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Abstract: This work investigates the mechanical behaviour of sandwich beams with cellular cores
using a multiscale approach combined with a meshless method, the Natural Neighbour Radial Point
Interpolation Method (NNRPIM). The analysis is divided into two steps, aiming to analyse the
efficiency of NNRPIM formulation when combined with homogenisation techniques for a multiscale
computational framework of large-scale sandwich beam problems. In the first step, the cellular core
material undergoes a controlled modification process in which circular holes are introduced into
bulk polyurethane foam (PUF) to create materials with varying volume fractions. Subsequently, a
homogenisation technique is combined with NNRPIM to determine the homogenised mechanical
properties of these PUF materials with different porosities. In this step, NNRPIM solutions are com-
pared with high-order FEM simulations. While the results demonstrate that RPIM can approximate
high-order FEM solutions, it is observed that the computational cost increases significantly when
aiming for comparable smoothness in the approximations. The second step applies the homogenised
mechanical properties obtained in the first step to analyse large-scale sandwich beam problems with
both homogeneous and functionally graded cores. The results reveal the capability of NNRPIM
to closely replicate the solutions obtained from FEM analyses. Furthermore, an analysis of stress
distributions along the beam thickness highlights a tendency for some NNRPIM formulations to yield
slightly lower stress values near the domain boundaries. However, convergence towards agreement
among different formulations is observed with mesh refinement. The findings of this study show that
NNRPIM can be used as an alternative numerical method to FEM for analysing sandwich structures.

Keywords: meshless methods; natural neighbour radial point interpolation method; homogenisation;
multiscale; sandwich structures

1. Introduction

In the domain of modern engineering, composite materials have become a frequent
solution for constructing lightweight laminated structures. These structures offer im-
proved mechanical performance across various applications, including naval, automotive,
aerospace, and aeronautics [1]. Sandwich structures, a specific type of laminate, stand out
within the framework of laminated solutions. They are characterised by two thin high-rigid
face sheets (e.g., aluminium or fibre-reinforced composite) that enclose a comparatively
thick, low-stiffness, and low-density core material. Despite the core’s inherent properties,
confinement by the rigid face sheets enables them to contribute significantly to the overall
bending rigidity of the structure. This is achieved while maintaining a low overall weight
for the sandwich panel [1,2]. Several factors influence the mechanical behaviour of sand-
wich structures, including the core material’s microstructure, the relative thicknesses of the
core and face sheets, the fibre volume fraction within the face sheets, and the material selec-
tion and orientation of the fibres in the face sheets [1,2]. Due to this inherent complexity,
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the development of efficient and accurate numerical methods for predicting the structural
response of sandwich structures remains an ongoing challenge.

The most common approach for analysing sandwich panels and laminates involves
equivalent single-layer (ESL) theories [3]. These theories employ a 2D discretisation and
model the laminate thickness using a transverse deformation theory. When compared
to a full 3D deformation elasticity theory applied to 3D discretisations, this dimensional
simplification offers a significant reduction in computational cost. However, 3D solutions
provide a more realistic representation of physical phenomena and offer more accurate
predictions than 2D ESL theories, particularly when dealing with thick plates and shells [4].

Various analytical approaches employing 3D elasticity theory have been proposed to
explore the bending behaviour of sandwich plates. In the seminal research by Pagano [5],
exact 3D solutions were formulated for stress analysis of simply supported rectangular
sandwich plates. Subsequently, Zenkour [6] utilised 3D elasticity equations to derive analyt-
ical bending solutions for rectangular multilayer plates subjected to distributed transverse
loading. Regarding sandwich plates featuring functionally graded cores, Kashtalyan and
Menshykova [7] introduced a 3D exact elasticity solution to calculate their bending response
under sinusoidal distributed transverse loads. Expanding this approach, Woodward and
Kashtalyan extended the 3D exact elasticity equations to obtain the bending solution of
sandwich plates under localised transverse loads [8] and various other pertinent transversal
loading scenarios [9].

A detailed discretisation of the cellular material comprising the sandwich core would
result in computational analysis with a significant computational cost. Consequently, to
mitigate this challenge, multiscale homogenisation techniques are commonly employed
to accelerate structural analyses, while yielding reasonably accurate solutions [10]. These
techniques facilitate multiscale analysis by assuming the presence of multiple spatial scales
within materials and structures. Typically, the analysis of heterogeneous materials involves
the determination of effective properties obtained through homogenising the response at
microscopic scales, which are subsequently extrapolated to macroscopic analyses. Numer-
ous analytical models have been developed within the framework of small deformation
linear elasticity to obtain the homogenised constitutive response of heterogeneous mate-
rials at the macroscopic level, including the attributes of their microstructure [10]. These
models are founded on the Hill–Mandel condition for homogeneity [11,12], which posits
that the volume-averaged strain energy within a representative volume element (RVE) can
be expressed as the product of the volume-averaged stress and strain fields within the
same RVE, thereby demonstrating energy equivalence between homogeneous and hetero-
geneous materials [11,12]. Micromechanical analysis of composite materials frequently
employs discretisation-based approaches to extrapolate the overall response from their
microstructure [13]. Addressing this, the Generalised Method of Cells (GMC) offers a
solution by defining a repeating unit cell (RUC) within the periodic composite structure
and further subdividing it into orthogonal subcells [14]. As a mature numerical technique,
the GMC framework has been effectively applied across various composite types, including
fibre-reinforced composites [14], metal matrix composites [15], and woven polymer matrix
composites [16].

Within computational mechanics, the finite element method (FEM) is the most com-
monly used discretisation technique, possessing a long history of successful applications
across various engineering domains [17]. Nonetheless, the computational mechanics re-
search community continuously investigates and explores advanced new discretisation
methodologies capable of offering enhanced efficiency and accuracy. Meshless methods,
also known as meshfree methods, emerge as promising alternatives capable of supplanting
FEM in numerous applications [18,19]. Unlike FEM, which relies on a standard element
mesh for domain discretisation, meshless methods employ an unstructured nodal set to
discretise the solid domain [20,21]. While FEM establishes nodal connectivity through the
element concept, meshless methods achieve this connectivity via the influence domain
concept [22].
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The Diffuse Element Method (DEM), introduced by Nayroles et al. [23], emerged as
a pioneering meshless technique. It applies moving least square (MLS) approximants,
offering a generalisation of FEM but without the constraints of a pre-defined mesh [23].
Belytschko et al. further developed DEM, refining it and extending its applicability to
elasticity problems [24]. Their key innovation involved the incorporation of a background
integration mesh based on the Gauss–Legendre quadrature scheme. Belytschko et al.
also coupled DEM with Lagrange multipliers for enforcing boundary conditions, forming
the well-known Element Free Galerkin Method (EFGM) [24], the most popular meshless
method ever created. The late 1990s witnessed a surge in meshless method development.
The meshless method’s portfolio was enriched with robust formulations, such as the
Reproducing Kernel Particle Method (RKPM) [25] or the Meshless Local Petrov–Galerkin
(MLPG) method [25]. These methods, by exploiting the advantages of approximation shape
functions and higher nodal connectivity, were able to deliver more accurate solutions and
smoother variable fields [22].

Despite their advantages, meshless methods based on approximation shape functions
face a fundamental impairment: the absence of the delta Kronecker property. Unlike the
FEM, this characteristic impedes the straightforward imposition of essential (displacement)
and natural (traction) boundary conditions [22]. Thus, in approximation meshless methods,
Lagrange multipliers are the primary numerical tool for handling boundary conditions.
However, Lagrange multipliers require the introduction of additional constraint equations,
leading to a larger system of equations and consequently, to an increase in the computa-
tional cost [22]. As a consequence, the lack of the delta Kronecker property tempered the
enthusiasm for meshless methods.

This difficulty drives the computational mechanics research community to employ
their efforts in the development and enhancement of interpolating shape functions. The
Natural Element Method (NEM), introduced by Sukumar et al. [26], stands as a pioneering
example of a successful interpolating meshless methods. The NEM’s shape functions are
interpolating, allowing for the direct imposition of boundary conditions, as in the FEM.
Following the success of the NEM, a multitude of interpolating meshless methods emerged,
including the Point Interpolation Method (PIM) [27], the Radial Point Interpolation Method
(RPIM) [28], the Meshless Finite Element Method (MFEM) [29], and the Natural Radial
Element Method (NREM) [30]. Further advancements in interpolating meshless methods
were achieved by Dinis et al. with the development of the Natural Neighbour Radial Point
Interpolation Method (NNRPIM) [31]. This method combines the connectivity strategy
of the NEM with the radial point interpolating technique of the RPIM. Using only the
nodal discretisation information (the Cartesian coordinates of the nodes) of the problem’s
domain, the NNRPIM is capable to autonomously calculate the position and weight of
the background integration points and enforce the nodal connectivity using the natural
neighbour concept. Lke the NEM, the NNRPIM is a truly meshless method.

Meshless methods have demonstrated their potential for analyzing sandwich struc-
tures, particularly when combined with equivalent single-layer (ESL) deformation theo-
ries [32], which offers a computationally efficient alternative to full 3D analyses. For this
reason, 3D meshless formulations for sandwich structures remain less prevalent in the
literature [4,33,34]. Concerning meshless methods combined with multiscale homogenisa-
tion techniques, the most common applications are for composite structures. Rodrigues et
al. successfully extended the capabilities of the RPIM [35] and NNRPIM [36] to perform
multiscale analyses of laminated composites. Similarly, Wang et al. developed a multiscale
approach using a different meshless technique to model the mechanical behaviour of carbon
nanotube-reinforced cement composites [37].

The research on advanced computational methods for the design of sandwich struc-
tures allows us to develop and deliver light-weight structures with high stiffness/mass
ratios. Sah et al. present an extensive review on sandwich structures for the construction in-
dustry [38]. Their work focus on five types of sandwich panels: lightweight timber-framed
panels, light-gauge-steel-framed panels, structural insulated panels, cross-laminated timber
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panels, and precast concrete sandwich panels [38], showing the large variety of applications
that prefabricated sandwich structures possess in the construction industry. Neverthe-
less, sandwich structures are the focus of attention in other demanding engineering areas,
such as the aeronautics and aerospace industry. For instance, in the work Tewari et al.,
the bending response of laminated composite sandwich structures with corrugated and
spiderweb-inspired cores for aircraft flaps is analysed [39]. Simulations included the effects
of hail impact, leading to a final design incorporating the spiderweb core with optimal
fibre orientation and ply thickness and allowing for higher load resistance and bending
stiffness. In the research study of Pashazadeh et al., the dynamic behaviour of a new flexible
sandwich structure for morphing aircraft capable of shape adaptation during flight [40] was
examined. The structure was experimentally tested and numerically validated with finite
element simulations. The literature also possesses impact studies on sandwich structures,
such as the work of Ren et al. [41], in which the impact resistance of metallic sandwich
structures is analysed and explored by encasing the foam core with ultra-high strength
composite fabric. Experimental and numerical tests show that the encasement significantly
improves energy absorption and reduces damage, enhancing overall impact resistance
while maintaining lightweight properties and offering new perspectives on improving
structural protection against complex impact loading [41]. Another very recent trend is
the production of sandwich structures using 3D printing or additive manufacturing tech-
nologies. As shown in the works of Acanfora et al. [42] and Vellaisamy et al. [43], 3D
printing is a suitable manufacturing technique to produce efficient lightweight sandwich
structures. Aiming to reduce the weight of sandwich panels for shock absorption, Acanfora
et al. [42] were able to produced panels with 3D printing showing 28% weight reduc-
tion while improving energy absorption. The sandwich panels demonstrated enhanced
structural effectiveness through comparative analysis of absorption indices, force–time
and force–displacement graphs, and CT scans. On the other hand, Vellaisamy et al. [43]
mechanically characterised honeycomb sandwich structures fabricated with 3D printing,
demonstrating very high energy absorption and, at the same time, preventing delamination
and debonding.

