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Abstract: The determination of the optimal random field element (RFE) size is crucial in soil slope
reliability analysis as it governs the trade-off between precision in failure probability calculations
and computational efficiency. Given the substantial computational burden associated with smaller
RFE sizes, studies on their impact on slope failure probability are scarce. This research examines
the influence of RFE size on failure probability and safety factor, employing the Karhunen–Loève
expansion to generate random fields and integrating the simplified Bishop method with particle
swarm optimization (PSO) to assess slope stability. Through Monte Carlo Simulation (MCS), this
study investigates the effects of the ratio of slope height to RFE size (H/De) on slope reliability
metrics across two illustrative cases. Results reveal a notable influence of H/De on the distribution of
safety factors (Fs) and failure probability (PF), with overestimation observed at smaller H/De ratios.
When H/De exceeds 10 for Example 1 and 15 for Example 2, the Fs distribution patterns in both
scenarios stabilize significantly, displaying minimal variability. The PF of Example 1 and Example 2
decreases with the increase of H/De and remains basically unchanged when H/De exceeds 10 and
15, respectively. Consequently, a recommended H/De ratio of 20 is proposed based on the analyzed
cases, facilitating accurate calculations while mitigating computational overhead.

Keywords: slope reliability; PSO algorithm; random field element size; spatial variability; limit
equilibrium

1. Introduction

Slope stability analysis is a key research area in geotechnical engineering. Large-scale
landslides can bury houses and factories, disrupt traffic, and block rivers, posing severe
threats to people’s lives and property safety [1]. Assessing slope stability is vital for ensur-
ing the safety and reliability of civil engineering projects. The deterministic approaches
employed in assessing slope stability encompass various methodologies, notably including
the finite element analysis method (FEAM) [2–4], limit analysis method (LAM) [5,6], and
limit equilibrium method (LEM) [7–9]. The LEM is simple in principle and calculation and
can obtain reliable results. Therefore, the LEM has garnered widespread adoption in the
assessment of soil slope stability.

Nonetheless, the uncertainties inherent in geotechnical engineering exert a profound
influence on the reliability of slope stability, consequently leading to potential unreliability
in the deterministic analyses [10]. Among these uncertainties, the spatial variability of
soil properties stands out as a pivotal factor, constituting one of the key uncertainties
affecting slope stability [11–13]. Although soil parameters can be determined through
geotechnical testing, achieving accurate assessments for each specific location remains
infeasible. Therefore, in the context of slope reliability analysis, random field theory
assumes considerable significance as an effective means for characterizing the spatial
variability of soil parameters [13,14]. The Karhunen–Loève (KL) expansion is recognized as
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one of the methodologies for generating random fields. This technique is widely utilized by
numerous researchers [14,15] due to its ability to achieve the same accuracy requirements
with a lesser number of expansion terms.

Over the past few years, increasing attention has been paid to the reliability analysis
of slopes considering the uncertainties of soil parameters [15–17]. Cho [14] presented the
Random Limit Equilibrium Method (RLEM), an innovative approach that harmonizes
random field theory with the well-established LEM. This integration results in a robust
methodology particularly suited to assessing the reliability of soil slope designs. Then,
the RLEM was used by various researchers to study the probability of the saturated
slope [18], the slope considering the nonlinear failure criterion [16], the slope reinforced
permeable polymer [19], and the three dimensional slope [15]. Taking into account the
spatial variability of soil parameters, slope reliability analysis can become exceedingly
time-consuming [20]. When employing RLEM for slope reliability analysis, a substantial
number of numerical simulations must be conducted, with each simulation requiring the
determination of the critical slip surface (CSS). Hence, one of the keys to increasing the
efficiency of reliability analysis lies in effectively reducing the time needed to determine the
CSS of the slope [21]. The Particle Swarm Optimization (PSO) method has been employed
by numerous researchers for identifying the CSS of slope [22] owing to its advantages
of simple operation, high computational efficiency, and robust stability [23–25]. When
applying the RLEM for slope reliability analysis, the random field is discretized into
elements of specific dimensions to characterize the spatial variability of soil. The random
field element (RFE) size plays a crucial role in the slope reliability analysis [26]. A larger
RFE size may inadequately describe the spatial variability of soil parameters, negatively
impacting slope reliability analysis results. Conversely, a smaller RFE size can better
describe this variability but may also introduce significant computational demands [26]. It
is very important to determine the appropriate RFE size in slope reliability analysis, yet it
remains a topic that has garnered limited attention from scholars.

