Muscle Synergy of the Periarticularis Shoulder Muscles during a Wheelchair Propulsion Motion for Wheelchair Basketball
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Setup
2.3. Data Analyses
2.4. Methods of Extracting Muscle Synergies
3. Results
3.1. Kinematic Outcomes
3.2. Muscle Activity in a Wheelchair Propulsion Cycle
3.3. Muscle Synergies in a Wheelchair Propulsion Motion
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IWBF History of Wheelchair Basketball. IWBF—International Wheelchair Basketball Federation; IWBF: Mies, Switzerland, 2018; Available online: https://iwbf.org/the-game/history-wheelchair-basketball/ (accessed on 18 March 2024).
- Najafabadi, M.G.; Shariat, A.; Anastasio, A.T.; Khah, A.S.; Shaw, I.; Kavianpour, M. Wheelchair basketball, health, competitive analysis, and performance advantage: A review of theory and evidence. J. Exerc. Rehabil. 2023, 19, 208–218. [Google Scholar] [CrossRef]
- Derman, W.; Runciman, P.; Schwellnus, M.; Jordaan, E.; Blauwet, C.; Webborn, N.; Lexell, J.; van de Vliet, P.; Tuakli-Wosornu, Y.; Kissick, J.; et al. High precompetition injury rate dominates the injury profile at the Rio 2016 Summer Paralympic Games: A prospective cohort study of 51,198 athlete days. Br. J. Sports Med. 2018, 52, 24–31. [Google Scholar] [CrossRef]
- Sá, K.; Costa e Silva, A.; Gorla, J.; Silva, A.; Magno e Silva, M. Injuries in wheelchair basketball players: A systematic review. Int. J. Environ. Res. Public Health 2022, 19, 5869. [Google Scholar] [CrossRef]
- Akbar, M.; Brunner, M.; Ewerbeck, V.; Wiedenhöfer, B.; Grieser, T.; Bruckner, T.; Loew, M.; Raiss, P. Do overhead sports increase risk for rotator cuff tears in wheelchair users? Arch. Phys. Med. Rehabil. 2015, 96, 484–488. [Google Scholar] [CrossRef]
- Lin, D.J.; Wong, T.T.; Kazam, J.K. Shoulder Injuries in the Overhead-Throwing Athlete: Epidemiology, Mechanisms of Injury, and Imaging Findings. Radiology 2018, 286, 370–387. [Google Scholar] [CrossRef]
- Karasuyama, M.; Oike, T.; Okamatsu, S.; Kawakami, J. Shoulder pain in wheelchair basketball athletes: A scoping review. J. Spinal Cord. Med. 2023, 46, 753–759. [Google Scholar] [CrossRef]
- Tsunoda, K.; Mutsuzaki, H.; Kanae, K.; Tachibana, K.; Shimizu, Y.; Wadano, Y. Associations between wheelchair user’s shoulder pain index and tendinitis in the long head of the biceps tendon among female wheelchair basketball players from the Japanese national team. Asia Pac. J. Sports Med. Arthrosc. Rehabil. Technol. 2021, 24, 29–34. [Google Scholar] [CrossRef]
- de Freitas, G.R.; Abou, L.; de Lima, A.; Rice, L.A.; Ilha, J. Measurement properties of clinical instruments for assessing manual wheelchair mobility in individuals with spinal cord injury: Systematic review. Arch. Phys. Med. Rehabil. 2023, 104, 656–672. [Google Scholar] [CrossRef]
- Vanlandewijck, Y.; Theisen, D.; Daly, D. Wheelchair propulsion biomechanics: Implications for wheelchair sports. Sports Med. 2001, 31, 339–367. [Google Scholar] [CrossRef]
- Qi, L.; Guan, S.; Zhang, L.; Liu, H.L.; Sun, C.K.; Ferguson-Pell, M. The effect of fatigue on wheelchair users’ upper limb muscle coordination patterns in time-frequency and principal component analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 2096–2102. [Google Scholar] [CrossRef]
- Lacquaniti, F.; Ivanenko, Y.P.; Zago, M. Patterned control of human locomotion. J. Physiol. 2012, 590, 2189–2199. [Google Scholar] [CrossRef]
- Cheung, V.C.; d’Avella, A.; Tresch, M.C.; Bizzi, E. Central and sensory contributions to the activation and organization of muscle synergies during natural motor behaviors. J. Neurosci. 2005, 25, 6419–6434. [Google Scholar] [CrossRef]
