Test and Numerical Study on Blast Resistance of Main Girders Coated with Polyurea in Self-Anchored Suspension Bridges
Abstract
:1. Introduction
2. Test and Result Analysis
2.1. Specimen
2.2. Layouts of TNT Charge and Measuring Point
2.3. Test Results Analysis
2.3.1. Shock Wave Overpressure
2.3.2. Damage Characteristics
2.3.3. Vertical Displacement
2.3.4. Rebar Strain
2.3.5. Vertical Acceleration
3. Numerical Simulation and Validation
3.1. Finite-Element Model of Box-Girder Segment
3.2. Material Parameters
3.3. Model Validation
4. Study on the Blast Resistance of Ultra-Wide Concrete Twin-Edge Box Girders Coated with Polyurea
4.1. Finite-Element Model of Ultra-Wide Concrete Twin-Edge Box Girder
4.1.1. Project Overview
4.1.2. Refined Finite-Element Model
4.2. Parametric Analysis
4.2.1. Analysis of the Impact of Different Scaled Blast Distances
4.2.2. Analysis of the Impact of Different External Detonation Positions on the Box Girder
4.2.3. Analysis of the Impact of Different Repeated Explosion Patterns
4.2.4. Analysis of the Impact of Different Polyurea Thicknesses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nettis, A.; Nettis, A.; Ruggieri, S.; Uva, G. Corrosion-induced fragility of existing prestressed concrete girder bridges under traffic loads. Eng. Struct. 2024, 314, 118302. [Google Scholar] [CrossRef]
- Nettis, A.; Nettis, A.; Ruggieri, S.; Uva, G. Typological fragility assessment of prestressed concrete girder bridges subjected to traffic loads affected by corrosion. In Proceedings of the COMPDYN 2023 9th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Athens, Greece, 12–14 June 2023; pp. 5242–5257. [Google Scholar]
- Luca, T.; Enrica, V.; Stefano, G. Performance of Atlas GNSS Global Correction Service for High-Accuracy Positioning. J. Surv. Eng. 2021, 147, 05021005. [Google Scholar]
- Marco, Z.; Emanuele, R.; Nicola, L.; Victor, E.; Pietro, C. On the structural behavior of existing RC bridges subjected to corrosion effects: Numerical insight. J. Surv. Eng. 2023, 152, 107500. [Google Scholar]
- Stergiou, T.; Baxevanakis, K.P.; Roy, A.; Sazhenkov, N.A.; Nikhamkin, M.S.; Silberschmidt, V.V. Impact of polyurea-coated metallic targets: Computational framework. Compos. Struct. 2021, 267, 113893. [Google Scholar] [CrossRef]
- Grujicic, M.; D’entremont, B.P.; Pandurangan, B.; Runt, J.; Tarter, J.; Dillon, G. Concept-level analysis and design of polyurea for enhanced blast-mitigation performance. J. Mater. Eng. Perform. 2012, 21, 2024–2037. [Google Scholar] [CrossRef]
- Ackland, K.; Anderson, C.; Ngo, T. Deformation of polyurea-coated steel plates under localized blast loading. Int. J. Impact Eng. 2013, 51, 13–22. [Google Scholar] [CrossRef]
- Amini, M.; Isaacs, J.; Nemat-Nasser, S. Investigation of effect of polyurea on response of steel plates to impulsive loads in direct pressure-pulse experiments. Mech. Mater. 2010, 42, 628–639. [Google Scholar] [CrossRef]
- Amini, M.; Amirkhizi, A.; Nemat-Nasser, S. Numerical modeling of response monolithic and bilayer plates to impulsive loads. Int. J. Impact Eng. 2010, 37, 90–102. [Google Scholar] [CrossRef]
- Zeng, L.; Liang, H.; Liu, L.; Zhang, Q. Anti-explosion design method for aluminum alloy doors in ordinary buildings. J. Fail. Anal. Prev. 2021, 21, 268–279. [Google Scholar] [CrossRef]
- Gu, M.; Ling, X.; Yu, A.F.; Chen, G.X.; Wang, H.Z.; Wang, H.X. Experimental study of polyurea-coated fiber-reinforced cement boards under gas explosions. Def. Technol. 2023, 23, 201–213. [Google Scholar] [CrossRef]
