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Abstract: In this paper, we address the aspect of knapsack balancing in the classic knapsack problem.
Recognizing that excessive dispersion in the objective function or constraint coefficients of the optimal
solution can be undesirable, we propose, when appropriate, to control this effect through problem
multiobjectivization. By multiobjectivization, we mean the addition of one or more objective functions
that aim to shift the original problem’s optimal solutions towards Pareto optimal solutions of the
multiobjectivized problem, reducing the dispersion of the respective coefficients. We detail how
the knapsack balance aspect can be incorporated into the standard knapsack problem model and
demonstrate the functionality of this enriched model through illustrative examples.

Keywords: combinatorial optimization; knapsack problem; product objective function; knapsack
balancing; multiple objective programming

1. Introduction and Motivation

The knapsack problem is one of the best studied combinatorial optimization problems
(see, e.g., [1,2]). It is defined as follows: Given a set N := {1, . . . , n} of items and a knapsack
with a maximal weight C, each item i, i = 1, . . . , n, is characterized by its profit pi > 0 and
weight wi > 0.

A subset S◦ of items that together are not heavier than C and provide the highest
sum of profits is to be determined. This problem can be formulated as a Linear Binary
Programming (LBP) problem as follows:

Sum KP: max Sum(x) := ∑n
i=1 pixi

s.t. x ∈ X0 := {x | ∑n
i=1 wixi ≤ C, xi ∈ {0, 1}, i = 1, . . . , n}.

(1)

Many practical decision problems can be modeled as the knapsack problem or one of
its variants (see, e.g., [3]). The knapsack problem can also be used as sub-problems of more
complex models (see, e.g., [4,5]). As an illustration, let us assume that a farmer models
the production of the farm using the knapsack problem. The farm consists of several lots;
each lot can accommodate just one crop, yielding a given profit for a given workload.
The problem is to assign crops to lots to maximize the total profit under a limited workload
budget. To mitigate risks inherent to agriculture, a portfolio of crops rather than a single
crop is advisable. Crops yielding small profits may be not very desirable. Prices of crops
yielding high profits may vary significantly. Likewise, serving a collection of crops with low
and high workload may rise logistic concerns. In consequence, a balanced crop portfolio
is of interest, even if portfolio balancing inevitably deteriorates the optimal total profit as
compared to the total profit when balancing is not accounted for. Although the problem
can be modeled by a more complex, and perhaps more realistic, formulation, the knapsack
problem has the advantage to be rather simple. A mechanism to confine the objective
function and/or the constraint coefficient dispersion at the optimal solution while retaining
the knapsack problem structural simplicity would be of interest.
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The example brings us to the issue of knapsack balancing. We can attempt to balance
the objective function coefficients, the constraint coefficients, or both at once. In contrast
to balancing mechanisms proposed in the literature on combinatorial optimization (see,
e.g., [6]), here we propose to balance with the Nash social welfare function that maximizes
the product of all quantities that have to be balanced (in the original work of Nash those
were individual utilities) ([7]). A distinguishing property of this function is that when the
sum of continuous quantities (all positive) is tied to a certain positive value, the maximum
of this function is achieved when all quantities are equal.

As seen in Figure 1, function y1 + y2 equally assesses all three elements (filled discs),
as they all are located on the same contour (the solid line), whereas function y1 · y2 differen-
tiates them as they are located on two different contours (dashed lines). Moreover, the latter
function has a higher value for the element with y1 = y2 than for elements with y1 ̸= y2.

As shown below, in the context of the knapsack problem, this function has plausible
properties, both in terms of balancing and computing.

Figure 1. Properties of functions y1 + y2 and y1 · y2 .

We approach the problem of knapsack balancing through a multiobjective problem
formulation. Multiobjective formulations offer a framework by which some seemingly
hidden aspects of underlying decision problems can be incorporated into optimization
models. A single-objective optimization model is multiobjectivized by keeping the origi-
nal objective function and adding new objective functions representing the new aspects
that are to be considered. The compromises between the need to optimize the original
objective function and the new ones have to be managed using appropriate multiobjective
optimization techniques.

The term ’multiobjectivization’ was introduced by Knowles et al. in 2001 ([8]) in the
context of evolutionary optimization. Ma et al. ([9]) claim that using multiobjectivization
to solve single-objective problems within evolutionary optimization

“can reduce the number of local optima, create new search paths from local optima to
global optima, attain more incomparability solutions, and/or improve solution diversity”.