The research study here presented proposes a novel approach for analysing the
macroscale behaviour of sandwich structures by integrating in the NNRPIM a multiscale ho-
mogenisation technique. The proposed framework takes advantage of both techniques: the
NNRPIM flexible and organic discretisation procedure allows us to analyse unstructured
nodal distributions, while multiscale homogenisation simplifies the analysis of complex
microstructures by capturing their homogenised mechanical properties. The proposed
methodology starts with the estimation of the homogenised mechanical properties of the cel-
lular unit, which are then correlated with the foam density. Subsequently, at the macroscale
level, various sandwich structures with varying density distributions throughout the thick-
ness are modelled using the NNRPIM. The resulting solutions are then compared with
those obtained with FEM analyses. This research aims to achieve a two-fold objective: first,
to assess the performance and efficiency of the NNRPIM compared to the FEM in terms
of computational cost, accuracy, and stress field distribution, and second, to explore the
potential of meshless multiscale analysis for sandwich structures with both homogeneous
and functionally graded foam cores.

This manuscript comprises four distinct sections. The initial section delineates the
state of the art of sandwich structures, alongside corresponding mathematical formulations,
multiscale homogenisation methodologies, and typical discretisation approaches. The sub-
sequent section shows the mathematical formulation of the meshless method for elasticity,
coupled with the employed homogenisation technique. Next, the third section presents
the numerical findings. Initially, the homogenised mechanical properties of cellular foams
are correlated with its apparent density. Subsequently, the results of macroscale numerical
examples of sandwich structures are presented, accompanied by the respective discussion.
Ultimately, the most relevant conclusions and observations of this study are documented
within the Section 4.
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2. Natural Neighbour Radial Point Interpolation Method

Meshless methods are advanced discretisation techniques capable of discretising the
problem domain using only a nodal or point distribution [21,22]. Such a nodal distribution,
which can be regular or irregular, does not form a mesh because there is no pre-established
nodal connectivity. Since elasticity problems are addressed by solving a system of equations
built based on integro-differential equations, it is necessary to numerically integrate such
equations. The most common solution is the use of a background set of integration points
capable of numerically integrate those integro-differential equations. Thus, after the nodal
discretisation, in elasticity problems, meshless methods need to discretise the problem
domains with a set of integration points, which can be dependent or independent of the
initial nodal distributions [22]. Generally, if an independent set of integration points is
constructed, the meshless method is called a non-truly meshless method because the set of
integration points are obtained based on a structured grid of integration cells, leading to
a background integration mesh. On the other hand, if the meshless method is capable of
constructing a set of integration points dependent on the nodal distribution, the meshless
method is called a truly meshless method [22]. The main advantage of non-truly meshless
methods is their straightforward capability of being incorporated into any generic FEM
software. In these methods, for example, the FEM’s element meshes can be directly used
as background integration cells, and the FEM’s nodal meshes are naturally the meshless
method’s nodal distributions. The main advantage of dependent meshless methods is
their ability to construct all the required mathematical entities (background integration
points, nodal connectivity, shape functions, etc.) using only the information of the nodal
distribution. After the construction of the background integration mesh, meshless methods
must establish the nodal connectivity. For this, the most widespread technique is the
influence domain concept, applied to various meshless formulations, such as the RPIM,
EFGM, MLPG, and RKPM. Each integration point xI radially searches for its closed nodes,
whose set will form its “influence domain” [22]. Afterwards, for each integration point
xI , shape functions are constructed. Once again, the literature offers several techniques to
build shape functions [22], such as moving least squares, radial basis functions, polynomial
basis functions, Taylor’s expansion functions, Sibson functions, etc. These shape functions
permit us to approximate/interpolate the variable field at an integration point xI with

u(xI) =
n

∑
i=1

φi(xI) · u(xi) = Φ(xI)
T · us = {φ1(xI), φ2(xI), · · · , φn(xI)} ·


u(x1)
u(x2)
· · ·

u(xn)

 (1)

being the number of nodes within the influence domain of the integration point xI defined
as n. Vector us contains the field variable components of each node xi inside the influence
domain of xI , and φi(xI) is the ith component of the shape function constructed for xI .
After constructing the shape functions and their partial derivatives, they are applied to
the integro-differential equations of elasticity, leading to the system of algebraic equations.
Then, the solution variable field across the domain is obtained by solving the system of
algebraic equations.

2.1. Nodal Connectivity and Numerical Integration

Since the NNRPIM uses the mathematical concept of natural neighbours to construct
the background set of integration points and to establish the nodal connectivity, it is
necessary first to present it briefly. The natural neighbour concept requires the construction
of the Voronoï diagram of the problem’s nodal discretisation [44]. Thus, assuming a 2D
domain, Ω ∈ R2 discretised with N nodes: X = {x1, x2, . . . , xN} ∈ R2, the Voronoï diagram,
V, of X is formed by a set of sub-regions Vi, closed and convex, defined in (and defining)
the same sub-space Ω ∈ R2. Each node xi possesses its own Voronoï cell Vi, which is
defined as the geometric place where all points in its interior are closer to xi than any other



Appl. Sci. 2024, 14, 9214 6 of 39

xj ∈ X, being j ̸= i. Thus, the Voronoï diagram of X is defined by V = {V1, V2, . . . , VN}.
The distinct Voronoï cells Vi do not overlap or leave gaps between each other, allowing us
to verify: Ω = ∑N

i=1 Vi ∴ V = Ω. Figure 1 shows the Voronoï diagram of a given nodal
discretisation. The natural neighbours of node xi are all the nodes whose Voronoï cells
share an edge with the Voronoï cell of node xi (light grey cells in Figure 1a surrounding the
dark grey cell in node xi).

Figure 1. Voronoï diagram of a given nodal discretisation. (a) First-degree influence cell. (b) second-
degree influence cell.

Using the natural neighbour concept, it is possible to automatically establish influence
domains, i.e., the nodal connectivity. Thus, in the NNRPIM, integration points inside
Voronoï cell Vi will inherit the nodal connectivity of node xi. In the NNRPIM, the “influence
domain” concept is substituted by the similar “influence cell” concept. Instead of searching
for the closest nodes, the influence domain of node xi is formed by the natural neighbours of
node xi, which were already defined by the Voronoï diagram. Thus, two kinds of influence
cells are possible: first-degree influence cells, Figure 1a, and second-degree influence cells,
Figure 1b. The first-degree influence cells of node xi are formed by the natural neighbours
of node xi and node xi themselves. The second-degree influence cells of node xi are formed
by node xi itself, plus the natural neighbours of node xi (as a first-degree influence cell) and
also the natural neighbour of those first natural neighbours.

In the NNRPIM, the construction of the background set of integration points also uses
the information of the Voronoï diagram. As Figure 2 represents, for a generic irregular
nodal distribution, the Voronoï cell Vi of node xi can be sub-divided in quadrilaterals.
Then, using the Gauss–Legendre quadrature integration scheme, it is possible to define the
position and weight of each integration point inside the quadrilateral.

Figure 2. Generic procedure for the construction of the background set of integration points based on
the Voronoï diagram.
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The procedure follows the following steps. First, each quadrilateral of a given Voronoï
cell Vi is transformed into a unit isoparametric square, allowing for the distribution of inte-
gration points within the isoparametric square respecting the Gauss–Legendre integration
scheme [22].

Afterwards, as Figure 2 shows, the Cartesian coordinates of the integration points are
defined from their isoparametric coordinates with Equation (2).

xI =

{
xI
yI

}
=

[
N(ξ I , ηI)

T

N(ξ I , ηI)
T

]
·


xT

q1

xT
q2

xT
q3

xT
q4

 =

[
N1 N2 N3 N4
N1 N2 N3 N4

]
·


xq1 yq1

xq2 yq2

xq3 yq3

xq4 yq4

 (2)

in which N(ξ, η) = {N1(ξ, η), N2(ξ, η), N3(ξ, η), N4(ξ, η)}T = {N1, N2, N3, N4}T . Being
isoparametric quadrilateral with four nodes, the generic equation of Ni(ξ, η) is defined as

Ni(ξ, η) =
1
4
· (1 + ξ̂i · ξ) · (1 + η̂i · η) (3)

with ξ̂i and η̂i being {
Ξ = {ξ̂1, ξ̂2, ξ̂3, ξ̂4} = {−1,−1, 1, 1}
H = {η̂1, η̂2, η̂3, η̂4} = {−1, 1, 1,−1} (4)

The seminal study on the NNRPIM suggests using 1× 1 or 2× 2 integration points per
quadrilateral sub-area [31]. The main disadvantage of using a 2 × 2 integration scheme (as
the one represented in Figure 2) is the inherent prohibitive computational cost. In general,
using a 2× 2 integration scheme leads to computational analysis about 10 ∼ 15 times slower
than the 1 × 1 integration scheme. Moreover, the gain in accuracy of a 2 × 2 integration
scheme is not significant when compared with the 1 × 1 integration scheme [22,31].

If the 1 × 1 integration scheme per quadrilateral sub-cell is considered, the isoparamet-
ric coordinates and weight are these: {ξ I , ηI , ωI}T = {0, 0, 4}T . On the other hand, if the
2 × 2 integration scheme per quadrilateral sub-cell is assumed, the following isoparametric
coordinates and weights must be assumed,

ξ I
ηI
ωI

 =


−1√

3
−1√

3
1√
3

1√
3

−1√
3

1√
3

1√
3

−1√
3

1 1 1 1

 (5)

Subsequently, it is possible to calculate the Cartesian integration weight of each
integration point with the following expression:

ω̂I =
Asub
Aiso

· ωI (6)

in which the area of the quadrilateral sub-area is defined by Asub and the area of the
isoparametric cell is identified as Aiso. Notice that in this 2D case, Aiso is always Aiso =
2 × 2 = 4.

