Acute Effects of Different Conditioning Activities on the Post-Activation Performance Enhancement in Athletes’ Jumping and Sprinting Performances: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Inclusion and Exclusion Criteria
2.1.1. Inclusion Criteria
2.1.2. Exclusion Criteria
2.2. Search Strategy
2.3. Literature Screening, Data Extraction, and Quality Assessment
2.3.1. Literature Screening
2.3.2. Data Extraction
2.3.3. Quality Assessment Section
2.4. Data Processing Section
3. Results
3.1. Literature Search Results
3.2. Basic Characteristics of Included Studies
3.3. Quality Assessment Results of Included Studies
3.4. Results of the Meta-Analysis
3.4.1. Meta-Analysis Results on Jump Performance
3.4.2. Meta-Analysis Results on Sprint Performance Results
3.4.3. Sensitivity Analysis
4. Discussion
4.1. Post-Activation Performance Enhancement on Jumping Performance through Different Conditioning Activities
4.2. Post-Activation Performance Enhancement on Sprinting Performance through Different Conditioning Activities
4.3. Limitations of This Study
4.4. Future Research Prospects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tillin, N.A.; Bishop, D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med. 2009, 39, 147–166. [Google Scholar] [CrossRef] [PubMed]
- Wang, I.L.; Wang, J.; Chen, Y.-M.; Chen, C.H.; Wang, C.S. Effect of Acupuncture on the Timeliness of Explosive Forces Generated by the Male Shoulder Joint. Evid. Based Complement. Altern. Med. 2021, 2021, 5638. [Google Scholar] [CrossRef]
- Kilduff, L.P.; Cunningham, D.J.; Owen, N.J.; West, D.J.; Bracken, R.M.; Cook, C.J. Effect of postactivation potentiation on swimming starts in international sprint swimmers. J. Strength Cond. Res. 2011, 25, 2418–2423. [Google Scholar] [CrossRef] [PubMed]
- Kilduff, L.P.; Bevan, H.R.; Kingsley, M.I.; Owen, N.J.; Bennett, M.A.; Bunce, P.J.; Hore, A.M.; Maw, J.R.; Cunningham, D. Postactivation potentiation in professional rugby players: Optimal recovery. J. Strength Cond. Res. 2007, 21, 1134–1138. [Google Scholar] [CrossRef] [PubMed]
- Baker, D. Acute effect of alternating heavy and light resistances on power output during upper-body complex power training. J. Strength Cond. Res. 2003, 17, 493–497. [Google Scholar] [PubMed]
- Izquierdo, M.; Häkkinen, K.; Gonzalez-Badillo, J.J.; Ibanez, J.; Gorostiaga, E.M. Effects of long-term training specificity on maximal strength and power of the upper and lower extremities in athletes from different sports. Eur. J. Appl. Physiol. 2002, 87, 264–271. [Google Scholar] [CrossRef]
- Yetter, M.; Moir, G.L. The acute effects of heavy back and front squats on speed during forty-meter sprint trials. J. Strength Cond. Res. 2008, 22, 159–165. [Google Scholar] [CrossRef]
- Nygaard Falch, H.; Guldteig Rædergård, H.; Van Den Tillaar, R. Effect of Different Physical Training Forms on Change of Direction Ability: A Systematic Review and Meta-analysis. Sports Med. Open 2019, 5, 53. [Google Scholar] [CrossRef]
- Gautam, A.; Singh, P.; Varghese, V. Effects of Postactivation Potentiation enhacement on sprint and change-of-direction performance in athletes: A systematic review. J. Bodyw. Mov. Ther. 2024, 39, 243–250. [Google Scholar] [CrossRef]
- Kilduff, L.P.; Owen, N.; Bevan, H.; Bennett; Kingsley, M.I.; Cunningham, D. Influence of recovery time on post-activation potentiation in professional rugby players. J. Sports Sci. 2008, 26, 795–802. [Google Scholar] [CrossRef]
- Krzysztofik, M.; Wilk, M.; Stastny, P.; Golas, A. Post-activation Performance Enhancement in the Bench Press Throw: A Systematic Review and Meta-Analysis. Front. Physiol. 2020, 11, 598628. [Google Scholar] [CrossRef] [PubMed]
- Villalon-Gasch, L.; Penichet-Tomas, A.; Sebastia-Amat, S.; Pueo, B.; Jimenez-Olmedo, J.M. Postactivation Performance Enhancement (PAPE) Increases Vertical Jump in Elite Female Volleyball Players. Int. J. Environ. Res. Public Health 2022, 19, 462. [Google Scholar] [CrossRef]