Klamroth and Tind ([10]) discussed reformulations of single-objective problems to
multiobjective ones in the context of exact optimization. In [11], multiobjectivization was
applied to exploit the specific structure of multiple-choice constraints in the multiple-choice
knapsack problem. This idea was further explored in [12].

The main contributions of this article are summarized as follows:

• We introduce knapsack balancing as a new aspect of the knapsack problem.
• We demonstrate how to incorporate the aspect of knapsack balancing into the knapsack

problem standard model.
• We provide a formal proof of the correctness of our approach.
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• We demonstrate working of the enriched knapsack problem model on illustrative
examples.

As discussed in Section 2, knapsack balancing can be interpreted as part of a broader
concept of making balanced or fair decisions. This concept was introduced first in the
qualitative decision theory (see the reference in the next section) but, to the best of the
authors’ knowledge, this paper presents the first fully quantitative treatment of this issue
within the context of the knapsack problem.

This article is organized as follows. In Section 2, related works are discussed. Section 3
shows how to incorporate knapsack balancing while staying within the framework of the
underlying knapsack problem and mixed-integer linear optimization. In Section 4, we
propose a bi-objective formulation of the knapsack problem that accounts for trade-offs
between values of the the original knapsack problem objective function and a knapsack bal-
ance measure. Section 5 provides illustrative examples, and Section 6 concludes the paper.

2. Related Works

In the literature, there exist many extensions to Sum KP problem formulation (see,
e.g., [13,14]). However, the knapsack problem with a product objective function has
received limited attention. In a 2018 paper [15], the authors claim that they were the first to
consider the knapsack problem with the product objective function. A 2022 survey [13] lists
just three papers on this subject, namely [16], where it is shown that the problem is weakly
NP–hard; [15], where mixed-integer linear and nonlinear programming formulations of
the problem and a dynamic programming algorithm for its exact solution are presented;
and [17], where the first fully polynomial time approximation scheme for the problem was
presented. The latter has been recently extended in [18] for a wide class of the knapsack
problem generalizations.

It is worth mentioning that the issue of balance of attribute values has emerged
in behavioral decision theory early. Simonson ([19]) and Simonson and Tversky ([20])
hypothesize that the attractiveness of an object is enhanced if it is an intermediate object
in the choice set and is diminished if it is an extreme object, an effect they call extremeness
aversion. The hypothesis is further elaborated in [21,22], where it is argued that an object
with equal attribute values will be perceived as the compromise object even when it is not
the middle object. The hypotheses are supported by data studies but no formal model
is offered.

In [6], the aspect of balance (fairness) in combinatorial optimization is addressed.
The authors consider four common measures of the balance of a set of numbers, and in
the context of elements of a set balance means elements as equal as possible. Based on case
studies, the authors conclude that no measure of balance is systematically better than the
others. Some general guidelines on what measure of balance to use depending on the given
optimization problem are also presented.

As mentioned, in the literature on the knapsack problem (cf., e.g., [13]), it is argued
that a viable option to maximize ∑i∈S pi is to maximize

∏
i∈S

pi , (2)

i.e., to maximize the product of all profits of items selected for the knapsack (see, e.g., [15,18]).
Our inspiration to use function (2) as a tool to address the issue of attribute balance

can be referred to the game theory. In that context, Nash ([7]) proposed to use for the value
function the product of attribute values, as an option to the sum of attributes. The latter is
much more prone to equally assess alternatives with highly scattered attribute values and
alternatives with concentrated attribute values than the former (Figure 1).

In the Non-Linear Binary Programming (NLBP) context, function (2) has an equivalent
form (cf. [15]):

Prodp(x) := ∏n
i=1 pxi

i . (3)
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This equivalency stems from the properties of the exponential function and the fact,
that each subset of items S ⊆ N is represented by vector x ∈ {0, 1}n, where xi = 1 when
i ∈ S, and xi = 0 otherwise, cf. problem (1).

Function (3) is the binary form of the Cobb–Douglass function:

a ∏k
i=1 xαi

i ,

where xi are continuous, a and αi are positive parameters, extensively used in the produc-
tion theory (cf., e.g., [23]). Below, we use function (3) to define the knapsack problem with
the product objective function.