Consequently, assuming a generic function f (x, y) defined inside a quadrilateral sub-
area domain, Ωs, it is possible to integrate f (x, y) using a Gauss–Legendre integration
scheme with 2 × 2 = 4 integration points:

F =
∫

Ωs
f (x, y)dΩs =

4

∑
I=1

f (xI , yI) · ω̂I (7)

considering the Cartesian coordinates xI = {xI , yI}T and integration weights ω̂I of the
corresponding integration points calculated with Equations (2) and (6), respectively.

This procedure is repeated for each sub-area of the Voronoï cell Vi, and then the complete
process is repeated again for each Voronoï cell of the Voronoï diagram V. In the end, a
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background set of nQ integration points is obtained, allowing us to integrate any function
defined within the problem’s domain Ω. Since AΩ = ∑N

i=1 AVi , thus AΩ = ∑
nQ
i=1 ω̂I .

The formal construction of the Voronoï diagram and the background set of integration
points is described with detail in the literature [22].

2.2. Shape Functions

NNRPIM shape functions are constructed using the radial point interpolating tech-
nique, presented next. Assuming a 2D domain, Ω ∈ R2, in which a field function u(x) is
discretised with N nodes, X = {x1, x2, . . . , xN} ∈ R2, the interpolated value u(xI) of an
given integration point, xI ∈ R2 ∧ xI /∈ X, can be calculated with:

u(xI) = {r(xI)
T , p(xI)

T}
{

a
b

}
(8)

in which r(xI) = {r1(xI), . . . , rn(xI)}T is a radial basis function (RBF) and the polynomial
basis function with m monomials is represented as p(xI) = {p1(xI), . . . , pm(xI)}T . Vec-
tors ai(xI) and bj(xI) are the vectors of the non-constant coefficients of r(xI) and p(xI),
respectively, defined as a(xI) = {a1(xI), . . . , an(xI)}T and b(xI) = {b1(xI), . . . , bm(xI)}T .

Adding a polynomial basis function to the interpolation assures robustness and stabil-
ity to NNRPIM shape functions. For example, including of a polynomial of order 2 confers
C2 consistency and allows the NNRPIM to pass the standard patch test. The literature
on the NNRPIM [22,31] shows that it is enough to add a low-order polynomial basis,
such as a constant polynomial basis (p(xI) = {1}, m = 1) or a linear polynomial basis
(p(xI) = {1, xI , yI}T , m = 3). High-order polynomials increase the analysis’s overall
computational cost without improving the final NNRPIM solution.

Since its early works [31], the NNRPIM uses a modified version of the initially pro-
posed Multiquadratic Radial Basis Function (MQ-RBF) of Hardy [45], capable of taking
into account the spatial dimension of the problem’s domain:

rj(xi) = rij = (d2
ij + (ω̂I · c)2)p =

((√
(xj − xi)2 + (yj − yi)2

)2
+ (ω̂I · c)2

)p
(9)

Regarding the MQ-RBF shape parameters c and p, for 2D analyses, the literature
recommends that c should be close to zero, but not zero, and p should be close to one, but
not one [22], with c = 10−4 and p = 1 − 10−4 being generally used.

Using only Equation (8) does not allow us to build a system of equations capable of
providing the shape function of integration point xI . Hence, previous works on radial point
interpolators [28,46] show that it is necessary to add an extra equation to build the required
system of equations to assure a unique solution:

n

∑
i=1

pj(xi)ai(xi) = 0 (10)

in which j = {1, 2, . . . , m}. In the end, a new equation matrix can be established joining
both Equations (8) and (10): [

R P
PT 0

]{
a
b

}
= G

{
a
b

}
=

{
us
0

}
(11)

The vector of the nodal parameters us is defined as

us = {u1, u2, . . . , un}T (12)

and RBF matrix R and polynomial basis matrix P can be computed with
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R =


r11 r12 . . . r1n
r21 r22 . . . r2n
...

...
. . .

...
rn1 rn2 . . . rnn

 (13)

p =


p1(x1) p2(x1) . . . pm(x1)
p1(x2) p2(x2) . . . pm(x2)

...
...

. . .
...

p1(xn) p2(xn) . . . pm(xn)

 (14)

Manipulating Equation (11) allows us to obtain the vectors of the non-constant coefficients:{
a
b

}
= G−1 ·

{
us
0

}
(15)

By back-substitution of {a, b}T , in Equation (8), the interpolation of xI can be defined:

u(xI) = {r(xI)
T , p(xI)

T} · G−1 ·
{

us
0

}
= {Φ(xI), Ψ(xI)} ·

{
us
0

}
(16)

in which Φ(xI) represents the interpolation function of xI ,

{Φ(xI), Ψ(xI)} = {r(xI)
T , p(xI)

T} · G−1 = {ϕ1(xI), . . . , ϕn(xI), ψ1(xI), . . . , ψm(xI)} (17)

The calculation of the partial derivatives of Φ(xI) is required by the integro-differential
equations ruling elasticity. Thus, assuming a general direction ξ:

Φξ(xI) = {r(xI)
T
ξ , p(xI)

T
ξ } · G−1 (18)

With the partial derivatives of the MQ-RBF defined as

(rij)ξ = 2 · p · (d2
ij + c2)p−1 · (ξ j − ξi) (19)

As the literature shows, with the NNRPIM it is possible to impose directly natural
and essential boundary conditions because its shape functions possess the Kronecker delta
property and satisfy the partition of unity [22].

2.3. Discrete System of Equations

The global system of equations for an elasticity problem can be obtained with the
virtual work principle. Assuming that the work produced by external forces is equal to the
work produced by the internal forces, Wint = Wext, the following expression can be written:∫

Ω
δεT · σ · dΩ =

∫
Ω

δu(xI)
T · b · dΩ +

∫
Γt

δu(xI)
T · t · dΓ (20)

with the problem’s domain represented by Ω. As the expression shows, on the domain’s
surface boundary Γ, natural and essential boundaries, Γt and Γu, respectively, can be
defined. Thus, external forces t can be applied on Γt and displacement constrains can be
imposed at Γu. The solid domain can also be under the influence of body forces b, acting
uniformly on Ω. Since Equation (20) requires both displacement components {u, v}, they
can be defined simultaneously:
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u(xI) =

{
u(xI)
v(xI)

}
= H(xI) · u =

[
ϕ1(xI) 0 . . . ϕn(xI) 0

0 ϕ1(xI) . . . 0 ϕn(xI)

]
·



u1
v1
...

un
vn


(21)

leading to the following representation of the deformation vector:

ε(xI) = L · u(xI) =


∂

∂x 0
0 ∂

∂y
∂

∂y
∂

∂x

 · Φ(xI) · u = B(xI) · u = B(xI) ·



u1
v1
...

un
vn


(22)

in which the deformation matrix B(xI) is defined as

B(xI) =


∂ϕ1(xI)

∂x 0 · · · ∂ϕn(xI)
∂x 0

0 ∂ϕ1(xI)
∂y · · · 0 ∂ϕn(xI)

∂y
∂ϕ1(xI)

∂y
∂ϕ1(xI)

∂x · · · ∂ϕn(xI)
∂y

∂ϕn(xI)
∂x

 (23)

Considering Hooke’s law, it is possible to calculate the stress at the integration point
xI with:

σ(xI) = c(xI) · ε(xI) = c(xI) · B(xI) · u (24)

In a 2D problem, the material constitutive matrix c(xI) can be defined for for plane
stress or plane stress conditions [47]. If plane stress is considered, the material constitutive
matrix is defined with

c =
E2

1 − α1 · ν2
21

 α1 α1 · ν21 0
α1 · ν21 1 0

0 0 α2 · (1 − α1 · ν2
21)

 (25)

If plane strain conditions are being considered, the constitutive matrix should be

c =
E2

α3 · α4

α1 · (1 − α1 · ν2
21) α1 · ν21 · α3 0

α1 · ν21 · α3 1 − ν2
12 0

0 0 α2 · α3 · α4

 (26)

in which α1 = E1/E2, α2 = G12/E2, α3 = 1+ ν12 and α4 = 1− ν12 − 2 · α1ν2
21. Notice that Ei

is the Young’s modulus in material direction i, and Gij and νij are the elastic shear modulus
and Poisson’s ratio in the material plane Oij, respectively.

Thus, considering how the stress and strain vectors were defined, it is possible to
manipulate Equation (20) and obtain:∫

Ω
δ(B(xI) · u)T · (c(xI) · B(xI) · u) · dΩ =

∫
Ω

δ(H(xI) · u)T · b · dΩ +
∫

Γt
δ(H(xI) · u)T · t · dΓ (27)

In this work, only small strains will be assumed (δB(xI) = 0 and δH(xI) = 0), which
allows us to simplify Equation (27) to:∫

Ω
δuT · B(xI)

T · c(xI) · B(xI) · u · dΩ =
∫

Ω
δuT · H(xI)

T · b · dΩ +
∫

Γt
δuT · H(xI)

T · t · dΓ (28)

δuT
∫

Ω
B(xI)

T · c(xI) ·B(xI) · dΩ ·u = δuT
∫

Ω
H(xI)

T ·b · dΩ+ δuT
∫

Γt
H(xI)

T · t · dΓ (29)

allowing us to define the final system of equations of elasticity,
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K · u = fb + ft (30)

and, consequently, calculate the problem’s global displacement field:

u = K−1 · (fb + ft) (31)

It is possible to define the global stiffness matrix K in its discretised form

K =
∫

Ω
B(xI)

T · c(xI) · B(xI) · dΩ =
NQ

∑
I=1

B(xI)
T · c(xI) · B(xI) · ω̂I · h(xI) (32)

as well as the global external force ft and body fb vectors, respectively, with:

ft =
∫

Γt
H(xI)

T · t · dΓ = 0 =
nQ

∑
J=1

H(xJ)
T · t · ω̂J (33)

fb =
∫

Ω
H(xI)

T · b · dΩ =
NQ

∑
I=1

H(xI)
T · b · ω̂I · h(xI) (34)

The thickness of the 2D solid at the location of integration point xI is defined as h(xI).
Since the NNRPIM uses interpolating shape functions, the imposition of essential and
natural boundary conditions can be numerically implemented using the direct imposition
method or the penalty methods.

2.4. Material Homogenisation Technique

First presented by Hill [11], the concept of Representative Volume Element (RVE)
aims to characterise the microstructure of a material through a representative sub-region.
An RVE represents a statistically significant sub-region of the material that captures the
essential microstructural features. It is crucial for the RVE to be statistically representative,
including a sufficient sampling of all microstructural heterogeneities within the multi-phase
material. The appropriate size of the RVE is a critical parameter in multi-scale modelling. It
needs to be large enough to capture the relevant heterogeneities but remain small compared
to the overall macroscopic domain size. This section uses the RVE concept to present a
micromechanical approach for determining the effective elastic properties of an one-phase
material with distinct volume fractions.