- Mitchell, C.J.; Sale, D.G. Enhancement of jump performance after a 5-RM squat is associated with postactivation potentiation. Eur. J. Appl. Physiol. 2011, 111, 1957–1963. [Google Scholar] [CrossRef]
- Jonatas Ferreira, D.S.S.; Herrera-Valenzuela, T.; Gustavo, R.D.M.; Franchini, E. Influence of half-squat intensity and volume on the subsequent countermovement jump and frequency speed of kick test performance in taekwondo athletes. Kinesiology 2016, 48, 95–102. [Google Scholar]
- Castro, N.; Valderas-Maldonado, C.; Herrera-Valenzuela, T.; Ferreira Da Silva, J.; Guzmán-Muñoz, E.; Vásquez-Gómez, J.A.; Magnani Branco, B.; Zapata-Bastias, J.; Valdés-Badilla, P.; López Fuenzalida, A. Effects of post-activation potentiation exercises on kicking frequency, fatigue rate and jump performance in taekwondo athletes: A case study (Efectos de los ejercicios de potenciación post activación sobre la frecuencia de pateo, tasa de fatiga y saltabi). Retos 2020, 38, 679–683. [Google Scholar] [CrossRef]
- Krčmár, M.; Krčmárová, B.; Bakaľár, I.; Šimonek, J. Acute Performance Enhancement Following Squats Combined with Elastic Bands on Short Sprint and Vertical Jump Height in Female Athletes. J. Strength Cond. Res. 2021, 35, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Hadjab, A.; Ait, A. The effect of post activation potentiation (PAP) warm-up 545 on repeated sprint ability on youth basketball players. Alger. Sci. J. Platf. 2022, 9, 1164–1179. [Google Scholar]
- Rouissi, M.; Turki, O.; Bragazzi, N.; Owen, A.; Haddad, M.; Chamari, K.; Chtara, M. Effect of post-activation potentiation induced by one, two or three half-squats on repeated sprint acceleration performance. Muscles Ligaments Tendons J. 2017, 8, 28–36. [Google Scholar] [CrossRef]
- Fernández-Galván, L.M.; Prieto-González, P.; Sánchez-Infante, J.; Jiménez-Reyes, P.; Casado, A. The Post-Activation Potentiation Effects on Sprinting Abilities in Junior Tennis Players. Int. J. Environ. Res. Public Health 2022, 19, 2080. [Google Scholar] [CrossRef]
- Lim, J.J.; Kong, P.W. Effects of isometric and dynamic postactivation potentiation protocols on maximal sprint performance. J. Strength Cond. Res. 2013, 27, 2730–2736. [Google Scholar] [CrossRef]
- Tobin, D.P.; Delahunt, E. The acute effect of a plyometric stimulus on jump performance in professional rugby players. J. Strength Cond. Res. 2014, 28, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Dello Iacono, A.; Padulo, J.; Eliakim, A.; Gottlieb, R.; Bareli, R.; Meckel, Y. Post-activation potentiation effects on vertical and horizontal explosive performances of young handball and basketball athletes. J. Sports Med. Phys. Fit. 2016, 56, 1455–1464. [Google Scholar]
- Vanderka, M.; Krčmár, M.; Longová, K.; Walker, S. Acute Effects of Loaded Half-Squat Jumps on Sprint Running Speed in Track and Field Athletes and Soccer Players. J. Strength Cond. Res. 2016, 30, 1540–1546. [Google Scholar] [CrossRef] [PubMed]
- Sener, T.; Sozbir, K.; Karli, U. Acute effects of plyometric warm-up with different box heights on sprint and agility performance in national-level field hockey athletes. Isokinet. Exerc. Sci. 2021, 29, 1–9. [Google Scholar] [CrossRef]
- Kümmel, J.; Bergmann, J.; Prieske, O.; Kramer, A.; Granacher, U.; Gruber, M. Effects of conditioning hops on drop jump and sprint performance: A randomized crossover pilot study in elite athletes. BMC Sports Sci. Med. Rehabil. 2016, 8, 1. [Google Scholar] [CrossRef]
- Kalinowski, R.; Pisz, A.; Kolinger, D.; Wilk, M.; Stastny, P.; Krzysztofik, M. Acute effects of combined isometric and plyometric conditioning activities on sports performance and tendon stiffness in female volleyball players. Front. Physiol. 2022, 13, 1025839. [Google Scholar] [CrossRef]
- Papla, M.; Ewertowska, P.; Krzysztofik, M. Acute Effects of Complex Conditioning Activities on Athletic Performance and Achilles Tendon Stiffness in Male Basketball Players. J. Sports Sci. Med. 2023, 22, 281–287. [Google Scholar] [CrossRef]