- Davidson, J.S.; Porter, J.R.; Dinan, R.J.; Hammons, M.I.; Connell, J. Explosive testing of polymer retrofit masonry walls. J. Perform. Constr. Facil. 2004, 18, 100–106. [Google Scholar] [CrossRef]
- Pu, X.F. Numerical Analysis of Explosion Response of Elastomer Reinforced Concrete Masonry Wall; Ningbo University: Ningbo, China, 2019. (In Chinese) [Google Scholar]
- Baylot, J.T.; Bullock, B.; Slawson, T.R.; Woodson, S.C. Blast Response of Lightly Attached Concrete Masonry Unit Walls. J. Struct. Eng. 2005, 131, 186–193. [Google Scholar] [CrossRef]
- Samiee, A.; Amirkhizi, A.V.; Nemat-Nasser, S. Numerical study of the effect of polyurea on the performance of steel plates under blast loads. Mech. Mater. 2013, 64, 1–10. [Google Scholar] [CrossRef]
- Wang, Y. Research on Response of Self-Anchored Suspension Bridge under Static and Dynamic and Explosive Shock Waves; Chan’an University: Xi’an, China, 2020. (In Chinese) [Google Scholar]
- Yang, Z. Dynamic Response Study of Reinforced Concrete Box Girder under Blasting Load; National University of Defense Technology: Changsha, China, 2019. (In Chinese) [Google Scholar]
- Qiu, M.J. Research on Dynamic Response and Failure Mechanism of Prestressed Concrete Bridge Structure under Blast Load; Xi’an University of Technology: Xi’an, China, 2021. (In Chinese) [Google Scholar]
- Fujikura, S.; Bruneau, M. Experimental investigation of seismically resistant bridge piers under blast loading. J. Bridge Eng. 2011, 16, 63–71. [Google Scholar] [CrossRef]
- Williams, G.D.; Williamson, E.B. Response of reinforced concrete bridge columns subjected to blast loads. J. Struct. Eng. 2011, 137, 903–913. [Google Scholar] [CrossRef]
- Echevarria, A.; Arash, B.; Zaghi, A.E.; Chiarito, V.; Christenson, R.; Woodson, S. Experimental comparison of the performance and residual capacity of CFFT and RC bridge columns subjected to blasts. J. Bridge Eng. 2016, 21, 04015026. [Google Scholar] [CrossRef]
- Williamson, E.B.; Bayrak, O.; Avis, C. Performance of bridge columns subjected to blast loads. J. Bridge Eng. 2011, 16, 693–702. [Google Scholar] [CrossRef]
- Islam, A.; Yazan, N. Performance of AASHTO girder bridges under blast loading. Eng. Struct. 2007, 30, 1922–1937. [Google Scholar] [CrossRef]
- Maazoun, A.; Vantomme, J.; Matthys, S. Damage assessment of hollow core reinforced and prestressed concrete plates subjected to blast loading. Procedia Eng. 2017, 199, 2476–2481. [Google Scholar] [CrossRef]
- Han, G.Z.; Yan, B.; Yang, Z. Damage model test of prestressed T-beam under explosion load. IEEE Access 2019, 7, 135340–135351. [Google Scholar]
- Yao, S.J.; Jiang, Z.G.; Lu, F.Y.; Zhang, D.; Zhao, N. Analysis on local damage of steel box girder under internal blast loading of vehicle bomb. J. Vib. Shock 2015, 34, 222–227. (In Chinese) [Google Scholar]
- Hashemi, S.; Bradford, M.; Valipour, H. Dinamic response of cable-stayed bridge under blast load. Eng. Struct. 2016, 127, 719–736. [Google Scholar] [CrossRef]
- Hajek, R.; Flar, J.; Pachman, J. An experimental evaluation of the blast resistance of heterogeneous concrete-based composite bridge decks. Eng. Struct. 2019, 179, 204–210. [Google Scholar] [CrossRef]
- Zhou, G.P.; Lin, Z.C.; Wang, M.Y.; Fan, J.; Wang, R.; He, Z. Effect change of extra-wide concrete self-anchored suspension bridge under blast loads and its prediction considering time-dependent effect. Structures 2023, 50, 1035–1050. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, R.; Wang, M.; Ding, J.; Zhang, Y. Explosion resistance performance of reinforced concrete box girder coated with polyurea: Model test and numerical simulation. Def. Technol. 2023, 33, 1–18. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, P.W.; Guo, Y.S.; Su, J.J.; Han, L.; Arab, A.; Yuan, J.F. Mechanical behavior and failure mechanism of polyurea nanocomposites under quasi-static and dynamic compressive loading. Def. Technol. 2020, 17, 495–504. [Google Scholar] [CrossRef]