An RVE, with volume domain Ω̃, is associated with a macroscale material point xI
(whose Cartesian coordinates xI are defined at the macroscale). Then, at the microscale,
there are infinitesimal points x̃ ∈ Ω̃, whose set represent the macroscale point x. A local
deformation at point x leads to a perturbation of the RVE equilibrium. In the deformed
configuration, the Cartesian coordinates of material point x are represented by X, which
can be written as X = ϕ(x), with the motion of x represented by function ϕ. Thus, it is
possible to define the displacement of material point x with:

u(x) = ϕ(x)− x = X − x (35)

which leads to,
X = x + u(x) (36)

This expression allows us to define the deformation gradient, F(x), as a function of
the displacement:

F(x) =
∂X
∂x

=
∂(x + u(x))

∂x
= I +

∂u(x)
∂x

(37)

where I is the second-order identity tensor. Assuming the microscale coordinates of a
deformed point belonging to the RVE defined as X̃, and if a macroscale deformation
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gradient at material point x (i.e., to an RVE) is applied, a microscopic displacement field
ũ(X̃) is produced [48],

ũ(X̃) = (F(X)− I) · x̃ + ū(X̃) (38)

in which the first term is the linear displacement field and the second term is the displace-
ment fluctuation field.

The RVE displacement field ũ(x̃) is obtained with the equilibrium equations assuming
a specific macroscale deformation gradient to the RVE. Then, with ũ(x̃), the corresponding
RVE’s strain and stress fields are obtained for each RVE’s integration point, x̃I ∈ Ω̃.

Using the homogenisation principle, the macroscale stress, σ̄, and strain, ε̄, at material
point xI can be calculated with the volume average of the stresses, σ̃, and strains, ε̃, on the
RVE’s volume Ω̃,

σ̄(xI) =
1
Ω̃

∫
Ω̃

σ̃(x̃I) · dΩ̃ =
1

∑
nQ̃
I=1 ω̃I

nQ̃

∑
I=1

σ̃(x̃I) · ω̃I (39)

ε̄(xI) =
1
Ω̃

∫
Ω̃

ε̃(x̃I) · dΩ̃ =
1

∑
nQ̃
I=1 ω̃I

nQ̃

∑
I=1

ε̃(x̃I) · ω̃I (40)

with nQ̃ being the number of microscale integration points discretising the RVE and ω̃I
their corresponding microscale integration weight.

A fundamental principle in sub-scale modelling, the Hill–Mandel principle, ensures
consistency between the macroscopic and microscopic energy states [11]. It stipulates
that for a model to be energetically valid, the deformation energy at the macroscopic
level must be equivalent to the average work performed by the stresses at the microscale.
Mathematically, this relationship can be expressed as

σ̄(xI) · ε̄(xI) =
1
Ω̃

∫
Ω̃

σ̃(x̃I) · ε̃(x̃I) · dΩ̃ (41)

which means that the virtual work expressed in Equation (29) is valid for the RVE. Thus,
considering a microscopic virtual displacement δũ and neglecting body forces, applying
the virtual work principle to the RVE leads to

δũT ·
∫

Ω̃
B(x̃I)

T · c(x̃I) · B(x̃I) · ũ · dΩ̃ = δũT ·
∫

Γ̃
H(x̃I)

T · t̃ · dΓ̃ (42)

with t̃ being the traction force applied in the RVE’s boundary surface Γ̃. Knowing that
ε̃(x̃I) = B(x̃I) · ũ, it is possible to write∫

Ω̃
B(x̃I)

T · c(x̃I) · ε̃(x̃I) · dΩ̃ =
∫

Γ̃
H(x̃I)

T · t̃ · dΓ̃ = f̃ (43)

This relation allows us to impose macroscale deformation fields into the RVE and
obtain corresponding equivalent forces.

In order to obtain the homogenised elastic properties of the 2D RVE, the plane strain
problem will be assumed. This simplification is valid as long as one of the dimensions is
much larger than the other two. In this work, at the macroscale, it will be assumed that
the solid Oz direction is much larger than the Ox or Oy directions. Consequently, the 2D
RVE also possesses a theoretical infinite Oz length. For example, if a circular void exists in
the RVE, the void will be extended along Oz direction, creating an infinite cylinder. Thus,
the plain strain condition considers that εzz = 0, γxz = 0 and γyz = 0. However, σzz ̸= 0.
Using Voigt notation, it is possible to write the generalised Hooke’s law for the plane strain
condition as [35]
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σxx
σyy
σzz
τxy

 = c[4×4] ·


εxx
εyy
0

γxy

 =


C11 C12 C13 0
C21 C22 C23 0
C31 C32 C33 0
0 0 0 C44

 ·


εxx
εyy
0

γxy

 (44)

which can be presented as


σxx
σyy
σzz
τxy

 =


1−ν23ν32

E2E3∆
ν21+ν23ν31

E2E3∆
ν31+ν21ν32

E2E3∆ 0
ν12+ν32ν13

E1E3∆
1−ν13ν31

E1E3∆
ν32+ν12ν31

E1E3∆ 0
ν31+ν12ν23

E1E2∆
ν23+ν21ν13

E1E2∆
1−ν12ν21

E1E2∆ 0
0 0 0 G12

 ·


εxx
εyy
0

γxy

 (45)

with
∆ =

1 − ν23ν32 − ν13ν31 − ν12ν21 − 2ν32ν13ν21

E1E2E3
(46)

and E1 and E2 the elasticity modulus in the plane material directions 1 and 2, and E3 the
elasticity modulus along the normal direction to the 1 and 2 plane (i.e., Oz). The plane
shear elasticity modulus is represented by G12, and the Poisson ratio νij represents the ratio
between the deformation observed in direction j, when a force is applied in direction i.
Equation (45) is useful to obtain the stress field. However, due to the matrix size of the
deformation matrix B, notice that in order to establish the system of equations and obtain
the displacement field, Equation (31), at the microscale or at the macroscale, the constitutive
matrix used to build the stiffness matrix is defined as

c =

C11 C12 0
C21 C22 0
0 0 C44

 (47)

In this work, the adopted procedure to obtain the homogenised elastic properties of
the RVE can be summarised as follows:

1. Since only 2D examples are analysed in this work, it is only necessary to define three
deformation fields:

ε100 =


1
0
0

 ; ε010 =


0
1
0

 ; ε001 =


0
0
1

 (48)

2. Each one of the deformation fields in Equation (44) is inserted in Equation (43),
allowing us to obtain three load cases:

∫
Ω̃ B(x̃I)

T · c(x̃I) · ε100 · dΩ̃ = f̃100∫
Ω̃ B(x̃I)

T · c(x̃I) · ε010 · dΩ̃ = f̃010∫
Ω̃ B(x̃I)

T · c(x̃I) · ε001 · dΩ̃ = f̃001

(49)

3. For each equivalent force obtained with Equation (49), impose at the RVE the following
essential boundary conditions:

for x̃i =

{
0
0

}
, ¯̃u = 0 and ¯̃v = 0

for x̃i =

{
L̃
0

}
, ¯̃v = 0

(50)
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with L̃ being the length of the RVE along the Ox̃ direction and ¯̃u and ¯̃v the imposed
displacements along the Ox̃ and Oỹ directions, respectively.

4. Using Equation (31), solve the system of equations and obtain the RVE’s displacement
field for each load case considered: ũ100, ũ010 and ũ001.

5. Using Equations (22) and (24), obtain the RVE’s strain fields (ε̃100, ε̃010 and ε̃001) and
stress fields (σ̃100, σ̃010 and σ̃001), respectively.

6. Obtain the RVE’s homogenised stress (σ̄100, σ̄010 and σ̄001) and strain (ε̄100, ε̄010 and
ε̄001) using Equations (39) and (40), respectively.

7. Using Equation (44), establish a system of 3 × 4 equations:



σ̄100 = c[4×4] · ε̄100 ⇒


σ
[100]
xx

σ
[100]
yy

σ
[100]
zz

τ
[100]
xy

 =


C11 C12 C13 0
C21 C22 C23 0
C31 C32 C33 0
0 0 0 C44

 ·


ε
[100]
xx

ε
[100]
yy
0

γ
[100]
xy


σ̄010 = c[4×4] · ε̄010 ⇒


σ
[010]
xx

σ
[010]
yy

σ
[010]
zz

τ
[010]
xy

 =


C11 C12 C13 0
C21 C22 C23 0
C31 C32 C33 0
0 0 0 C44

 ·


ε
[010]
xx

ε
[010]
yy
0

γ
[010]
xy


σ̄001 = c[4×4] · ε̄001 ⇒


σ
[001]
xx

σ
[001]
yy

σ
[001]
zz

τ
[001]
xy

 =


C11 C12 C13 0
C21 C22 C23 0
C31 C32 C33 0
0 0 0 C44

 ·


ε
[001]
xx

ε
[001]
yy
0

γ
[001]
xy



(51)

Three of these twelve equations are linear dependent and lead to the same result:
τ = C44 · γxy, allowing us to obtain: G12 = C44. The remaining nine components
Cij, with {i, j} = 1, 2, 3, are obtained solving the other nine equations.

8. After obtaining all Cij, it is possible to use Equation (45) to obtain the elastic mechani-
cal properties: 

E1 = ζ
C22C33−(C23)2

E2 = ζ
C11C33−(C13)2

E3 = ζ
C11C22−(C12)2

G12 = C44

,



ν12 = C12C33−C13C23
C22C33−(C23)2

ν13 = C13C22−C12C23
C22C33−(C23)2

ν23 = C23C11−C12C13
C11C33−(C13)2

(52)

being

ζ = C11C22C33 + 2C23C13C12 − C11(C23)
2 − C22(C13)

2 − C33(C12)
2 (53)

Since the homogenised mechanical properties will be estimated using the 2D plane
strain assumptions, it is necessary to pre-estimate the elasticity modulus in the transversal
direction (notice that in Equation (51) C33 is always multiplied by zero). Thus, the rule of
mixtures (ROM) is used [35],

EROM
3 =

n

∑
i=1

v(i)f E(i)
3 (54)

where n is the number of fractions of material (in this case, there are only two fractions:
material and absence of material, i.e., the void), v(i)f is the volume fraction of fraction i, and

E(i)
3 is the Young’s modulus in material direction 3 of fraction i.
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3. Numerical Results

Next, microscale and macroscale numerical examples are studied with the proposed
meshless technique, and the produced results are analysed and discussed. Firstly, following
the homogenisation procedure described in Section 2.4, the homogenised mechanical
properties of a polyurethane foam (PUF) with circular voids are calculated. Afterwards, the
obtained homogenised mechanical properties are then applied to a macroscale sandwich
cantilever beam with aluminium top layers and PUF core. In order to study the influence
of the PUF core density, distinct PUF cores are analysed: PUF cores with constant density
and approximated functionally graded PUF cores.

In this work, the following two NNRPIM formulations are considered:

• NNRPIMv1: first-degree influence cell.
• NNRPIMv2: second-degree influence cell.