- Santos, J.F.; Valenzuela, T.H.; Franchini, E. Can different conditioning activities and rest intervals affect the acute performance of taekwondo turning kick? J. Strength Cond. Res. 2015, 29, 1640–1647. [Google Scholar] [CrossRef]
- Matusiński, A.; Pietraszewski, P.; Krzysztofik, M.; Gołaś, A. The Effects of Resisted Post-Activation Sprint Performance Enhancement in Elite Female Sprinters. Front. Physiol. 2021, 12, 651659. [Google Scholar] [CrossRef]
- Whelan, N.; O’regan, C.; Harrison, A.J. Resisted sprints do not acutely enhance sprinting performance. J. Strength Cond. Res. 2014, 28, 1858–1866. [Google Scholar] [CrossRef]
- Winwood, P.W.; Posthumus, L.R.; Cronin, J.B.; Keogh, J.W. The Acute Potentiating Effects of Heavy Sled Pulls on Sprint Performance. J. Strength Cond. Res. 2016, 30, 1248–1254. [Google Scholar] [CrossRef] [PubMed]
- Seitz, L.B.; Haff, G.G. Factors Modulating Post-Activation Potentiation of Jump, Sprint, Throw, and Upper-Body Ballistic Performances: A Systematic Review with Meta-Analysis. Sports Med. 2016, 46, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Saez Saez De Villarreal, E.; González-Badillo, J.J.; Izquierdo, M. Optimal warm-up stimuli of muscle activation to enhance short and long-term acute jumping performance. Eur. J. Appl. Physiol. 2007, 100, 393–401. [Google Scholar] [CrossRef]
- Esformes, J.I.; Cameron, N.; Bampouras, T.M. Postactivation potentiation following different modes of exercise. J. Strength Cond. Res. 2010, 24, 1911–1916. [Google Scholar] [CrossRef]
- Dobbs, W.C.; Tolusso, D.V.; Fedewa, M.V.; Esco, M.R. Effect of Postactivation Potentiation on Explosive Vertical Jump: A Systematic Review and Meta-Analysis. J. Strength Cond. Res. 2019, 33, 2009–2018. [Google Scholar] [CrossRef]
- Chen, Y.; Su, Q.; Yang, J.; Li, G.; Zhang, S.; Lv, Y.; Yu, L. Effects of rest interval and training intensity on jumping performance: A systematic review and meta-analysis investigating post-activation performance enhancement. Front. Physiol. 2023, 14, 1202789. [Google Scholar] [CrossRef]
- Huerta Ojeda, Á.; Cifuentes Zapata, C.; Barahona-Fuentes, G.; Yeomans-Cabrera, M.M.; Chirosa-Ríos, L.J. Variable Resistance—An Efficient Method to Generate Muscle Potentiation: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2023, 20, 4316. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, D.P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Green, S. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [Updated March 2011]; The Cochrane Collaboration: London, UK, 2011; Available online: https://training.cochrane.org/handbook (accessed on 10 January 2024).
- Eng, C.; Kramer, C.K.; Zinman, B.; Retnakaran, R. Glucagon-like peptide-1 receptor agonist and basal insulin combination treatment for the management of type 2 diabetes: A systematic review and meta-analysis. Lancet 2014, 384, 2228–2234. [Google Scholar] [CrossRef] [PubMed]
- Manning, D.R.; Stull, J.T. Myosin light chain phosphorylation-dephosphorylation in mammalian skeletal muscle. Am. J. Physiol. 1982, 242, C234–C241. [Google Scholar] [CrossRef] [PubMed]
- Vandervoort, A.A.; Quinlan, J.; Mccomas, A.J. Twitch potentiation after voluntary contraction. Exp. Neurol. 1983, 81, 141–152. [Google Scholar] [CrossRef]
- Brown, I.E.; Loeb, G.E. Post-Activation Potentiation—A Clue for Simplifying Models of Muscle Dynamics. Am. Zool. 1998, 38, 743–754. [Google Scholar] [CrossRef]
- Esformes, J.I.; Bampouras, T.M. Effect of back squat depth on lower-body postactivation potentiation. J. Strength Cond. Res. 2013, 27, 2997–3000. [Google Scholar] [CrossRef] [PubMed]
- Macaluso, F.; Isaacs, A.W.; Myburgh, K.H. Preferential type II muscle fiber damage from plyometric exercise. J. Athl. Train. 2012, 47, 414–420. [Google Scholar] [CrossRef]
- Sale, D.G. Postactivation potentiation: Role in human performance. Exerc. Sport Sci. Rev. 2002, 30, 138–143. [Google Scholar] [CrossRef]