3. Balancing Knapsacks by Prodp Objective Function

The knapsack problem with the product objective function is formulated as the follow-
ing NLBP problem:

Prodp KP: max Prodp(x)

s.t. x ∈ X0 .
(4)

In Prodp KP, a subset S ⊆ N of items with the most balanced profits is sought by
means of maximizing Prodp(x). The following example illustrates the effect of item profits
balancing at the optimal solution produced by Prodp(x) objective function.

Example 1. We demonstrate the effect of item profits balancing produced by Prodp(x) objective
function by the example with profits and weights given in Table 1 (n = 20), for two values of C (the
right-hand side of the constraint), namely C = 550 and C = 300.

Table 1. Profits and weights of items in Example 1.

i = 1, . . . , 10

pi 100 220 90 400 300 400 205 120 160 580

wi 8 24 13 80 70 80 45 15 28 90

i = 11, . . . , 20

pi 400 140 100 1300 650 320 480 80 60 2550

wi 130 32 20 120 40 30 20 6 3 180

To measure the balance of item profits at optimal solutions (xopt), we use the sum of squared
deviations from their mean (merits of this function in the context of combinatorial optimization are
discussed in, already cited, [6]), namely

L2-DEV(I(xopt)) := ∑
i∈I(xopt)

(pi − µ)2 , (5)

where I(xopt) = {i | xopt
i = 1}, and mean µ is calculated over pi, i ∈ I(xopt).

Remark 1. L2-DEV(·) is a natural dispersion measure but we cannot use it as an objective function
because a. it is nonlinear, b. µ is a function of x, and we intend to stay within the class of mixed-
integer linear optimization problems. To this aim, L2-DEV(·) can be only calculated after the
optimization terminates.

C = 550. The optimal solution to Prodp KP:
xopt_prod = (1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0),
profits of items selected to xopt_prod:
Popt_prod := {100, 220, 90, 400, 400, 205, 120, 160, 580, 140, 100, 650, 320, 480, 80, 60},
L2-DEV(I(xopt_prod)) = 546635.937 (further on, we round all numbers to the third decimal place).
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For comparison, we solve an instance of Sum KP with the same data. The optimal solution to
Sum KP:
xopt_sum = (1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1),
profits of items selected to xopt_sum:
Popt_sum := {100, 220, 90, 120, 580, 1300, 650, 320, 480, 80, 60, 2550},
L2-DEV(I(xopt_sum)) = 5799891.667.

As one can see, in the terms of L2-DEV(·), set Popt_prod is more balanced than set Popt_sum

(under the same constraint set). On the other hand, Sum(xopt_prod) = 4105 < 6550 =
Sum(xopt_sum) since knapsack balancing is made at the cost of a deterioration of the optimal
value for Sum KP problem.

C = 300. The optimal solution xopt_prod to Prodp KP:
xopt_prod = (1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0),
profits of items selected to xopt_prod:
Popt_prod := {100, 220, 90, 205, 120, 160, 140, 100, 650, 320, 480, 80, 60},
L2-DEV(I(xopt_prod)) = 372223.077.

As previously, we solve for comparison Sum KP with the same data.
The optimal solution to Sum KP:
xopt_sum = (1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1),
profits of items selected to xopt_sum:
Popt_sum := {100, 90, 650, 320, 480, 80, 60, 2550},
L2-DEV(I(xopt_sum)) = 4942287.5.

Again, in the context of measure L2-DEV(·), set Popt_prod is more balanced than set Popt_sum.
On the other hand, Sum(xopt_prod) = 2725 < 4330 = Sum(xopt_sum).

In general, by solving Prodp KP, we obtain the most balanced knapsack, and by
solving Sum KP, we obtain the most profitable one. The example shows the existence
of a profit–balance trade–off. This naturally leads us to a bi-objective knapsack problem
formulation.

4. The Bi-Objective Knapsack Problem with Sum and Prodp Objective Functions
4.1. Multiobjective Optimization

In this section, we recall basic facts from multiobjective optimization that are needed
in the rest of this work. In particular, we formulate the MultiObjective Programming (MOP)
problem, and we recall a method for the derivation of Pareto optimal solutions with the
use of the Chebyshev scalarization.