Regarding the integration scheme, for both NNRPIM formulations, one (1 × 1) integra-
tion point per quadrilateral sub-area was considered in all NNRPIM analyses. Concerning
the construction of the shape functions, for both NNRPIM formulations, we considered the
following: shape parameters c = 0.0001 and p = 0.9999 and a constant polynomial basis.

For comparison purposes, finite element formulations are applied [47], such as:

• FEM-3n: constant-strain linear triangular elements (three-node elements), with one
integration point per element.

• FEM-6n: quadratic triangular elements (six-node elements), with full integration.
• FEM-4n: Lagrangian four-node elements, with full integration.

Regarding the software and hardware resources used in this work, all the NNRPIM
and finite element method codes were fully written by the author using MatlabTM R2017b,
and the nodal and element meshes were built with Simcenter Femap Student Edition
SoftwareTM. All the analyses were performed with a standard laptop computer (Samsung,
Suwon, Korea), with an Intel© CoreTM i5-3230M CPU, 2.60 GHz, and 8 GB of RAM.

3.1. Microscale Analysis

In order to obtain the homogenised mechanical properties of PUF with microscale
cylindrical holes, the 2D parametric RVE represented in Figure 3 is considered with
L = D = 10 mm and unitary thickness. The circular hole parameters are xc = {L/2, D/2},
and the radius R of the central hole is defined as

R(v f ) =

√
1 − v f

π
(55)

with v f , the volume fraction of the RVE, defined as

v f =
vm

vd
(56)

with vd as the volume of the RVE: vd = L · D · 1 mm3 and vm as the volume occupied by
effective PUF mass. For the microscale numerical analysis, the 2D plane strain deformation
theory is considered.

Figure 3. Parametric representation of the analysed RVE.



Appl. Sci. 2024, 14, 9214 16 of 39

As documented in the literature [49], the following isotropic elastic mechanical prop-
erties of bulk PUF (v f = 1) were assumed: E = 171.43 MPa, G = 57.810 MPa, and
ν = 0.30.

3.1.1. Convergence Study

Being this one of the first works on meshless methods combined with a multiscale
analysis, particularly using void subdomains, it is necessary to understand if the technique
under such assumptions shows a convergent behaviour. Thus, considering a radius of
R = 2.821 mm (corresponding to a volume fraction of v f = 0.75), five distinct meshes with
an increasing number of nodes are built; see Figure 4.

(a) (b)

(c) (d) (e)

Figure 4. Numerical discretisation models used for the NNRPIM and FEM analyses: (a) 234 triangular
elements and 138 nodes; (b) 884 triangular elements and 483 nodes; (c) 3408 triangular elements
and 1785 nodes; (d) 7768 triangular elements and 4005 nodes; (e) 13,664 triangular elements and
6993 nodes.

After constructing the models represented in Figure 4, the homogenised mechani-
cal properties of each model (RVE) were obtained applying the procedure described in
Section 2.4. Thus, the following elastic components of the homogenised constitutive ma-
terial matrix, Equation (44), were obtained: C11, C22, C12, C21, C33, C44. Additionally, the
homogenised material properties of the RVE were calculated, such as the Young’s modulus
Ex, Ey, and Ez; the in-plane elastic shear modulus, Gxy; and the Poisson’s ratio, νxy. The
results obtained with each mesh, for each formulation, are shown in Figure 5.

With Figure 5, it is possible to visualise that all formulations converge. The FEM
presents an upper bound convergence path, and, in opposition, the NNRPIM possesses
a lower bound convergence path. The final converged value is not the same for the FEM
and NNRPIM formulations. However, both FEM formulations converge to the same value,
as well as both NNRPIM versions. It is possible to observe with Figure 5 that FEM-6n
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possesses the highest convergence rate. Regarding NNRPIM formulations, the results show
that both approaches allow us to obtain very similar results.

(a) (b)

(c) (d)
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Figure 5. Convergence study of the nodal discretisation for the elastic mechanical properties: (a) Ex,
(b) Ez, (c) Gxy, and (d) νxy.

Tables 1 and 2 show the final converged values considering only the denser mesh
shown in Figure 4e.

Table 1. Elastic mechanical properties of the RVE for v f = 0.75.

Ex [Mpa] Ey [Mpa] Ez [Mpa] Gxy [Mpa] νxy νyx

FEM-3n 82.579 82.576 128.658 20.940 0.334 0.334
FEM-6n 82.519 82.519 128.700 20.887 0.332 0.332

NNRPIMv1 79.191 79.399 126.669 19.258 0.339 0.339
NNRPIMv2 79.267 79.478 126.673 19.247 0.338 0.338

Table 2. Elastic constitutive constants of the RVE for v f = 0.75. Cij in MPa.

C11 C12 C21 C22 C33 C44

FEM-3n 105.958 44.054 44.054 105.955 155.660 20.940
FEM-6n 105.932 44.100 44.100 105.932 155.706 20.887

NNRPIMv1 101.801 42.733 42.733 102.084 152.711 19.258
NNRPIMv2 101.825 42.663 42.624 102.106 152.699 19.247
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Observing the numerical results of Table 1 and comparing the NNRPIM and FEM
solutions, it is possible to understand that the difference between the NNRPIM and FEM
solutions is about 4.0% for the Young’s modulus Ex and Ey, and 1.5% for Ez. Regarding the
elastic shear modulus Gxy and the Poisson’s ratio, the differences are about 7.7% and 2.0%,
respectively. Such differences were expected because the NNRPIM and FEM formulations
are very different from each other (background integration scheme, nodal connectivity,
base functions of the shape functions). Similarly, for the elastic constitutive constants Cij,
differences between the results of the NNRPIM and FEM formulations can be found. With
Table 2, it is possible to visualise the following differences: 4.0% for C11 and C22, 3.0% for
C12, 2.0% for C33, and 7.7% for C44.

Regarding the stress field distribution, in Figure 6 the Von Mises equivalent stress
(σe f =

√
3 · J2) field is presented for FEM-6n, FEM-3n, NNRPIMv1, and NNRPIMv2.

Analysis of Figure 6 reveals a clear distinction in stress distribution patterns. As
anticipated, the FEM-6n formulation exhibits a remarkably smooth stress field. This
behaviour is in accordance with the presence of quadratic terms within its shape functions,
which inherently promote smoothness. Conversely, the stress distributions obtained for
both NNRPIMv2 and NNRPIMv1 formulations display a level of granularity similar
to FEM-3n.

Previous studies [22,24] have demonstrated the ability of meshless methods to achieve
smoother stress fields compared to lower-order finite element methods. However, the
results presented in Figure 6 for the effective stress fields obtained using NNRPIMv1 and
NNRPIMv2 formulations appear to contradict such expectation. Both NNRPIMv1 and
NNRPIMv2 formulations exhibit stress distributions with a similar level of granularity
as the three-node triangular finite element method (FEM-3n). This behaviour becomes
even more pronounced with NNRPIMv1, which uses a lower number of nodes within its
influence domains.

The primary factor contributing to this lack of smoothness lies in the adopted integra-
tion scheme. To prioritise computational efficiency and flexibility, the NNRPIM formulation
employs a single integration point within each sub-quadrilateral area of each Voronoï cell
(recall Section 2.3 for details). While this approach may not significantly impact the av-
erage accuracy of the variable fields themselves, it does compromise its smoothness. As
demonstrated in Figure 7, employing a higher-order integration scheme, such as the 2 × 2
Gauss–Legendre integration detailed in Section 2.3, leads to a marked improvement in the
smoothness of the stress fields. The stress distribution as improved significantly, being now
more smooth and continuous (the granulated distributions has disappeared).

Comparing the results obtained with NNRPIMv1 (Figure 6g–i) and the NNRPIMv1*
version with an higher integration order (Figure 7a–c), it is possible to visualise signifi-
cant differences in the smoothness of the solution. Such a smoothness difference is more
pronounced for the NNRPIMv2 formulation. Comparing the NNRPIMv2 stress distribu-
tions of Figure 6j–l with the NNRPIMv2* stress distribution (Figure 7d–f), it is possible to
understand the effect of considering more integration points.

Although using a higher-order integration scheme demonstrably enhances the smooth-
ness of the stress field (and potentially other variable fields), its impact on the homogenised
material properties appears not to be relevant. Table 3 shows the results obtained with the
NNRPIMv1* and NNRPIMv2* versions (with an higher integration order), and comparing
such results with the solutions presented in Tables 1 and 2, it is possible to observe that the
homogenised values are not significantly affected by the integration scheme.

While the enhanced smoothness achieved with the higher-order integration scheme
is desirable, it comes at the expense of increased computational cost. Employing a single
integration point per sub-quadrilateral area within each Voronoï cell allows for significantly
faster analysis (approximately 10 ∼ 15 times faster) compared to the 2 × 2 integration
scheme. This becomes particularly relevant for computationally demanding problems,
such as nonlinear analyses. Consequently, the subsequent examples will continue to use
the single integration point approach to maintain computational efficiency.
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smin=0 MPa; smax=0.58 MPa

smin=0 MPa; smax=0.73 MPa smin=0 MPa; smax=0.73 MPa smin=0 MPa; smax=0.46 MPa

(a) (b) (c)

(d) (e) (f)

smin=0 MPa; smax=0.95 MPa smin=0 MPa; smax=0.95 MPa smin=0 MPa; smax=0.63 MPa

(g) (h) (i)

smin=0 MPa; smax=0.84 MPa smin=0 MPa; smax=0.84 MPa smin=0 MPa; smax=0.60 MPa

(j) (k) (l)

Figure 6. Von Mises equivalent stress distribution for the formulations considered: FEM-6n (a–c),
FEM-3n (d–f), NNRPIMv1 (g–i), and NNRPIMv2 (j–l). The results corresponding to f̃100 are shown
in (a,d,g,j), the results corresponding to f̃010 are shown in (b,e,h,k), and the results corresponding to
f̃001 are shown in (c,f,i,l).
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smin smax

smin=0 MPa; smax=0.82 MPa smin=0 MPa; smax=0.82 MPa smin=0 MPa; smax=0.57 MPa

(d) (e) (f)

smin=0 MPa; smax=0.91 MPa smin=0 MPa; smax=0.91 MPa smin=0 MPa; smax=0.63 MPa

(a) (b) (c)

Figure 7. Von Mises equivalent stress distribution obtained with NNRPIM considering an higher-
order integration scheme: NNRPIMv1 with 2 × 2 integration scheme per sub-area (a) f̃100, (b) f̃010,
and (c) f̃001. NNRPIMv2 with 2 × 2 integration scheme per sub-area (d) f̃100, (e) f̃010, and (f) f̃001.

Table 3. Elastic homogenised mechanical properties and constitutive constants of the RVE with
v f = 0.75 obtained with NNRPIMv1* and NNRPIMv2* formulations considering an higher-order
integration scheme. Cij in MPa.