- Liu, Q.; Guo, B.; Chen, P.; Su, J.; Arab, A.; Ding, G.; Guo, F. Investigating ballistic resistance of CFRP/polyurea composite plates subjected to ballistic impact. Thin-Walled Struct. 2021, 166, 108111. [Google Scholar] [CrossRef]
- Malvar, L.J.; Crawford, J.E.; Wesevich, J.W.; Simons, D. A plasticity concrete material model for YNA3. Int. J. Impact Eng. 1997, 19, 847–873. [Google Scholar] [CrossRef]
- Holmquist, T.J.; Johnson, G.R.; Cook, W.H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressure. In Proceedings of the 14th International Symposium on Ballistics, Quebec City, QC, Canada, 26–29 September 1993; pp. 591–600. [Google Scholar]
- Zhang, S.Y.; Zong, Q.; Lyv, N. Numerical simulation of the anti-explosion protective damage effect of polyurea coating on caisson docks. J. Saf. Sci. Technol. 2021, 17, 162–168. (In Chinese) [Google Scholar]
- Zhou, G.P. Research on the State Control and Spatial Mechanical Behavior of Ultra-Wide Concrete Self-Anchored Suspension Bridge after Completion; Southeast University: Nanjing, China, 2018. [Google Scholar]
- Shiravand, M.; Parvanehro, P. Numerical study on damage mechanism of post-tensioned concrete box bridges under close-in deck explosion. Eng. Fail. Anal. 2017, 81, 103–116. [Google Scholar] [CrossRef]
- Eibeck, A.; Shaocong, Z.; Mei Qi, L.; Kraft, M. Analysis of the Influence Law of Missile Strike Position on Box Beam Invasion and Explosion amage. Def. Transp. Eng. Technol. 2019, 17, 20–23. (In Chinese) [Google Scholar]
- Federal Emergency Management Agency (FEMA). Reference Manual to Mitigate Potential Terrorist Attacks against Buildings; Government Printing Office: Washington, DC, USA, 2003; FEMA426; pp. 24–30. [Google Scholar]
- Kong, X.L.; Jin, F.N.; Jiang, M.R. Analysis of terrorist bombing attack mode and scale. Blast 2007, 3, 88–92. (In Chinese) [Google Scholar]
Specimen | Protective Coating | Blast Position | Blast Height/m | TNT Equivalent/kg |
---|---|---|---|---|
G | Without polyurea | The center of the top plate in chamber 2 | 0.4 | 3 |
PCG | With polyurea | 3 | ||
PCGR | With polyurea | 5 |
Parameter | ρ/(kg/m3) | A0/GPa | RSIZE | UCF | LCRATE |
---|---|---|---|---|---|
Value | 2320 | −24.25 × 10−3 | 39.37 | 1.45 × 10−4 | −1 |
Parameter | ρ/(kg/m3) | E/GPa | ν | σY/GPa | β | C | P | εF | VP |
---|---|---|---|---|---|---|---|---|---|
Value | 7800 | 2 | 0.3 | 0.468 | 0 | 40 | 5 | 0.1 | 0 |
Parameter | ρ/(kg‧m−3) | E/Pa | ν | σY/Pa | Et/Pa | β | C | P | εF | VP |
---|---|---|---|---|---|---|---|---|---|---|
Value | 1020 | 2.3 × 108 | 0.4 | 6 × 106 | 3.5 × 106 | 0 | 98.2 | 4.5 | 0.85 | 0 |
Parameter | ρ/(kg·m−3) | Et/GPa | A | β | C | N | σY/GPa | T/GPa | εF |
---|---|---|---|---|---|---|---|---|---|
Value | 1986 | 5.18 | 0.63 | 1.56 | 0.0054 | 0.826 | 7.5 × 10−2 | 6 × 10−3 | 0.01 |
Specimens | Condition | TNT Equivalent/kg | Blast Position | Blast Height/m | Scaled Distance/m/kg1/3 | |
---|---|---|---|---|---|---|
Transverse Direction | Longitudinal Direction | |||||
PG/PPCG | 1 | 100 | Center of the top plate of box chamber 2 | Mid-span | 1 | 0.215 |
2 | 200 | 0.171 | ||||
3 | 300 | 0.149 | ||||
4 | 400 | 0.136 | ||||
5 | 500 | 0.126 |
Specimens | TNT Equivalent/kg | Charge Position | Blast Heigh/m | Breach Length/m | |
