Functional Connectivity Differences in the Perception of Abstract and Figurative Paintings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experiment
2.3. EEG Data Collection and Analysis
2.3.1. Pre-Processing
2.3.2. Data Epoching
2.3.3. Functional Connectivity Computation
2.3.4. Statistical Analysis
3. Results
3.1. Node Strengths
3.2. Functional Connectivity Networks
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aubert, M.; Setiawan, P.; Oktaviana, A.A.; Brumm, A.; Sulistyarto, P.H.; Saptomo, E.W.; Istiawan, B.; Ma’rifat, T.A.; Wahyuono, V.N.; Atmoko, F.T.; et al. Palaeolithic cave art in Borneo. Nature 2018, 564, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Zeki, S. Art and the brain. J. Conscious. Stud. 1999, 6, 76–96. [Google Scholar]
- Chatterjee, A.; Vartanian, O. Neuroaesthetics. Trends Cogn. Sci. 2014, 18, 370–375. [Google Scholar] [CrossRef]
- Ishizu, T.; Zeki, S. Toward a brain-based theory of beauty. PLoS ONE 2011, 6, e21852. [Google Scholar] [CrossRef]
- Cattaneo, Z. Neural correlates of visual aesthetic appreciation: Insights from non-invasive brain stimulation. Exp. Brain Res. 2020, 238, 1–16. [Google Scholar] [CrossRef]
- Brown, S.; Gao, X.; Tisdelle, L.; Eickhoff, S.B.; Liotti, M. Naturalizing aesthetics: Brain areas for aesthetic appraisal across sensory modalities. NeuroImage 2011, 58, 250–258. [Google Scholar] [CrossRef]
- Nadal, M. The experience of art: Insights from neuroimaging. Prog. Brain Res. 2013, 204, 135–158. [Google Scholar] [CrossRef]
- Cela-Conde, C.J.; Marty, G.; Maestú, F.; Ortiz, T.; Munar, E.; Fernández, A.; Roca, M.; Rosselló, J.; Quesney, F. Activation of the Prefrontal Cortex in the Human Visual Aesthetic Perception. Proc. Natl. Acad. Sci. USA 2004, 101, 6321–6325. [Google Scholar] [CrossRef]
- Babiloni, F.; Cherubino, P.; Graziani, I.; Trettel, A.; Bagordo, G.M.; Cundari, C.; Borghini, G.; Arico, P.; Maglione, A.G.; Vecchiato, G. The Great Beauty: A Neuroaesthetic Study by Neuroelectric Imaging During the Observation of the Real Michelangelo’s Moses Sculpture. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014. [Google Scholar] [CrossRef]
- Pearce, M.T.; Zaidel, D.W.; Vartanian, O.; Skov, M.; Leder, H.; Chatterjee, A.; Nadal, M. Neuroaesthetics: The Cognitive Neuroscience of Aesthetic Experience. Perspect. Psychol. Sci. 2016, 11, 265–279. [Google Scholar] [CrossRef]
- Lengger, P.G.; Fischmeister, F.P.; Leder, H.; Bauer, H. Functional neuroanatomy of the perception of modern art: A DC–EEG study on the influence of stylistic information on aesthetic experience. Brain Res. 2007, 1158, 93–102. [Google Scholar] [CrossRef]
- Bullmore, E.; Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009, 10, 186–198. [Google Scholar] [CrossRef]
- Fornito, A.; Zalesky, A.; Breakspear, M. Graph analysis of the human connectome: Promise, progress, and pitfalls. NeuroImage 2013, 80, 426–444. [Google Scholar] [CrossRef]
- Friston, K.J. Functional and effective connectivity in neuroimaging: A synthesis. Hum. Brain Mapp. 1994, 2, 56–78. [Google Scholar] [CrossRef]
- Friston, K.J. Functional and Effective Connectivity: A Review. Brain Connect. 2011, 1, 13–36. [Google Scholar] [CrossRef]
- Fornito, A.; Zalesky, A.; Bullmore, E.T. Fundamentals of Brain Network Analysis; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Greenblatt, R.; Pflieger, M.; Ossadtchi, A. Connectivity measures applied to human brain electrophysiological data. J. Neurosci. Methods 2012, 207, 1–16. [Google Scholar] [CrossRef]
- Rubinov, M.; Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. NeuroImage 2010, 52, 1059–1069. [Google Scholar] [CrossRef]