Ex [MPa] Ey [MPa] Ez [MPa] Gxy [MPa] νxy νyx

NNRPIMv1* 78.545 78.525 126.072 18.995 0.340 0.340
NNRPIMv2* 78.587 78.560 126.073 19.022 0.339 0.339

C11 C12 C21 C22 C33 C44

NNRPIMv1* 101.004 42.389 42.393 100.978 151.881 18.995
NNRPIMv2* 100.976 42.293 42.285 100.941 151.857 19.022

3.1.2. Homogenised Material Properties

One of the main goals of the present research work is to study the influence of the
volume fraction (v f ) of the PUF on the final homogenised mechanical properties. Therefore,
the increasing volume fractions presented in Table 4 were considered for the PUF core.
Then, applying Equation (55), for each volume fraction considered, a corresponding radius
for the circular hole was calculated; see Table 4.

Table 4. Relation between the volume fraction and the circular hole radius.

v f 0.500 0.550 0.600 0.650 0.700 0.750 0.800 0.850 0.900 0.950 1.000
R [mm] 3.989 3.785 3.568 3.338 3.090 2.821 2.523 2.185 1.784 1.262 0.000

Concerning the nodal discretisation to adopt for this analysis, the results of the pre-
vious convergence test, Figure 5, allowed us to understand that a nodal density with
approximately 4000 nodes for v f = 0.75 is sufficiently dense, permitting us to obtain
solutions very close to the theoretical converged value. Hence, the RVEs of each volume
fraction were discretised with nodal meshes respecting a proportional nodal density; see
Figure 8.

All the constructed models follow the same geometry of Figure 3, with L = D = 10 mm
and unitary thickness, and the same bulk PUF mechanical properties: E = 171.43 MPa,
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G = 57.810 MPa, and ν = 0.30. Then, using the same homogenisation procedure and
considering plane strain deformation theory, the homogenised mechanical properties for
each volume fraction v f were calculated. The results are shown in Figure 9.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8. Discretisation meshes used with the NNRPIM and FEM analyses. (a) v f = 0.50, 2671 nodes,
and 5178 triangular elements. (b) v f = 0.55, 2937 nodes, and 5696 triangular elements. (c) v f = 0.60,
3205 nodes, and 6214 triangular elements. (d) v f = 0.65, 3472 nodes, and 6732 triangular elements.
(e) v f = 0.70, 3739 nodes, and 7249 triangular elements. (f) v f = 0.75, 4005 nodes, and 7767 triangular
elements. (g) v f = 0.80, 4273 nodes, and 8285 triangular elements. (h) v f = 0.85, 4539 nodes, and
8803 triangular elements. (i) v f = 0.90, 4807 nodes, and 9321 triangular elements. (j) v f = 0.95,
5073 nodes, and 9839 triangular elements.

(a) (b)

(c) (d)
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Figure 9. Influence of the volume fraction v f on the homogenized elastic mechanical properties:
(a) Ex, (b) Ey, (c) Gxy, and (d) νxy.
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The influence of PUF volume fraction on its homogenised elastic properties can
be observed in Figure 9. Polynomial curves can be effectively fitted to each property
as a function of volume fraction, indicating a predictable relationship. Also, FEM and
NNRPIM predictions exhibit good agreement and follow similar trends. However, the most
significant discrepancy is observed in Poisson’s ratio, particularly at lower volume fractions.

These findings pave the way for the development of macroscale models of sandwich
beams or plates incorporating a PUF core. By employing the homogenised mechanical
properties of PUF with varying volume fractions (due to the presence of cylindrical holes),
such models can be used to analyse large-scale applications. Table 5 summarises the
homogenised mechanical properties of PUF obtained from FEM-3n, NNRPIMv1, and
NNRPIMv2 formulations for different volume fractions.

Table 5. Homogenised mechanical properties with respect the volume fraction.

v f Ex [MPa] Ey [MPa] Ez [MPa] Gxy [MPa] νxy νyx

FEM-3n 1.00 171.430 171.430 171.430 65.935 0.300 0.300
0.95 149.211 149.212 162.913 56.481 0.300 0.300
0.90 129.549 129.546 154.408 46.524 0.304 0.304
0.85 111.759 111.757 145.651 36.680 0.311 0.311
0.80 96.673 96.677 137.288 28.290 0.320 0.320
0.75 82.702 82.702 128.669 21.019 0.333 0.333
0.70 70.094 70.102 120.084 15.235 0.351 0.351
0.65 58.514 58.513 111.435 10.757 0.374 0.374
0.60 48.078 48.083 102.884 7.458 0.403 0.403
0.55 38.870 38.865 94.580 5.110 0.437 0.437
0.50 30.106 30.106 85.801 3.332 0.480 0.480

NNRPIMv1 1.00 171.430 171.430 171.430 65.935 0.300 0.300
0.95 146.173 145.926 161.800 54.876 0.301 0.301
0.90 125.357 125.447 152.704 44.252 0.306 0.306
0.85 107.416 107.409 143.533 34.231 0.314 0.314
0.80 92.007 92.139 134.751 25.747 0.324 0.324
0.75 78.089 78.303 125.970 18.779 0.340 0.340
0.70 65.625 65.713 117.131 13.302 0.360 0.360
0.65 54.027 54.130 108.314 9.186 0.388 0.388
0.60 43.397 43.367 99.035 6.163 0.422 0.422
0.55 34.448 34.388 90.636 4.125 0.461 0.461
0.50 25.769 25.720 81.410 2.587 0.511 0.511

NNRPIMv2 1.00 171.430 171.430 171.430 65.935 0.300 0.300
0.95 146.234 146.098 161.801 54.882 0.301 0.301
0.90 125.401 125.466 152.704 44.172 0.305 0.305
0.85 107.391 107.438 143.537 34.173 0.314 0.314
0.80 92.091 92.146 134.758 25.710 0.324 0.324
0.75 78.180 78.321 125.977 18.750 0.340 0.340
0.70 65.669 65.736 117.133 13.284 0.360 0.360
0.65 54.072 54.162 108.317 9.169 0.387 0.387
0.60 43.484 43.420 99.035 6.152 0.421 0.421
0.55 34.466 34.421 90.639 4.116 0.460 0.460
0.50 25.814 25.810 81.403 2.583 0.508 0.508

For NNRPIM formulations, it is possible to observe that the homogenised Poisson’s ratio
for v f = 0.5 is higher than ν = 0.5. This observation aligns with findings reported by Luo et
al. (2021) for similar foams in sandwich plates [50]. A Poisson’s ratio greater than 0.5 violates
the assumptions of plane strain, making macroscale applications utilising these homogenised
properties impossible. However, alternative approaches such as 2D plane stress deformation
and full 3D deformation theories remain viable options. Consequently, to maintain consistency
in the numerical framework of the macroscale analysis, only the homogenised mechanical
properties obtained from the FEM-3n formulation will be employed.
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3.2. Macroscale Analysis

In this section, sandwich cantilever beams are analysed considering for the PUF cores
the homogenised mechanical properties presented in Table 5. First, beams with homoge-
neous PUF cores bounded by aluminium face sheets are studied. Afterwards, gradually
modifying the homogenised mechanical properties of the PUF core along the core thickness,
approximated functionally graded sandwich cantilever beam models are constructed and
numerically analysed. Regarding the mechanical properties of the aluminium face sheets,
the following linear elastic isotropic material properties are considered: Young’s modulus
E = 70 GPa and Poisson’s ratio ν = 0.32. Considering for all models a regular mesh with
30× 120 divisions (corresponding to a uniform regular mesh of 3751 nodes and 3600 quadri-
lateral elements), all the studied models were analysed with FEM-4n, NNRPIMv1, and
NNRPIMv2.

This study is a pure numerical research work. No experimental or practical appli-
cations were produced or tested. Since in this work all static analyses were performed
assuming linear elastic material behaviour, with small strains and no contact assumptions,
it was not possible to capture or address some practical problems that recurrently appear
in sandwich structures [51], such as the detection, propagation, and mitigation of damage
to the sandwich core and at the interface; fatigue and creep testing; delamination and
debounding between the core and face sheets; nonlinear material and geometric response;
and temperature and humidity effects. Additionally, this paper assumes aluminium face
sheets and a PUF core, which can lead to catastrophic scenarios, like the ones documented
in the work of Florence et al. [52] for bending of honeycomb PUF cores: the core fails and
delaminates from the face sheets; the core and traction face sheet fracture; and the core is
crushed, losing thickness and bending stiffness.

3.2.1. Sandwich Cantilever Beam

A sandwich cantilever, with the the geometry and boundary conditions shown in
Figure 10, is analysed. The beam presents the dimensions: L = 4 m, D1 = D3 = 0.1 m and
D2 = 0.8 m, and a unitary thickness (H = 1 m) along Oz direction. At the beam’s right edge,
all degrees of freedom are constrained (clamped condition) and at its left-top corner, a localised
load is applied: P = 106N. Six distinct volume fractions (v f = {0.5, 0.6, 0.7, 0.8, 0.9, 1.0})
were considered for the PUF core, which will allow us to analyse the influence on the beam’s
displacement and stress fields of using PUF cores with distinct volume fractions. For each
considered volume fraction, the corresponding homogenised mechanical properties (obtained
with FEM-3n) are extracted from Table 5.

Figure 10. Sandwich cantilever beam, with aluminium face sheets (layers 1 and 3) and PUF core (layer
2). The geometric characteristics, essential and natural boundary conditions and material distribution
are indicated, as well as the interest points A, B and C.

Respectively, in Tables 6 and 7 are presented the displacement components along Ox (u)
and Oy (v) obtained in point A (represented in Figure 10). The last two columns correspond
to the difference between the NNRPIM and FEM solutions following the expression
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dv1 =

∥∥∥∥ fFEM − fNNRPIMv1

fFEM

∥∥∥∥ (57)

being fFEM and fNNRPIMv1 the variable values obtained with FEM and NNRPIMv1, re-
spectively. For NNRPIMv2, the same Equation (57) is applied considering NNRPIMv2
instead NNRPIMv1.

Table 6. Displacement obtained at point A along direction Ox for sandwich cantilever beams with
PUF cores with distinct volume fractions. u in [mm].

Vol.Frac FEM-4n NNRPIMv1 NNRPIMv2 dv1 dv2

0.5 5.193 4.849 4.799 0.066 0.076
0.6 3.641 3.416 3.394 0.062 0.068
0.7 2.830 2.678 2.666 0.054 0.058
0.8 2.368 2.261 2.254 0.045 0.048
0.9 2.077 2.000 1.996 0.037 0.039
1.0 1.882 1.826 1.822 0.030 0.032

Table 7. Displacement obtained at point A along direction Oy for sandwich cantilever beams with
PUF cores with distinct volume fractions. v in [mm].