The primary objective of this study is to conduct a thorough analysis of the influence
of RFE size on slope reliability. To achieve this, the K-L expansion method is employed
to generate random fields for soil parameters, and an integration of RLEM with the PSO
algorithm is utilized to ascertain the CSS of slopes precisely. The Monte Carlo Simulation
(MCS) method is applied to compute the failure probability of the slopes. Ultimately, this
study will focus on analyzing the crucial role of the H/De ratio in slope reliability analysis,
providing valuable insights for related fields.

2. Methods
2.1. Karhunen–Loève (KL) Method

The characteristics of a random field are defined by its mean µ, standard deviation
σ, and autocorrelation function [14]. In this study, the adopted autocorrelation function
expression is formulated as follows:

ρ
(
τx, τy

)
= exp

(
−(τx/δx)

2 −
(
τy/δy

)2
)

, (1)

where τx and τy are the relative separation distances along the x-axis and y-axis, respectively,
while δx and δy denote the corresponding fluctuation ranges along these axes.

The cohesion (c) and friction angle (φ) are considered to be the uncertain characteristics
of soil, exhibiting a close and inseparable interdependence that cannot be ignored. The
cross-correlated lognormal random fields can be represented as follows [21]:

Hc(x, θ) = exp

[
µln c +

M

∑
i=1

σln c
√

λi φi(x)χci(θ)

]
, (2)

Hφ(x, θ) = exp
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µln φ +

M
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σln φ

√
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(
χci(θ) · ρc,φ + χφi(θ) ·

√
1 − ρ2

c,φ

)]
, (3)
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where χi(θ) is random variable; λi and φi(x) are the eigenvalues and eigenfunctions of the
autocorrelation function, respectively; M is the truncation term of the series expansion;
µln = lnµ − (σln)2/2 and σln = (ln(1 + (σ/µ)2))0.5 are the mean and standard deviation of
lognormal random field, respectively; and ρc,φ is the cross correlation coefficient between c
and φ.

2.2. Bishop’s Method

Compared to rigorous analytical methods, Bishop’s method can yield very accurate
results [27]. Therefore, this study employs this method, and the factor of safety Fs can be
expressed as

Fs = ∑
1

mαi
[(Wi − uibi) tan ϕi + cibi], (4)

in which
mαi = cos αi + tan ϕi · sin αi/Fs, (5)

where Wi is the weight of soil slice, µi is the pore water pressure, and αi is the inclination of
the bottom.

Wan et al. [21] optimized the PSO algorithm to enhance the computational efficiency
in determining the CSS of slope. This study adopts the improved PSO method to determine
the CSS of slope.

2.3. Estimation of Failure Probability of Slope

To assess the failure probability (PF) of a slope, an MCS is performed. The algorithmic
approach employed for computing PF is shown in Figure 1.
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3. Results and Discussion

In this study, an approximate relative error (RE) is used to study the impact of RFE
size on the PF. Considering the slope discretized into square elements, each with a width
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denoted as De = w1, w2, w3. . .wn, where w1 represents the minimum value among w1, w2,
w3. . .wn and is deemed sufficiently small. Thus, the RE pertaining to PF can be formulated
as follows:

RE =
PFi − PF1

PF1 (6)

where PF1 is the PF with De = w1, and PFi is the PF with De = wi. The critical dimension of
RFE corresponds to the minimum size at which any further decrement in De fails to elicit a
notable reduction in the absolute RE of PF, thereby indicating the optimal balance between
accuracy and computational efficiency.

This study utilizes an analysis program that was developed by the author using the
MATLAB programming language (R2020a, 9.8.0).

Example 1:
Example 1 proposed by Cho [14] is typical slope with single layer undrained cohesive.

Table 1 displays the soil parameters for Example 1, including the mean (µc) and covariance
(COVc) of c and the soil weight (γ), mean (µφ), and covariance (COVφ) of φ. This study
considered the scenarios with constant δh (δh = 40 m) and different δv (δv = 3 m, 5 m, 7 m).
In this example, we modeled the shear strength c as a random field using the K-L expansion
method with different RFE sizes; De = 10 m, 5.0 m, 2.5 m, 1.0 m, 0.5 m, 0.25 m, 0.2 m, 0.15
m, 0.1 m, 0.09 m, and 0.08 m. And the corresponding ratios of slope height and RFE size
(H/De) are 0.5, 1, 2, 5, 10, 20, 25, 33, 50, 55, and 62.5, respectively. When employing the
MCS for slope reliability analysis, the accuracy of the results improves with the increasing
number of simulations. Typically, a relatively accurate result can be obtained after 10,000
simulations. To ensure the precision of the computational outcomes in this study, we
generated 50,000 random field realizations using MCS. Figure 2 shows the typical random
field realization by the RFE size of 5 m, 1 m, 0.25 m, and 0.1 m, respectively.

Table 1. Soil parameters in two examples.