- Lachaux, J.-P.; Rodriguez, E.; Martinerie, J.; Varela, F.J. Measuring phase synchrony in brain signals. Hum. Brain Mapp. 1999, 8, 194–208. [Google Scholar] [CrossRef]
- Fell, J.; Axmacher, N. The role of phase synchronization in memory processes. Nat. Rev. Neurosci. 2011, 12, 105–118. [Google Scholar] [CrossRef]
- Buzsáki, G. Rhythms of the Brain; Oxford University Press: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Yoshinaga, K.; Matsuhashi, M.; Mima, T.; Fukuyama, H.; Takahashi, R.; Hanakawa, T.; Ikeda, A. Comparison of Phase Synchronization Measures for Identifying Stimulus-Induced Functional Connectivity in Human Magnetoencephalographic and Simulated Data. Front. Neurosci. 2020, 14, 648. [Google Scholar] [CrossRef]
- Fries, P. Rhythms for Cognition: Communication through Coherence. Neuron 2015, 88, 220–235. [Google Scholar] [CrossRef]
- Buzsaáki, G.; Draguhn, A. Neuronal oscillations in cortical networks. Science 2004, 304, 1926–1929. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-J. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol. Rev. 2010, 90, 1195–1268. [Google Scholar] [CrossRef] [PubMed]
- Stam, C.J.; Nolte, G.; Daffertshofer, A. Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum. Brain Mapp. 2007, 28, 1178–1193. [Google Scholar] [CrossRef]
- Wei, H.T.; Francois-Nienaber, A.; Deschamps, T.; Bellana, B.; Hebscher, M.; Sivaratnam, G.; Zadeh, M.; Meltzer, J.A. Sensitivity of amplitude and phase based MEG measures of interhemispheric connectivity during unilateral finger movements. NeuroImage 2021, 242, 118457. [Google Scholar] [CrossRef]
- Vinck, M.; Oostenveld, R.; van Wingerden, M.; Battaglia, F.; Pennartz, C.M.A. An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. NeuroImage 2011, 55, 1548–1565. [Google Scholar] [CrossRef]
- Peraza, L.R.; Asghar, A.U.; Green, G.; Halliday, D.M. Volume conduction effects in brain network inference from electroencephalographic recordings using phase lag index. J. Neurosci. Methods 2012, 207, 189–199. [Google Scholar] [CrossRef]
- Maris, E.; Schoffelen, J.-M.; Fries, P. Nonparametric statistical testing of coherence differences. J. Neurosci. Methods 2007, 163, 161–175. [Google Scholar] [CrossRef]
- Bastos, A.M.; Schoffelen, J.-M. A Tutorial Review of Functional Connectivity Analysis Methods and Their Interpretational Pitfalls. Front. Syst. Neurosci. 2016, 9, 175. [Google Scholar] [CrossRef]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Dawson, J.E. Visceral and Behavioural Responses to Modern Art: Influence of Expertise, Type of Art and Context; University of Northumbria at Newcastle (United Kingdom): Newcastle upon Tyne, UK, 2016. [Google Scholar]
- Crawford, J.R.; Henry, J.D. The Positive and Negative Affect Schedule (PANAS): Construct validity, measurement properties and normative data in a large non-clinical sample. Br. J. Clin. Psychol. 2004, 43, 245–265. [Google Scholar] [CrossRef]
- Kleiner, M.; Brainard, D.H.; Pelli, D.; Ingling, A.; Murray, R.; Broussard, C. What’s new in Psychtoolbox-3. Perception 2007, 36, 1–16. [Google Scholar]
- Issa, M.F.; Csizmadia, F.; Juhasz, Z.; Kozmann, G. EEG-assisted reaction time measurement method for bilingual lexical access study experiments. In Proceedings of the 2017 11th International Conference on Measurement, Smolenice, Slovakia, 29–31 May 2017; IEEE: New York, NY, USA, 2017; pp. 229–232. [Google Scholar]
- Biosemi. Headcaps. Biosemi. Available online: https://www.biosemi.com/headcap.htm (accessed on 6 September 2024).