- Matsuura, Y.; Matsunaga, N.; Akuzawa, H.; Oshikawa, T.; Kaneoka, K. Comparison of muscle coordination during front crawl and backstroke with and without swimmer’s shoulder pain. Sports Health 2024, 16, 89–96. [Google Scholar] [CrossRef]
- Lee, D.D.; Seung, H.S. Learning the parts of objects by non-negative matrix factorization. Nature 1999, 401, 788–791. [Google Scholar] [CrossRef]
- Jie, T.; Xu, D.; Zhang, Z.; Teo, E.C.; Baker, J.S.; Zhou, H.; Gu, Y. Structural and Organizational Strategies of Locomotor Modules during Landing in Patients with Chronic Ankle Instability. Bioengineering 2024, 11, 518. [Google Scholar] [CrossRef]
- Baifa, Z.; Xinglong, Z.; Dongmei, L. Muscle coordination during archery shooting: A comparison of archers with different skill levels. Eur. J. Sport Sci. 2023, 23, 54–61. [Google Scholar] [CrossRef]
- Matsuura, Y.; Matsunaga, N.; Akuzawa, H.; Kojima, T.; Oshikawa, T.; Iizuka, S.; Okuno, K.; Kaneoka, K. Difference in muscle synergies of the butterfly technique with and without swimmer’s shoulder. Sci. Rep. 2022, 12, 14546. [Google Scholar] [CrossRef]
- Medola, F.O.; Elui, V.M.; da Santana, C.S.; Fortulan, C.A. Aspects of manual wheelchair configuration affecting mobility: A review. J. Phys. Ther. Sci. 2014, 26, 313–318. [Google Scholar] [CrossRef]
- Soltau, S.L.; Slowik, J.S.; Requejo, P.S.; Mulroy, S.J.; Neptune, R.R. An investigation of bilateral symmetry during manual wheelchair propulsion. Front. Bioeng. Biotechnol. 2015, 3, 86. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Merletti, R.; Stegeman, D.; Blok, J.; Rau, G.; Disselhorst-Klug, C.; Hägg, G. SENIAM European Recommendations for Surface Electromyography: Results of the SENIAM Project; Roessingh Research and Development: Enschede, The Netherlands, 1999. [Google Scholar]
- Ribeiro, D.C.; Sole, G.; Venkat, R.; Shemmell, J. Differences between clinician- and self-administered shoulder sustained mobilization on scapular and shoulder muscle activity during shoulder abduction: A repeated-measures study on asymptomatic individuals. Musculoskelet. Sci. Pract. 2017, 30, 25–33. [Google Scholar] [CrossRef]
- Bergamini, E.; Morelli, F.; Marchetti, F.; Vannozzi, G.; Polidori, L.; Paradisi, F.; Traballesi, M.; Cappozzo, A.; Delussu, A.S. Wheelchair propulsion biomechanics in junior basketball players: A method for the evaluation of the efficacy of a specific training program. Biomed. Res. Int. 2015, 2015, 275965. [Google Scholar] [CrossRef]
- Cavallone, P.; Vieira, T.; Quaglia, G.; Gazzoni, M. Electomyographic activities of shoulder muscles during Handwheelchair.Q. vs pushrim wheelchair propulsion. Med. Eng. Phys. 2022, 106, 103833. [Google Scholar] [CrossRef]
- Turpin, N.A.; Uriac, S.; Dalleau, G. How to improve the muscle synergy analysis methodology? Eur. J. Appl. Physiol. 2021, 121, 1009–1025. [Google Scholar] [CrossRef]
- Tresch, M.C.; Cheung, V.C.; d’Avella, A. Matrix factorization algorithms for the identification of muscle synergies: Evaluation on simulated and experimental data sets. J. Neurophysiol. 2006, 95, 2199–2212. [Google Scholar] [CrossRef]
- Cheung, V.C.; Piron, L.; Agostini, M.; Silvoni, S.; Turolla, A.; Bizzi, E. Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proc. Natl. Acad. Sci. USA 2009, 106, 19563–19568. [Google Scholar] [CrossRef]
- Morrow, M.M.; Hurd, W.J.; Kaufman, K.R.; An, K.N. Shoulder demands in manual wheelchair users across a spectrum of activities. J. Electromyogr. Kinesiol. 2010, 20, 61–67. [Google Scholar] [CrossRef]