---|---|---|---|---|---|
Transverse Direction | Longitudinal Direction | ||||
PG | 100 | Middle of the top plate in box chamber 2 | 1 | 1.205 | 0.964 |
200 | 1.609 | 1.756 | |||
300 | 2.015 | 2.141 | |||
400 | 2.026 | 2.146 | |||
500 | 2.412 | 2.149 | |||
PPCG | 100 | Middle of the top plate in box chamber 2 | 1 | 1.613 | 1.755 |
200 | 2.014 | 2.151 | |||
300 | 2.620 | 2.535 | |||
400 | 2.819 | 2.546 | |||
500 | 2.829 | 2.928 |
Specimen | Condition | TNT/kg | Blast Charge Position | Blast Height/m | Scaled Standoff Distance/m/kg1/3 | |
---|---|---|---|---|---|---|
Transverse Direction | Longitudinal Direction | |||||
PG/PPCG | 6 | 200 | Centerline of the roadway | Mid-span | 1 | 0.171 |
7 | Quarter-span of the T-beam | |||||
8 | Web-connecting box chamber 1 and T-beam. | |||||
9 | Top plate center in box chamber 1 | |||||
10 | Web section between box chambers 1 and 2 | |||||
11 | Top plate center in box chamber 2 | |||||
12 | Web section between box chambers 2 and 3 | |||||
13 | Top plate center in box chamber 3 | |||||
14 | Web-connecting box chamber 3 to the cantilever. |
Specimen | Condition | Number of Blasts | Blast Charge Position | Blast Height/m | TNT Equivalent/kg | Scaled Standoff Distance/m/kg1/3 | |
---|---|---|---|---|---|---|---|
Transverse Direction | Longitudinal Direction | ||||||
PG and PPCG | 15 | First blast and second blast | Center of the top plate of box chamber 2 | Mid-span | 1 | 100 | 0.171 |
16 | First blast and second blast | Center of the top plate of box chamber 2 | Mid-span | 1 | 200 | 0.171 |
Specimen | Condition | Number of Explosions | Blast Charge Position | Blast Height/m | TNT Charge/kg | Scaled Distance/(m/kg1/3) | |
---|---|---|---|---|---|---|---|
Transverse Direction | Longitudinal Direction | ||||||
PG/PPCG | 17 | First | Top plate center of box chamber 1 | Mid-span | 1 | 200 | 0.171 |
Second | Center of the interior of box chamber 1 | 1.077 | 200 | 0.184 | |||
18 | First | Top plate center in box chamber 2 | Mid-span | 1 | 200 | 0.171 | |
Second | Center of the interior of box chamber 2 | 1.041 | 200 | 0.178 | |||
19 | First | Top plate center in box chamber 3 | Mid-span | 1 | 200 | 0.171 | |
Second | Center of the interior of box chamber 3 | 1.017 | 200 | 0.174 |
Specimen | Condition | Polyurea Thickness/mm | Blast Charge Position | Blast Height/m | TNT Equivalent/kg | Scaled Distance/m/kg1/3 | |
---|---|---|---|---|---|---|---|
Transverse Direction | Longitudinal Direction | ||||||
PPCG | 20 | 3 | T-beam section center | Mid-span | 1 | 500 | 0.171 |
21 | 6 | ||||||
22 | 9 | ||||||
23 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Zhou, G.; Zuo, X. Test and Numerical Study on Blast Resistance of Main Girders Coated with Polyurea in Self-Anchored Suspension Bridges. Appl. Sci. 2024, 14, 9280. https://doi.org/10.3390/app14209280
Wang R, Zhou G, Zuo X. Test and Numerical Study on Blast Resistance of Main Girders Coated with Polyurea in Self-Anchored Suspension Bridges. Applied Sciences. 2024; 14(20):9280. https://doi.org/10.3390/app14209280
Chicago/Turabian StyleWang, Rong, Guangpan Zhou, and Xiaobao Zuo. 2024. "Test and Numerical Study on Blast Resistance of Main Girders Coated with Polyurea in Self-Anchored Suspension Bridges" Applied Sciences 14, no. 20: 9280. https://doi.org/10.3390/app14209280
APA StyleWang, R., Zhou, G., & Zuo, X. (2024). Test and Numerical Study on Blast Resistance of Main Girders Coated with Polyurea in Self-Anchored Suspension Bridges. Applied Sciences, 14(20), 9280. https://doi.org/10.3390/app14209280