Let X0 := {x ∈ Rn | gj(x) ≤ bj, j = 1, . . . , m}, gj : Rn → R . The MOP problem is
defined as follows:

vmax f (x)
s.t. x ∈ X0 ,

(6)

where f : Rn → Rk, f = ( f1, . . . , fk), fl : Rn → R, l = 1, . . . , k, k ≥ 2, are objective
functions, and "vmax" is the operator of deriving (but not necessarily actually computing!)
set N that contains all Pareto optimal solutions x (N is the Pareto optimal set). We say that
x̄ ∈ X0 is Pareto optimal, if for any x ∈ X0, fl(x) ≥ fl(x̄), l = 1, . . . , k, implies f (x) = f (x̄).
We also say that f (x), x ∈ X0, is the outcome of x. Set f (N) is called the Pareto front. An
element of set f (N) is called the Pareto optimal outcome.

According to the well-established result ([24–27]), x is Pareto optimal (actually, x is
properly Pareto optimal, see, e.g., [24–27]) if and only if it solves the Chebyshev scalarization
of problem (6), namely

min maxl λl(y∗l − fl(x)) + ρek(y∗ − f (x))
s.t. x ∈ X0 ,

(7)
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where λl > 0, l = 1, . . . , k, ek = (1, 1, . . . , 1), y∗l = ŷl + ε, ŷl = maxx∈X0 fl(x), l = 1, . . . , k,
ε > 0, and ρ is a positive "sufficiently small" number. We assume that ŷl < ∞, l = 1, . . . , k.

The necessity of resorting to the Chebyshev scalarization instead of the simpler and
much more popular linear scalarization, i.e., the weighted sum of the objective functions,
comes from that the former can derive any Pareto optimal solution, whereas the latter can
derive, in general, only a subset of them.

The linearized version of problem (7) has the following form.

min s

s.t. s ≥ λl(y∗l − fl(x)) + ρek(y∗ − f (x)), l = 1, . . . , k,

x ∈ X0 .

(8)

In particular, if functions fl(x), l = 1, . . . , k, are linear and the definition of X0 is consistent
with the mixed-integer linear class of problems, then the problem (8) remains linear or
mixed-integer linear or integer linear. In the following, we will assume that Pareto optimal
solutions are computed by solving problem (8) with varying λ = (λ1, ..., λk). Given λ,
xPopt(λ) denotes the Pareto optimal solution designated by λ, that is a solution to problem
(7) with that λ.

4.2. The Bi-Objective Sum-Prodp KP

By analogy to dropping an anchor from a vessel, solving Sum KP (see (1)) is like
anchoring its optimal solution to the aspect of maximizing the total profit, while neglecting
the balance among item profits. Just as controlled dragging of the anchor can guide a vessel
into a more favorable position, it is of interest to investigate the effect of ”dragging” the
optimal solution of Sum KP towards more balanced ones and observe the effects in the
form of trade-offs between these two aspects. To this aim, we formulate the following
bi-objective NLBP problem:

Sum-Prodp KP : vmax


Sum(x)

Prodp(x)

s.t. x ∈ X0 .

(9)

As all pi are positive, one can define function

P̃rodp(x) := lnProdp(x) = ln
( n

∏
i=1

pxi
i
)
=

n

∑
i=1

ln pxi
i =

n

∑
i=1

xi ln pi (10)

and formulate the following logarithmic transformation of Sum-Prodp KP:

Ln-Sum-Prodp KP : vmax


Sum(x)

P̃rodp(x)

s.t. x ∈ X0 .

(11)

Ln-Sum-Prodp KP is the bi-objective LBP problem.

Proposition 1. Pareto optimal sets of problem Sum-Prodp KP and problem Ln-Sum-Prodp KP
coincide.

Proof. Since the logarithmic function is an increasing function, function P̃rodp(x) generates
on X0 the same linear order that function Prodp(x) does. Hence, function

f̃ (x) = (Sum(x), P̃rodp(x)) generates on X0 the same partial order that function
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f (x) = (Sum(x), Prodp(x)) does. Problems Sum-Prodp KP and Ln-Sum-Prodp KP have
the same feasible set X0, hence their Pareto optimal sets coincide.

By Proposition 1, the following holds.

Corollary 1. Given λ, xPopt(λ) is Pareto optimal solution to problem Ln-Sum-Prodp KP if and
only if it is Pareto optimal solution to problem Sum-Prodp KP.

Likewise, we can apply the above consideration to the left-hand side of the constraint,
formulating the bi-objective problem:

Sum-Prodw KP : vmax


Sum(x)

Prodw(x) := ∏n
i=1 wi

xi

s.t. x ∈ X0 .