Vol.Frac FEM-4n NNRPIMv1 NNRPIMv2 dv1 dv2

0.5 −284.042 −268.188 −265.192 0.056 0.066
0.6 −185.147 −174.062 −173.102 0.060 0.065
0.7 −130.169 −122.259 −121.992 0.061 0.063
0.8 −96.8805 −91.0714 −91.028 0.060 0.060
0.9 −74.7106 −70.3729 −70.3885 0.058 0.058
1.0 −58.9077 −55.6522 −55.6656 0.055 0.055

It is possible to observe that NNRPIM solutions present lower displacement values
than FEM solutions. Thus, the NNRPIM leads consistently to more rigid solutions than
the FEM. Regarding the vertical displacement v, depending on the density of the PUF
core, the solutions of the FEM and NNRPIMv1 present differences between 5.6% and 6.1%
and between 5.5% and 6.6% for NNRPIMv2. Comparing the NNRPIMv1 and NNRPIMv2
results, it is possible to find lower differences, around 1%. On the other hand, observing
the horizontal displacement u, the overall difference between the FEM and NNRPIM
techniques is significantly reduced to 3% to 7.6%.

Local stress values were also documented and analysed. The normal stress σxx at
point B (in the top aluminium layer) and the shear stress τxy at point C (in the PUF core, at
y = 0.5 m), both represented in Figure 10, were obtained and included in Tables 8 and 9.

Table 8. Normal stress σxx obtained at point B for sandwich cantilever beams with PUF cores with
distinct volume fractions. σxx in MPa.

Vol.Frac FEM-4n NNRPIMv1 NNRPIMv2 dv1 dv2

0.5 −316.024 −280.512 −250.526 0.112 0.207
0.6 −252.946 −226.490 −204.089 0.105 0.193
0.7 −213.791 −192.837 −174.953 0.098 0.182
0.8 −187.105 −169.779 −154.905 0.093 0.172
0.9 −167.088 −152.400 −139.764 0.088 0.164
1.0 −151.028 −138.398 −127.560 0.084 0.155

As expected, being more rigid when compared with the FEM, the NNRPIM presents
lower stress values. In this case, the differences are significant. Regarding the normal stress
σxx, the difference is about 8.4% to 11.2% for NNRPIMv1 and between 15.5% and 20.7%
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for NNRPIMv2. For the shear stress τxy, NNRPIMv1 shows differences of around 2.0%
to 7.6% to FEM solutions, and NNRPIMv2 presents differences of about 3.1% to 6.7% to
FEM results.

Table 9. Shear stress τxy obtained at point C for sandwich cantilever beams with PUF cores with
distinct volume fractions. τxy in kPa.

Vol.Frac FEM-4n NNRPIMv1 NNRPIMv2 dv1 dv2

0.5 −146.937 −158.050 −156.771 0.076 0.067
0.6 −190.784 −200.988 −200.014 0.053 0.048
0.7 −231.156 −240.339 −240.354 0.040 0.040
0.8 −267.833 −276.106 −277.294 0.031 0.035
0.9 −302.068 −309.541 −311.956 0.025 0.033
1.0 −334.716 −341.489 −345.170 0.020 0.031

Although the formulation of NNRPIMv1 leads to much smaller influence domains
than NNRPIMv2, both formulations deliver very close results. In the FEM-4n formulation,
shape functions are constructed using four nodes (the nodes comprising the finite element).
In the NNRPIMv1 and NNRPIMv2 formulations, shape functions are constructed using
approximately 5 to 10 nodes and 16 to 32 nodes, respectively. Thus, the NNRPIM possesses a
larger nodal connectivity than the FEM. This additional connectivity can have an unwanted
effect. When the strain/stress fields are being calculated, an integration point within
material 1 domain use nodes belonging to material 2 to construct its shape function because
those nodes are inside its influence domain. Thus, the strain/stress fields are averaged by
both materials, smoothing (lowing) the strain/stress at the transition zone. Furthermore,
since corner nodes posses a lower number of natural neighbours, their integration points
will possess influence domains with a lower number of nodes, leading to the construction
of shape functions with lower complexity than the shape functions of integration points
within the middle of the domain (which possess more nodes inside their influence domains).
All these factors contribute to the higher rigidity of the NNRPIM formulations and their
lower stress values.

An additional factor explaining the lower stress value of normal stress σxx is the
geometric position of the integration point closest to point B. Actually, the normal stress
σxx is obtained on the integration point closer to point B, not at point B exactly. Due to the
difference in the construction procedure of the background integration mesh of the FEM-4n
and NNRPIM, the closest integration point will be placed in a very different position. In
the FEM, the integration point closer to point B will be much closer to point B than the
integration point closer to point B of the NNRPIM. Thus, the documented normal stress
σxx near point B of the FEM and NNRPIM will be significantly different. This effect can be
observed in the following figures.

In Figures 11–13 are presented the variation in the normal stress σxx along the edge of
the beam thickness on the clamped edge (the closest integration points to the clamped edge
are selected, and their stress values are documented). It was observed that the magnitude
of the normal stress σxx varies significantly from the aluminium face sheets to the PUF core.
Thus, the thickness was divided in three sections: in Figures 11 and 13, the normal stress
σxx on the top and bottom aluminium layers is shown, respectively, and Figure 12 shows
the normal stress σxx on the PUF core.

Understanding the variation in the in-plane shear stress, τxy, across the beam thickness,
particularly at the clamped edge, is of particular interest. Figures 14–16 show this variation.
Similar to the observations for the normal stress, σxx, a significant disparity exists between
the magnitude of τxy in the top and bottom aluminium layers compared to the PUF core.
Consequently, the results are presented separately: Figure 15 depicts the distribution of τxy
within the PUF core, while Figures 14 and 16 present the distribution of τxy in the top and
bottom aluminium layers, respectively.
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Figure 11. Variation in the normal stress σxx along the aluminium top face sheet for distinct PUF
cores. (a) v f = 0.5. (b) v f = 0.6. (c) v f = 0.7. (d) v f = 0.8. (e) v f = 0.9. (f) v f = 1.0.
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Figure 12. Variation in the normal stress σxx along the PUF core, for distinct PUF cores. (a) v f = 0.5.
(b) v f = 0.6. (c) v f = 0.7. (d) v f = 0.8. (e) v f = 0.9. (f) v f = 1.0.
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Figure 13. Variation in the normal stress σxx along the aluminium bottom face sheet for distinct PUF
cores. (a) v f = 0.5. (b) v f = 0.6. (c) v f = 0.7. (d) v f = 0.8. (e) v f = 0.9. (f) v f = 1.0.
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Figure 14. Variation in the shear stress τxy along the aluminium top face sheet for distinct PUF cores.
(a) v f = 0.5. (b) v f = 0.6. (c) v f = 0.7. (d) v f = 0.8. (e) v f = 0.9. (f) v f = 1.0.
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Figure 15. Variation in the shear stress τxy along the PUF core, for distinct PUF cores. (a) v f = 0.5.
(b) v f = 0.6. (c) v f = 0.7. (d) v f = 0.8. (e) v f = 0.9. (f) v f = 1.0.
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Figure 16. Variation in the shear stress τxy along the aluminium bottom face sheet for distinct PUF
cores. (a) v f = 0.5. (b) v f = 0.6. (c) v f = 0.7. (d) v f = 0.8. (e) v f = 0.9. (f) v f = 1.0.

With Figures 11 and 13 (normal stress σxx at the top and bottom aluminium layer,
respectively), it is possible to observe that FEM-4n and NNRPIMv1 produce very close
solutions. Regarding NNRPIMv2, the results are not so different from the FEM-4n solutions,
as Table 8 initially suggested. With Figures 11 and 13, it is possible to understand that
because the integration points of FEM-4n are closer to the top (and bottom) surface of the top
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(and bottom) aluminium layers, they allow for higher magnitudes for σxx than the NNRPIM
solutions. Regarding the PUF core, Figure 12, it is possible to visualise that for lower PUF
densities, NNRPIMv1 is closer to FEM-4n, but for higher PUF densities, NNRPIMv1 starts
to approximate the NNRPIMv2 solution. It is also visible that the NNRPIMv2 solution is
disturbed in the interface between the PUF core and the top (and bottom) aluminium layers.
This stress perturbation is due the nature of the influence domains. The integration points
belonging to the PUF core near the interface start to possess nodes inside their influence
domains that belong to the aluminium layer. As the PUF core rigidity starts to increase (by
increasing the PUF core density), the effect starts to dissipate because the rigidity of the
core material starts to approximate the rigidity of the face sheet material. Nevertheless, the
magnitude of the normal stress σxx level within the PUF core is very low, with the highest
magnitudes observed in the top and bottom aluminium layers.

Regarding the shear stress τxy distribution along the beam thickness, the results
show that the highest values can be found at the top and bottom aluminium layers
(Figures 14 and 16). Notice that, as for σxx, also shear stress τxy on the integration points
closer to the top (and bottom) surface of the top (and bottom) aluminium layers present
lower magnitudes than FEM-4n. This can be explained with the position of the integration
point. The integration points of FEM-4n are closer to the beam’s top (and bottom) surfaces,
allowing us to predict higher stress magnitudes. Concerning the PUF core, shown in
Figure 15, as expected, the distribution is approximately parabolic and all the formulations
allow us to obtain very similar results. The same disturbance effect observed for the normal
stress σxx near the aluminium/PUF interface is visible although highly attenuated.

3.2.2. Functionally Graded Sandwich Cantilever Beam

In this subsection, two cantilever beams with aluminium face sheets with approxi-
mately functionally graded PUF cores are analysed. As Figure 17 shows, the PUF core
possesses eight distinct layers, each one with its own volume fraction. With its right side
clamped, the beam is submitted to a localised load P = 106 N at the top-left corner and it
possesses the following dimensions: L = 4 m and Di = 0.1 m, for i = {1, 2, . . . , 10}.

Figure 17. Sandwich cantilever beam, with aluminium face sheets (sheets 1 and 10) and a functionally
graded PUF core (sheets from 2 to 9). The geometric characteristics, essential and natural boundary
conditions and material distribution are indicated, as well as the interest points A, B and C.

For the PUF core, two different approximately functionally graded PUF are considered
(FG1 and FG2). The volume fractions and corresponding mechanical properties of each
layer are indicated in Table 10 for both FG1 and FG2 beam models.

Using the FEM-4n and both NNRPIM formulations, the Ox and Oy displacements of
point A (indicated in Figure 17) were obtained and documented in Tables 11 and 12, respec-
tively. The results show that the difference between the FEM-4n and NNRPIM formulations
is around 3.5% for the u displacement and slightly lower for the v displacement component.
Thus, despite being distinct numerical formulations, these results show that the FEM-4n and
NNRPIM provide similar solutions.
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Table 10. Mechanical properties of each layer (Al—aluminium; PUF—polyurethane foam).