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.-W.; Girolami, M.; Sejnowski, T.J. Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources. Neural Comput. 1999, 11, 417–441. [Google Scholar] [CrossRef]
- Pion-Tonachini, L.; Kreutz-Delgado, K.; Makeig, S. ICLabel: An Automated Electroencephalographic Independent Component Classifier, Dataset, and Website. NeuroImage 2019, 198, 181–197. [Google Scholar] [CrossRef] [PubMed]
- Oostenveld, R.; Fries, P.; Maris, E.; Schoffelen, J.-M. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 2011, 156869. [Google Scholar] [CrossRef]
- Rubinov, M.; Kötter, R.; Hagmann, P.; Sporns, O. Brain connectivity toolbox: A collection of complex network measurements and brain connectivity datasets. NeuroImage 2009, 47, S169. [Google Scholar] [CrossRef]
- Leder, H.; Nadal, M. Ten years of a model of aesthetic appreciation and aesthetic judgments: The aesthetic episode—Developments and challenges in empirical aesthetics. Br. J. Psychol. 2014, 105, 443–464. [Google Scholar] [CrossRef]
- Jacobsen, T.; Höfel, L. Descriptive and evaluative judgment processes: Behavioral and electrophysiological indices of processing symmetry and aesthetics. Cogn. Affect. Behav. Neurosci. 2003, 3, 289–299. [Google Scholar] [CrossRef]
- Cela-Conde, C.J.; García-Prieto, J.; Ramasco, J.J.; Mirasso, C.R.; Bajo, R.; Munar, E.; Flexas, A.; Del-Pozo, F.; Maestú, F. Dynamics of brain networks in the aesthetic appreciation. Proc. Natl. Acad. Sci. USA 2013, 110, 10454–10461. [Google Scholar] [CrossRef]
- Umilta’, M.A.; Berchio, C.; Sestito, M.; Freedberg, D.; Gallese, V. Abstract art and cortical motor activation: An EEG study. Front. Hum. Neurosci. 2012, 6, 33248. [Google Scholar] [CrossRef]
- Cela-Conde, C.J.; Agnati, L.; Huston, J.P.; Mora, F.; Nadal, M. The neural foundations of aesthetic appreciation. Prog. Neurobiol. 2011, 94, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Leder, H. Next steps in neuroaesthetics: Which processes and processing stages to study? Psychol. Aesthet. Creat. Arts 2013, 7, 27–37. [Google Scholar] [CrossRef]
- Leder, H.; Belke, B.; Oeberst, A.; Augustin, D. A model of aesthetic appreciation and aesthetic judgments. Br. J. Psychol. 2004, 95, 489–508. [Google Scholar] [CrossRef]
- Cattaneo, Z.; Schiavi, S.; Silvanto, J.; Nadal, M. A TMS study on the contribution of visual area V5 to the perception of implied motion in art and its appreciation. Cogn. Neurosci. 2015, 8, 59–68. [Google Scholar] [CrossRef]
- Giannouli, V. Visual symmetry perception. Encephalos 2013, 50, 31–42. [Google Scholar]
- Batt, R.; Palmiero, M.; Nakatani, C.; van Leeuwen, C. Style and spectral power: Processing of abstract and representational art in artists and non-artists. Perception 2010, 39, 1659–1671. [Google Scholar] [CrossRef]
- Van Paasschen, J.; Bacci, F.; Melcher, D.P. The Influence of Art Expertise and Training on Emotion and Preference Ratings for Representational and Abstract Artworks. PLoS ONE 2015, 10, e0134241. [Google Scholar] [CrossRef]
- Pihko, E.; Virtanen, A.; Saarinen, V.-M.; Pannasch, S.; Hirvenkari, L.; Tossavainen, T.; Haapala, A.; Hari, R. Experiencing Art: The Influence of Expertise and Painting Abstraction Level. Front. Hum. Neurosci. 2011, 5, 94. [Google Scholar] [CrossRef]
- Bhattacharya, J.; Petsche, H. Shadows of artistry: Cortical synchrony during perception and imagery of visual art. Cogn. Brain Res. 2002, 13, 179–186. [Google Scholar] [CrossRef]
Mean p-Values of the Significant Edge Weight Differences | ||||
---|---|---|---|---|
−300 ms (Baseline) | 100 ms | 300 ms | 500 ms | |
Figurative > Abstract | ||||
Delta | 0.0248 | 0.0259 | 0.0273 | 0.0247 |
Theta | 0.0275 | 0.0292 | 0.0288 | 0.0234 |
Alpha | 0.0299 | 0.0264 | 0.0267 | 0.0268 |
Beta | 0.0263 | 0.0232 | 0.0232 | 0.0260 |
Gamma | 0.0266 | 0.0245 | 0.0254 | 0.0248 |
Abstract > Figurative | ||||
Delta | 0.0258 | 0.0239 | 0.0233 | 0.0204 |
Theta | 0.0250 | 0.0223 | 0.0270 | 0.0306 |
Alpha | 0.0273 | 0.0259 | 0.0243 | 0.0269 |
Beta | 0.0256 | 0.0252 | 0.0275 | 0.0256 |
Gamma | 0.0246 | 0.0251 | 0.0253 | 0.0245 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suhaili, I.S.; Nagy, Z.; Juhasz, Z. Functional Connectivity Differences in the Perception of Abstract and Figurative Paintings. Appl. Sci. 2024, 14, 9284. https://doi.org/10.3390/app14209284
Suhaili IS, Nagy Z, Juhasz Z. Functional Connectivity Differences in the Perception of Abstract and Figurative Paintings. Applied Sciences. 2024; 14(20):9284. https://doi.org/10.3390/app14209284
Chicago/Turabian StyleSuhaili, Iffah Syafiqah, Zoltan Nagy, and Zoltan Juhasz. 2024. "Functional Connectivity Differences in the Perception of Abstract and Figurative Paintings" Applied Sciences 14, no. 20: 9284. https://doi.org/10.3390/app14209284
APA StyleSuhaili, I. S., Nagy, Z., & Juhasz, Z. (2024). Functional Connectivity Differences in the Perception of Abstract and Figurative Paintings. Applied Sciences, 14(20), 9284. https://doi.org/10.3390/app14209284