(12)

Function Prodw measures the balance of weights of items selected for the knapsack.
As all wi are positive, one can define function

P̃rodw(x) := lnProdw(x) =
n

∑
i=1

xi ln wi (13)

and formulate the following logarithmic transformation of Sum-Prodw KP:

Ln-Sum-Prodw KP : vmax


Sum(x)

P̃rodw(x)

s.t. x ∈ X0 .

(14)

Again, Ln-Sum-Prodw KP is the bi-objective LBP problem.
Problem Ln-Sum-Prodp KP is solved with the linearized version (8) of the Chebyshev

scalarization (7), and has the form:

min s

s.t. s ≥ λ1(y∗1 − Sum(x)) + ρ((y∗l − Sum(x)) + (y∗2 − P̃rodp(x))) ,

s ≥ λ2(y∗2 − P̃rodp(x)) + ρ((y∗1 − Sum(x)) + (y∗2 − P̃rodp(x))) ,

x ∈ X0 := {x | ∑n
i=1 wixi ≤ C, xi ∈ {0, 1}, i = 1, . . . , n} ,

(15)

where y∗1 = ŷ1 + ε, y∗2 = ŷ2 + ε, ε > 0, ŷ1 = maxx∈X0 Sum(x), ŷ2 = maxx∈X0 P̃rodp(x),
and ρ is a positive "sufficiently small" number. The counterpart of problem (15) is defined
for problem Ln-Sum-Prodw KP similarly. As seen, the generality of the Chebyshev scalar-
ization (it provides the necessary and sufficient conditions for Pareto optimality of solutions
regardless of the form of the problem solved) comes at the cost of solving in addition as
many as k (in our case k = 2) optimization problems. Here the additional optimization
problems are the knapsack problems that any reasonable mixed-integer solver nowadays
solves in a split second for the number of items up to several thousand.

5. Illustrative Examples

In the examples, to solve bi-objective optimization problems, we use the general
methodology of multiobjective optimization outlined in Section 4.1.

Example problems
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From the 7th multiple constraint knapsack problem (in the format described under
https://people.brunel.ac.uk/%7Emastjjb/jeb/orlib/mknapinfo.html, accessed on 5 May
2024) (5 constraints and 50 items) in the Beasley’s OR–Library (https://people.brunel.ac.
uk/%7Emastjjb/jeb/orlib/files/mknap1.txt accessed on 5 May 2024), we derived 5 knap-
sack problems.

In each such problem, denoted SPp
i , i = 1, ..., 5, the objective function and ith constraint

of the original multiple constraint knapsack problem serve as the objective function and the
constraint, respectively. Next, each knapsack problem is reformulated as the corresponding
Ln-Sum-Prodp KP problem (see (11)).

Pareto front approximations

To derive reasonably informative approximations of Pareto fronts to our example
problems (11), we use the following set of λ vectors:

Λ := {λ ∈ R2 | λ1 = 1 − 0.005j, λ2 = 1 − λ1, j ∈ N, j > 0, λ1 > 0}. (16)

By this definition, |Λ| = 199, and λ1 + λ2 = 1 for all λ ∈ Λ. We assume that λ’s are
ordered due to the decreasing value of their first component, and each λ has a correspond-
ing index, resulting from this order. So, λ1 = (0.995, 0.005), λ2 = (0.990, 0.010), . . . , λ199 =
(0.005, 0.995). We also assume that ε = ρ = 0.001.

Remark 2. The method to compute Pareto optimal solutions to multiobjective optimization problems
applied here can provide, in general, only subsets of Pareto optimal sets, there is no guarantee that
all Pareto optimal solutions are derived.

Here, wanting for the illustration to compute as many Pareto optimal solutions as possible,
we take advantage of the fact that all instances of problem (11) are solved to optimality in a split
second. Thus, the rather large number of λ’s used in the example (in practical terms one can even
say extravagantly large) is not an issue.

Solver

To derive ŷ and Pareto optimal solutions for each λ ∈ Λ, we use Gurobi (version
10.0.0) for Microsoft Windows (x64).

Gurobi ([28]) is a general mixed-integer solver, this means it solves linear and quadratic
programming problems with integer variables. It is a commercial product but licensed free
for any academic user, with all functionalities available under paid licenses.

In our case, the solver is installed on a laptop equipped with an Intel Core i7-7700HQ
CPU with 16 GB RAM.