- Mulroy, S.J.; Farrokhi, S.; Newsam, C.J.; Perry, J. Effects of spinal cord injury level on the activity of shoulder muscles during wheelchair propulsion: An electromyographic study. Arch. Phys. Med. Rehabil. 2004, 85, 925–934. [Google Scholar] [CrossRef]
- Bregman, D.J.; van Drongelen, S.; Veeger, H.E. Is effective force application in handrim wheelchair propulsion also efficient? Clin. Biomech. 2009, 24, 13–19. [Google Scholar] [CrossRef]
- Jayaraman, C.; Moon, Y.; Rice, I.M.; Hsiao Wecksler, E.T.; Beck, C.L.; Sosnoff, J.J. Shoulder pain and cycle to cycle kinematic spatial variability during recovery phase in manual wheelchair users: A pilot investigation. PLoS ONE 2014, 9, e89794. [Google Scholar] [CrossRef]
- de Groot, S.; Veeger, H.E.; Hollander, A.P.; van der Woude, L.H. Short-term adaptations in co-ordination during the initial phase of learning manual wheelchair propulsion. J. Electromyogr. Kinesiol. 2003, 13, 217–228. [Google Scholar] [CrossRef]
- Escamilla, R.F.; Andrews, J.R. Shoulder muscle recruitment patterns and related biomechanics during upper extremity sports. Sports Med. 2009, 39, 569–590. [Google Scholar] [CrossRef] [PubMed]
- Moser, T.; Lecours, J.; Michaud, J.; Bureau, N.J.; Guillin, R.; Cardinal, É. The deltoid, a forgotten muscle of the shoulder. Skelet. Radiol. 2013, 42, 1361–1375. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.T.; Su, F.C.; Wu, H.W.; An, K.N. Muscle forces analysis in the shoulder mechanism during wheelchair propulsion. Proc. Inst. Mech. Eng. H 2004, 218, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Camargo, P.R.; Neumann, D.A. Kinesiologic considerations for targeting activation of scapulothoracic muscles—Part 2: Trapezius. Braz. J. Phys. Ther. 2019, 23, 467–475. [Google Scholar] [CrossRef]
- Slowik, J.S.; McNitt-Gray, J.L.; Requejo, P.S.; Mulroy, S.J.; Neptune, R.R. Compensatory strategies during manual wheelchair propulsion in response to weakness in individual muscle groups: A simulation study. Clin. Biomech. 2016, 33, 34–41. [Google Scholar] [CrossRef]
- Yildirim, N.U.; Comert, E.; Ozengin, N. Shoulder pain: A comparison of wheelchair basketball players with trunk control and without trunk control. J. Back. Musculoskelet. Rehabil. 2010, 23, 55–61. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamura, Y.; Maeda, N.; Komiya, M.; Iwamoto, Y.; Tashiro, T.; Arima, S.; Tsutsumi, S.; Mizuta, R.; Urabe, Y. Muscle Synergy of the Periarticularis Shoulder Muscles during a Wheelchair Propulsion Motion for Wheelchair Basketball. Appl. Sci. 2024, 14, 9292. https://doi.org/10.3390/app14209292
Tamura Y, Maeda N, Komiya M, Iwamoto Y, Tashiro T, Arima S, Tsutsumi S, Mizuta R, Urabe Y. Muscle Synergy of the Periarticularis Shoulder Muscles during a Wheelchair Propulsion Motion for Wheelchair Basketball. Applied Sciences. 2024; 14(20):9292. https://doi.org/10.3390/app14209292
Chicago/Turabian StyleTamura, Yuki, Noriaki Maeda, Makoto Komiya, Yoshitaka Iwamoto, Tsubasa Tashiro, Satoshi Arima, Shogo Tsutsumi, Rami Mizuta, and Yukio Urabe. 2024. "Muscle Synergy of the Periarticularis Shoulder Muscles during a Wheelchair Propulsion Motion for Wheelchair Basketball" Applied Sciences 14, no. 20: 9292. https://doi.org/10.3390/app14209292
APA StyleTamura, Y., Maeda, N., Komiya, M., Iwamoto, Y., Tashiro, T., Arima, S., Tsutsumi, S., Mizuta, R., & Urabe, Y. (2024). Muscle Synergy of the Periarticularis Shoulder Muscles during a Wheelchair Propulsion Motion for Wheelchair Basketball. Applied Sciences, 14(20), 9292. https://doi.org/10.3390/app14209292