b)) surrounding an HCC tumor treated using DEB-TACE. The hyperemia appears
as a halo with hazy contour and discrete high signal intensity on T2 WI, arterial phase wash-in, but
without portal venous phase wash-out (differentiating it from tumor tissue).

3.4. TACE-Associated Necrosis

As previously mentioned, due to its complex therapeutic mechanisms, TACE may
induce a mix of coagulative and liquefactive necrosis. Coagulative necrosis shows a typical
T2-WI hypointensity. However, T2-WI focal hyperintensities may be seen when hemor-
rhage, inflammation, or liquefactive necrosis are associated [146]. Furthermore, after TACE,
HCC nodules commonly show variable unenhanced T1-WI intensity, a combined effect
of areas of hyperintense hemorrhage and hypointense necrosis [147]. The lipiodol used
in cTACE also appears hyperintense on T1-WI in the days following the procedure and
increases the contrast-to-noise ratio (CNR); however, it appears that T2-WI is not affected
by lipiodol [148]. The extent of lipiodol uptake within the tumor nodule is considered to
correlate with therapeutic success [149]. However, this is easily assessed through CT due
to the composition of iodine. MRI is not an equally reliable instrument in this regard, al-
though gradient echo images can provide good approximation [150]. Therefore, volumetric
techniques have been developed for the prediction of cTACE-induced necrosis extension
using MRI contrast enhancement and CT lipiodol volume measurements [151].

DWI also plays an important role in the post-therapeutic assessment of cTACE. Highly
vascularized lesions will show prominent restricted diffusion with lower values on the
ADC map. This will likely correlate with better results of the TACE [152]. However,
necrotic tumors will likely show higher values on the ADC map, which may lead to a
poorer prognosis and correlate with higher aggressiveness [153,154]. Regarding DEB-TACE,
DWI proved to be useful in predicting treatment response, as increases in ADC after the
procedure correlate with longer survival [155].

3.5. Post-Treatment Imaging Features of Tumor Viability

According to LI-RADS, tumor viability is defined as a nodular or thick concentric
lesion that either presents contrast wash-in, wash-out, or contrast dynamics similar to
pretherapeutic imaging examinations [12] However, viable tumor tissue after treatment
can take on different forms (Figure 10).
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vascular invasion (chevron in (g)).

However, there are several distinctive features and recurrence profiles of interest to
radiologists and clinicians alike. Hypovascular recurrences can be identified after treatment
and their imaging features may be different than the original more vascularized primary
tumor [156]. While it is commonly accepted that hypervascularization of a recurrence is an
additional risk factor and that hypervascular primary nodules are associated with a poorer
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prognosis, it is uncertain how to interpret and manage hypovascular recurrences, especially
due to their rarity [157,158]. Another notable HCC subtype is nodule-in-nodule, which
is regarded as a morphological marker of early HCC dedifferentiation [159,160]. While,
apparently, the prognosis of patients with this unique subtype is better than the “conven-
tional” appearance, knowledge of the imaging features and aspects at post-therapeutic
follow-up is essential for correctly identifying tumor recurrence [5,161].

3.6. Current and Future Perspectives in Targeting Tumor Nodules

Considering the advent of minimally invasive procedures and liver surgery for HCC,
augmented reality training is gaining interest as an instrument that can aid the interven-
tional radiologist or surgeon [162,163]. The technology can overlay preoperative imaging
onto the surgical field and can increase the spatial awareness, reducing risks related to
critical adjacent structures or anatomical variations [164,165]. Moreover, integrating image-
guided simulation systems in minimally invasive procedures has demonstrated improved
patient outcomes, allowing for precise targeting of tumor nodules [166,167].

Looking forward, preoperative planning and additive technologies have an increas-
ingly important role, as 3D-printed anatomical models based on patient-specific imaging
can offer the opportunity to plan and practice the procedure with high accuracy [168,169].
Innovations in digital planning as well as augmented reality and artificial intelligence can
assist image-guided simulation, can be integrated with surgical robots, and will likely fur-
ther improve the precision in targeting the tumor nodules while minimizing invasiveness
and complications [170–172].

4. Conclusions

Minimally invasive therapies for HCC significantly alter the morphological features of
tumor nodules. Each type of therapy induces distinct morphological changes in the treated
lesions, such as variations in size, shape, and internal architecture, as well as alterations
in contrast enhancement patterns. The proper understanding and interpretation of these
imaging characteristics are essential in evaluating treatment efficacy and detecting early
signs of recurrence.

Future research perspectives should include the standardization of imaging protocols
across different centers in order to consistently identify these morphological features. Ad-
vanced imaging techniques, including radiomics and artificial intelligence, offer promising
avenues for improving the interpretation of post-treatment imaging features. Moreover,
integrating imaging biomarkers with morphological analysis could further enhance the
assessment of tumor response and long-term prognosis. Additional research is needed to
validate these approaches in larger, multi-institutional studies, which may ultimately lead
to personalized treatment strategies for HCC patients.
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