Results

The results for SPp
1 and SPp

2 are reported in Tables 2 and 3. The results for SPp
i ,

i = 3, 4, 5, are reported in the Appendix A.
In these tables, the row with j = 0 corresponds to the optimal solution of Sum KP,

xopt_sum, and the row with j = 200 corresponds to the optimal solution of Prodp KP,
xopt_prod.

As observed in many multiobjective combinatorial problems (see, e.g., [29]), multiple
λ vectors can correspond to the same Pareto optimal outcome. Furthermore, this is also the
case for our test problems, e.g., for problem SPp

1 (Table 2) the outcomes of Pareto optimal
solutions for λ2 to λ46 are the same as those corresponding to λ1. Repeated Pareto optimal
outcomes for λ ∈ Λ are not reported in the tables.

The last column in tables, L2-DEV, contains L2-DEV(I(xPopt(λj))) of profits of items
selected to optimal knapsack xPopt(λj) for j ̸∈ {0, 200}. For j = 0 and j = 200, it contains
L2-DEV(I(xopt_sum)) and L2-DEV(I(xopt_prod)), respectively.

In Figures 2 and 3, Pareto optimal outcomes to problem Ln-Sum-Prodp KP stemming
from SPp

1 are shown:

https://people.brunel.ac.uk/%7Emastjjb/jeb/orlib/mknapinfo.html
https://people.brunel.ac.uk/%7Emastjjb/jeb/orlib/files/mknap1.txt
https://people.brunel.ac.uk/%7Emastjjb/jeb/orlib/files/mknap1.txt
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Figure 2: on the Sum (horizontal axis, the more, the better) and P̃rodp (vertical axis,
the more, the better) plane,

Figure 3: on the Sum (horizontal axis, the more, the better) and L2-DEV (vertical axis,

the less, the better) plane. Values of P̃rodp have no practical interpretation, so presenting
results on the Sum, L2-DEV plane is more reasonable.
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Figure 2. Pareto optimal outcomes to problem Ln-Sum-Prodp KP stemming from SPp
1 ; horizontal

axis: Sum, vertical axis: P̃rodp.

1.58 1.6 1.62 1.64 1.66 1.68 1.7 1.72

10
4

500

550

600

650

700

750

800

850

900

Figure 3. Pareto optimal outcomes to problem Ln-Sum-Prodp KP stemming from SPp
1 ; horizontal

axis: Sum, vertical axis: L2-DEV.
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Table 2. Pareto optimal outcomes to problem Ln-Sum-Prodp KP stemming from SPp
1 .

j λ
j
1 λ

j
2 Sum P̃rodp L2-DEV

0 – – 17,038.000 185.209 859.335

1 0.995 0.005 17,038.000 185.209 859.335

47 0.765 0.235 17,021.000 205.085 816.100

180 0.100 0.900 16,731.000 207.331 809.829

184 0.080 0.920 16,660.000 208.565 806.430

187 0.065 0.935 16,609.000 212.045 799.082

192 0.040 0.960 16,430.000 212.977 607.430

193 0.035 0.965 16,348.000 222.843 585.288

196 0.020 0.980 16,262.000 225.963 581.562

197 0.015 0.985 16,257.000 226.393 581.394

198 0.010 0.990 16,049.000 230.010 574.887

199 0.005 0.995 15,892.000 237.173 519.866

200 – – 15,841.000 240.652 516.462

Table 3. Pareto optimal outcomes to problem Ln-Sum-Prodp KP stemming from SPp
2 .

j λ
j
1 λ

j
2 Sum P̃rodp L2-DEV

0 – – 17,675.000 215.930 798.377

1 0.995 0.005 17,675.000 215.930 798.377

177 0.115 0.885 17,502.000 218.669 792.286

183 0.085 0.915 17,459.000 219.873 789.987

186 0.070 0.930 17,425.000 223.403 783.121

198 0.010 0.990 16,615.000 228.355 745.153

199 0.005 0.995 15,885.000 229.126 575.893

200 – – 15,012.000 239.317 503.237

6. Conclusions

We have introduced a versatile tool for conducting post-optimal analysis of the classic
knapsack problem. Staying within the same class of combinatorial problems as the knapsack
problem, namely integer linear optimization, this tool enables us to explore the trade-offs
between the optimal value of the underlying problem and the balance of item profits (or
item weights). This is achieved through the multiobjectivization of the knapsack problem
by adding an auxiliary objective function. The proposed tool therefore makes it possible to
identify the decision-maker’s most preferred compromise knapsack. The significance of
this development stems from the vast spectrum of practical applications of the knapsack
problem and its extensions, as reported in the literature.