Examples µc/(kPa) COVc γ/(kN/m3) µφ COVφ

Example 1 23 0.3 20 0 0.0
Example 2 10 0.3 20 30 0.2

In this section, the effects of the REF size on Fs is analyzed. Figure 3 illustrates the
distribution of Fs for various H/De of Example 1. The Fs corresponding the maximum
probability density function value is around 1.25. It can be seen that when H/De is smaller
than 5, the probability density of Fs becomes higher, and the distribution of Fs becomes
more and more concentrated at 1.25 with the increase in H/De. Nevertheless, when the
element has a relatively smaller size like H/De > 10, the distribution of Fs tends to be stable
without much change.

The effect of the RFE size on the PF of slopes was analyzed in this section. Figures 4
and 5 show the PF values for various H/De. As shown in Figure 4, when the RFE size De is
large and H/De is small, the value of PF was obviously overestimated, and as De decreases
and H/De increases, it shows a downward trend and gradually becomes a steady state.
This is because when the RFE size is relatively large, the number of elements into which the
slope is divided is smaller, making the slope appear relatively homogeneous. This means
that the c values at different locations are very similar. Therefore, the average c at the slip
surface has a relatively high probability to take a very low value. But when the De value is
large, this phenomenon will be reversed due to the influence of spatial averaging. When
RFE size is small, the number of elements would be large, and the realization of the c field
would be heterogeneous. It means that the value of c at different locations are likely to be
different, and the smaller c at one point could be offset by a larger value at another point.
Thus, the failure probability would be overestimated by a large RFE size and a small H/De.
Figure 5 illustrates the RE of PF, as the RFE size decreases, the relative error of PF also
decreases and gradually stabilizes, and finally no longer decreases and approaches 0.
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Example 2:
Example 2, proposed by Cho [14], is an c-φ slope. The property parameters associated

with this slope are presented in Table 1, and δv and δh are the same as in Example 1. De is set
to 10 m, 5.0 m, 2.5 m, 1.0 m, 0.5 m, 0.25 m, 0.2 m, 0.15 m, and 0.1 m, and the corresponding
H/De is equal to 1.5, 3, 6, 15, 30, 60, 75, 100, and 150, respectively. Figure 6 shows the typical
random field realization with De = 5 m, 1 m, 0.25 m, and 0.1 m.
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The distribution of Fs was similar to Example 1, as shown in Figure 7. When H/De is
larger than 15, the distribution of FS becomes lightly flat. And when H/De is less than 15,
with the increase in H/De, the distribution of Fs is more and more concentrated at 1.3. When
H/De = 15, the distribution of Fs reaches the most concentrated state. As H/De continues
to increase, the improvement in the distribution concentration state is no longer obvious.
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Figure 8 plots the failure probability for various H/De and δv. The PF decreases rapidly
as H/De increases when H/De < 15 and maintains a stable state of an approximately straight
line after H/De > 15. And when H/De is the same, different δv will also have a significant
impact on Fs. It can be found that the PF becomes smaller with the decrease in δv. Figure 9
illustrates the RE of PF; as the RFE size decreases, the relative error of PF also decreases
and gradually stabilizes and finally no longer decreases and approaches 0. The results of
Example 1 and Example 2 indicate that a critical ratio H/De = 20 emerges as pivotal in
accurately assessing the probability of slope failure. This critical ratio signifies the optimal
balance between precision and efficiency in slope stability analysis.
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4. Conclusions

In this study, a reliability calculation program taking into account the spatial variability
of soil parameters was presented. Based on the program, the impact of H/De on PF and Fs
is analyzed. The following conclusions can be drawn:

The H/De has significant influence on the distribution of Fs. When H/De is less than
10, the distribution of Fs becomes more concentrated as H/De increases; when H/De is
greater than 10, the distribution of Fs becomes very close as the grid size increases.

The H/De has significant influence on PF. The PF decreases with the increase in H/De
and gradually tends to remain unchanged. When the value of H/De is small, it may lead
to an overestimation of PF. This phenomenon underscores the importance of selecting an
appropriate value for H/De to ensure accurate assessment of slope stability and avoid
misleading results.

The results show that when the H/De exceeds 10 and 15 in Examples 1 and 2, respec-
tively, PF remains essentially unchanged, which indicates that setting H/De to 20 can not
only ensure the accuracy of calculations but also prevent the unnecessary consumption of
computing resources.

This study focuses on the influence of H/De on computational accuracy. In order to
obtain relatively stable computation results, this study has adopted more conservative
parameter settings for both the number of MCS and the iterations of PSO. Reducing the
number of MCS while maintaining computational accuracy, as well as rapidly searching
for the CSS, are two crucial research directions for optimizing the computational strategy
of slope reliability, warranting further investigation.
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