Beam Layer D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

FG1 v f 1.0 0.9 0.8 0.7 0.6 0.6 0.7 0.8 0.9 1.0
material Al PUF PUF PUF PUF PUF PUF PUF PUF Al
E [MPa] 70,000 129.549 96.673 70.094 48.078 48.078 70.094 96.673 129.549 70,000

ν 0.320 0.304 0.320 0.351 0.403 0.403 0.351 0.320 0.304 0.320

FG2 v f 1.0 0.8 0.7 0.6 0.5 0.5 0.6 0.7 0.8 1.0
material Al PUF PUF PUF PUF PUF PUF PUF PUF Al
E [MPa] 70,000 96.673 70.094 48.078 30.106 30.106 48.078 70.094 96.673 70,000

ν 0.320 0.320 0.351 0.403 0.480 0.480 0.403 0.351 0.320 0.320

Table 11. Displacement obtained at point A along direction Ox for sandwich cantilever beams with
functionally graded PUF cores. u in [mm].

Vol.Frac FEM-4n NNRPIMv1 NNRPIMv2 dv1 dv2

FG1 2.702 2.610 2.617 0.034 0.032
FG2 3.494 3.364 3.380 0.037 0.033

Table 12. Displacement obtained at point A along direction Oy for sandwich cantilever beams with
functionally graded PUF cores. v in [mm].

Vol.Frac FEM-4n NNRPIMv1 NNRPIMv2 dv1 dv2

FG1 −122.140 −117.964 −118.258 0.034 0.032
FG2 −176.361 −171.056 −171.521 0.030 0.027

In Tables 13 and 14 are shown the normal stress σxx obtained at point B and shear
stress τxy from point C, respectively. Both points B and C are depicted in Figure 17.

Regarding the normal stress at point B and the shear stress at point C, both represented
in Figure 17, the obtained results are shown in Tables 13 and 14, respectively.

Table 13. Normal stress σxx obtained at point B for sandwich cantilever beams with functionally
graded PUF cores. σxx in MPa.

Vol.Frac FEM-4n NNRPIMv1 NNRPIMv2 dv1 dv2

FG1 −207.505 −189.208 −172.365 0.088 0.169
FG2 −246.623 −223.837 −202.766 0.092 0.178

Table 14. Shear stress τxy obtained at point B for sandwich cantilever beams with functionally graded
PUF cores. τxy in kPa.

Vol.Frac FEM-4n NNRPIMv1 NNRPIMv2 dv1 dv2

FG1 −196.320 −205.114 −205.726 0.045 0.048
FG2 −163.736 −172.891 −172.367 0.056 0.053

The results show a similar trend with the previous numerical example. The normal
stress σxx obtained with NNRPIMv1 differs about 9% from the FEM-4n solution, and the
NNRPIMv2 presents higher differences: 16.9% and 17.8% for FG1 and FG2, respectively.
As in the previous numerical examples, these differences can be explained by the position
of the integration point for which the stress is being obtained (in the following results, this
idea can be validated). Regarding the shear stress τxy, the difference between the FEM-4n
and both NNRPIM formulations is around 5%.

This observed disparity in normal and shear stress confirms an established notion in
meshless methods [22]: when employing a large number of nodes within the influence
domain, integration points situated near boundaries (such as point B) tend to encompass
larger support domains. This characteristic can introduce a smoothing effect, leading to
a reduction in the local magnitude of the variable field. Conversely, integration points
positioned further within the physical domain (such as point C) generally possess smaller
support domains, leading to sharper approximations of the field values.
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The distributions along the thickness of the beam of the stress fields σxx and τxy on the
clamped edge (obtained for the integration points near the clamped edge, not at the edge
itself) are shown in Figures 18 and 19, respectively.
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Figure 18. Variation in the normal stress σxx along the beam thickness. (a) FG1 beam, for
y ∈ [0.9, 1.0] m. (b) FG2 beam, for y ∈ [0.9, 1.0] m. (c) FG1 beam, for y ∈ [0.1, 0.9] m. (d) FG2
beam, for y ∈ [0.1, 0.9] m. (e) FG1 beam, for y ∈ [0.0, 0.1] m. (f) FG2 beam, for y ∈ [0.0, 0.1] m.
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Figure 19. Variation in the shear stress τxy along the beam thickness. (a) FG1 beam, for y ∈ [0.9, 1.0] m.
(b) FG2 beam, for y ∈ [0.9, 1.0] m. (c) FG1 beam, for y ∈ [0.1, 0.9] m. (d) FG2 beam, for y ∈ [0.1, 0.9] m.
(e) FG1 beam, for y ∈ [0.0, 0.1] m. (f) FG2 beam, for y ∈ [0.0, 0.1] m.

In Figure 18a,b,e,f, it is possible to observe that the NNRPIMv2 values near the edge
surface of the beam (y ≃ 0.0 and y ≃ 1.0) are smoothed. This effect, in addition to the
difference between the location of the integration points of the FEM-4n and NNRPIM
formulations, explains why the localised σxx results of the NNRPIM, shown in Table 13,
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are so different from the ones obtained with the FEM-4n. Furthermore, with Figure 18,
it is possible to visualise that NNRPIMv1 provides very similar results to the FEM-4n.
Concerning the normal stress along y ∈ [0.1, 0.9] m, in Figure 18c,d, all solutions are
acceptably close to each other.

Regarding the shear stress τxy, shown in Figure 19, the FEM-4n and NNRPIM solutions
are in accordance with previous studies. In Figure 19a,b,e,f, it is visible that at the free
edges of the beam (y ≃ 0.0 and y ≃ 1.0) due to the size of the support domain, the FEM-4n
solutions differ from the NNRPIM solutions. Nevertheless, at the PUF core, Figure 19c,d,
the FEM-4n and NNRPIM solutions are actually very close to each other.

Overall, it is possible to observe that the stress distributions obtained with the formu-
lations (depicted in Figures 18 and 19) are generally close to each other, regardless of the
volume fraction distribution along the PUF thickness.

4. Conclusions

In this work, a full multiscale study involving sandwich beams with a polyurethane
foam (PUF) core is presented. First, the bulk PUF was modified through the inclusion
of circular holes, allowing us to create PUFs with distinct volume fractions. Then, the
homogenised mechanical properties of the PUF, with respect to its volume fraction, were
obtained using a homogenisation technique combined with finite element methods (FEMs)
and two versions of the natural neighbour radial point interpolation method (NNRPIM):
one using influence domains with the first natural neighbours (NNRPIMv1) and another
considering influence domains with the first and second natural neighbours (NNRPIMv2).
The obtained results show that the NNRPIM formulations are capable to deliver solutions
close to high-order FEM formulations, such as quadratic triangular elements (FEM-6n).
However, to achieve variable fields with the same level of smoothness of the FEM-6n,
the NNRPIM formulations require an increase in the number of integration points per
quadrilateral sub-area integration cell, leading to a very high computational cost and,
consequently, decreasing the overall NNRPIM numerical efficiency. Next, after calculating
the homogenised mechanical properties of PUFs with respect to their volume fractions,
those mechanical properties were applied to large-scale problems: a sandwich cantilever
beam with a homogeneous PUF core and a sandwich cantilever beam with an approximated
functionally graded PUF core. It was found that near the domain edge, the NNRPIMv2
formulation, having larger influence domains, leads to local lower stress values. However,
stress distributions obtained with all the distinct formulations studied tend to agree along
the thickness of the beam. The results obtained for the macroscale examples consistently
show that NNRPIMv1 is capable to produce results very close to FEM-4n. Such findings
are very interesting, since NNRPIMv1 appears to be more efficient than the NNRPIMv2
formulation by showing lower computational costs. The results documented in this work
allow us to verify that the NNRPIM formulations, especially the NNRPIMv1 version, are a
solid alternative to the FEM. Particularly in the microscale examples, the results also show
that if the objective is to obtain a smooth representation of the stress field, the number of
integration points per quadrilateral sub-area integration cell should be increased. However,
this approach is not very numerically interesting, since it increases the computational cost
of the analysis without a significant gain in accuracy.

This study presents a comprehensive multiscale investigation of sandwich beams us-
ing a polyurethane foam (PUF) core. The research adopts a two-step approach. First, a
micromechanical numerical characterisation and then a macroscale analysis were performed.

• Micromechanical characterisation: The bulk PUF was modified by incorporating
circular holes, enabling the creation of PUFs with varying volume fractions. Subse-
quently, a homogenisation technique, coupled with finite element methods (FEMs)
and two distinct natural neighbour radial point interpolation methods (NNRPIMs),
was employed to determine the homogenised mechanical properties of the PUF with
respect to its volume fraction. The NNRPIM formulations differed in the consideration
of neighbouring nodes within their influence domains: NNRPIMv1 uses only first
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natural neighbours, while NNRPIMv2 incorporated both first and second natural
neighbours. The results demonstrated that both NNRPIM formulations delivered solu-
tions comparable to high-order FEM formulations (e.g., quadratic triangular elements,
FEM-6n). However, to achieve variable fields exhibiting a smoothness level equivalent
to FEM-6n, NNRPIM formulations require a significant increase in the number of inte-
gration points per quadrilateral sub-area integration cell. This resulted in a substantial
rise in computational cost, ultimately compromising the overall numerical efficiency
of the NNRPIM.

• Macroscale analysis: The homogenised mechanical properties obtained for PUFs with
varying volume fractions were then implemented in large-scale simulations. These
simulations involved a sandwich cantilever beam with a homogeneous PUF core and
another with an approximated functionally graded PUF core. The analysis revealed
that near the domain boundary, NNRPIMv2, with its larger influence domains, yielded
lower local stress values. However, the stress distributions across the beam thickness
exhibited convergence among all the investigated formulations. The findings con-
sistently indicated that NNRPIMv1 generated results closely matching FEM-4n for
the macroscale examples. Comparing the displacement obtained with the FEM and
both NNRPIM versions, it can be concluded that for uniform PUF cores, NNRPIMv1
provides results with dv1 ∈ ] 3.0%, 6.6% [ and dv1 ∈ ]5.5%, 6.1%[ for the u and v com-
ponents, respectively, and for the same u and v components, NNRPIMv2 is capable to
deliver results with dv2 ∈ ]3.2%, 7.6%[ and dv2 ∈ ]5.2%, 6.6%[, respectively. Regarding
the approximated functionally graded PUF cores, the difference between the FEM and
both NNRPIM versions is much lower. For the u and v displacement components,
the results obtained with NNRPIMv1 are dv1 ∈]3.4%, 3.7%[ and dv1 ∈ ]3.0%, 3.4%[,
respectively, and for the NNRPIMv2 it was observed that dv2 ∈ ]3.2%, 3.3%[ and
dv2 ∈ ]2.7%, 3.2%[, respectively, for the u and v displacement components.

To conclude, the obtained results show that both NNRPIM formulations, especially
the NNRPIMv1 version, are solid alternatives to the FEM. Particularly in the microscale
examples, the results also show that if the objective is to obtain a smooth representation of
the stress field, the number of integration points per quadrilateral sub-area integration cell
should be increased. However, this approach is not very interesting numerically, since it
increases the computational cost of the analysis without a significant gain in accuracy.
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