Applying the proposed method of knapsack balancing in the context of item profits
(or item weights) to other variants of the knapsack problem (e.g., the multidimensional
knapsack problem) is rather straightforward, as the only difference would be in feasible
sets. For example, in the multiple-choice knapsack problem, balancing can be applied to
item profits in selected categories or all categories, as dictated by the decision problem
being modeled.

The broader message of this work emphasizes the potential of multiobjectivization for
widening the scope of aspects that can be framed into a formal decision-making model. This
is a universally valid observation; however, such an opportunity often comes at the cost of
increased complexity and computational burden. This in turn often results in limitations of
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scalability. In this work, we have shown how these challenges can be mitigated through an
approach that avoids such limitations.

This article assumes that Pareto optimal solutions are derived using a scalarization
technique and exact methods. However, for large-scale instances of knapsack problems
where exact solvers cannot determine Pareto optimal solutions in a reasonable time frame,
the use of metaheuristics (e.g., the BGA [30] and NSGA-II [31] algorithms) or evolutionary
optimization frameworks deriving approximations of the Pareto front (e.g., PKAEO [32]) is
a practical alternative.
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Appendix A

The following three tables present Pareto optimal outcomes to problem
Ln-Sum-Prodp KP stemming from knapsack problems SPp

3 , SPp
4 , and SPp

5 , respectively.

Table A1. Pareto optimal outcomes to problem Ln-Sum-Prodp KP stemming from SPp
3 .

j λ
j
1 λ

j
2 Sum P̃rodp L2-DEV

0 – – 19,688.000 185.824 911.322

1 0.995 0.005 19,688.000 185.824 911.322

33 0.835 0.165 19,679.000 192.538 895.297

133 0.335 0.665 19,611.000 197.179 885.795

153 0.235 0.765 19,576.000 200.749 877.454

165 0.175 0.825 19,544.000 204.245 870.672

181 0.095 0.905 19,440.000 206.909 863.358

186 0.070 0.930 19,380.000 207.487 862.964

187 0.065 0.935 19,349.000 207.904 862.007

189 0.055 0.945 19,298.000 211.076 854.957

197 0.015 0.985 18,503.000 214.166 840.841

198 0.010 0.990 18,319.000 217.168 804.718

199 0.005 0.995 18,035.000 220.275 797.057

200 – – 12,457.000 231.887 324.431
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Table A2. Pareto optimal outcomes to problemLn-Sum-Prodp KP stemming from SPp
4 .

j λ
j
1 λ

j
2 Sum P̃rodp L2-DEV

0 – – 19,275.000 217.498 808.585

1 0.995 0.005 19,275.000 217.498 808.585

9 0.955 0.045 19,274.000 220.298 802.076

56 0.720 0.280 19,267.000 230.445 785.963

142 0.290 0.710 19,249.000 233.242 779.847

188 0.060 0.940 19,155.000 236.792 773.983

199 0.005 0.995 18,652.000 241.245 758.760

200 – – 18,652.000 241.245 758.760

Table A3. Pareto optimal outcomes to problemLn-Sum-Prodp KP stemming from SPp
5 .

j λ
j
1 λ

j
2 Sum P̃rodp L2-DEV

0 – – 17,955.000 192.966 854.879

1 0.995 0.005 17,955.000 192.966 854.879

32 0.840 0.160 17,945.000 195.628 847.210

41 0.795 0.205 17,942.000 196.714 846.224

73 0.635 0.365 17,927.000 199.264 838.769

106 0.470 0.530 17,903.000 201.056 837.178

120 0.400 0.600 17,888.000 203.606 829.870

130 0.350 0.650 17,876.000 205.891 824.438

142 0.290 0.710 17,858.000 206.750 823.668

155 0.225 0.775 17,819.000 211.088 814.514

170 0.150 0.850 17,756.000 211.247 814.920

173 0.135 0.865 17,732.000 213.909 808.021

184 0.080 0.920 17,600.000 228.255 591.583

191 0.045 0.955 17,574.000 230.579 588.271

193 0.035 0.965 17,557.000 234.877 583.480

195 0.025 0.975 17,517.000 242.248 575.717

200 – – 16,137.000 246.343 511.088
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