- Weyand, P.G.; Sandell, R.F.; Prime, D.N.; Bundle, M.W. The biological limits to running speed are imposed from the ground up. J. Appl. Physiol. 2010, 108, 950–961. [Google Scholar] [CrossRef]
- Weyand, P.G.; Sternlight, D.B.; Bellizzi, M.J.; Wright, S. Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J. Appl. Physiol. 2000, 89, 1991–1999. [Google Scholar] [CrossRef]
- Bundle, M.W.; Hoyt, R.W.; Weyand, P.G. High-speed running performance: A new approach to assessment and prediction. J. Appl. Physiol. 2003, 95, 1955–1962. [Google Scholar] [CrossRef]
- Mann, R.V. The Mechanics of Sprinting and Hurdling; CreateSpace: Lexington, KY, USA, 2011; pp. 89–125. [Google Scholar]
- Neto, W.K.; Vieira, T.L.; Gama, E.F. Barbell Hip Thrust, Muscular Activation and Performance: A Systematic Review. J. Sports Sci. Med. 2019, 18, 198–206. [Google Scholar] [PubMed]
- Bell, D.R.; Padua, D.A.; Clark, M.A. Muscle strength and flexibility characteristics of people displaying excessive medial knee displacement. Arch. Phys. Med. Rehabil. 2008, 89, 1323–1328. [Google Scholar] [CrossRef] [PubMed]
- Young, W.B. Transfer of strength and power training to sports performance. Int. J. Sports Physiol. Perform. 2006, 1, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Crewther, B.T.; Kilduff, L.P.; Cook, C.J.; Middleton, M.K.; Bunce, P.J.; Yang, G.Z. The acute potentiating effects of back squats on athlete performance. J. Strength Cond. Res. 2011, 25, 3319–3325. [Google Scholar] [CrossRef]
Group | No. of Studies | Hedges’s g | (95% Conf. Interval) | p-Value |
---|---|---|---|---|
A | ||||
Resistance exercises | 22 | 0.185 | 0.015 0.355 | 0.003 |
Mixed exercises | 4 | 0.163 | −0.024 0.549 | 0.409 |
Plyometric exercises | 3 | 0.314 | −0.117 0.744 | 0.154 |
Overall | 29 | 0.196 | 0.050 0.343 | 0.009 |
B | ||||
Resistance exercises | 12 | 0.235 | 0.020 0.449 | 0.032 |
Mixed exercises | 3 | 0.163 | −0.288 0.679 | 0.429 |
Plyometric exercises | 3 | 0.61 | −0.422 0.544 | 0.805 |
Overall | 18 | 0.204 | 0.030 0.386 | 0.027 |
C | ||||
Resistance exercises | 23 | 0.511 | 0.306 0.717 | <0.001 |
Plyometric exercises | 12 | −0.177 | −0.335 −0.020 | 0.027 |
Overall | 35 | 0.232 | 0.059 0.405 | 0.009 |
Group | No. of Studies | Hedges’s g | (95% Conf. Interval) | p-Value |
---|---|---|---|---|
A | ||||
Resistance exercises | 13 | −0.226 | −0.406 −0.046 | 0.014 |
Mixed exercises | 21 | −0.046 | −0.180 0.089 | 0.507 |
Overall | 34 | −0.111 | −0.218 −0.003 | 0.045 |
B | ||||
Resistance exercises | 15 | −0.475 | −0.667 −0.284 | <0.001 |
Plyometric exercises | 3 | 0.054 | −0.662 0.770 | 0.883 |
Overall | 18 | −0.440 | −0.625 −0.255 | 0.000 |
C | ||||
Resistance exercises | 19 | −0.714 | −0.892 −0.536 | <0.001 |
Plyometric exercises | 24 | −0.005 | −0.246 0.236 | 0.968 |
Overall | 43 | −0.316 | −0.504 −0.128 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Niu, X.; Zhou, Z. Acute Effects of Different Conditioning Activities on the Post-Activation Performance Enhancement in Athletes’ Jumping and Sprinting Performances: A Systematic Review and Meta-Analysis. Appl. Sci. 2024, 14, 9301. https://doi.org/10.3390/app14209301
Liu L, Niu X, Zhou Z. Acute Effects of Different Conditioning Activities on the Post-Activation Performance Enhancement in Athletes’ Jumping and Sprinting Performances: A Systematic Review and Meta-Analysis. Applied Sciences. 2024; 14(20):9301. https://doi.org/10.3390/app14209301
Chicago/Turabian StyleLiu, Lifang, Xingyi Niu, and Zhexiao Zhou. 2024. "Acute Effects of Different Conditioning Activities on the Post-Activation Performance Enhancement in Athletes’ Jumping and Sprinting Performances: A Systematic Review and Meta-Analysis" Applied Sciences 14, no. 20: 9301. https://doi.org/10.3390/app14209301
APA StyleLiu, L., Niu, X., & Zhou, Z. (2024). Acute Effects of Different Conditioning Activities on the Post-Activation Performance Enhancement in Athletes’ Jumping and Sprinting Performances: A Systematic Review and Meta-Analysis. Applied Sciences, 14(20), 9301. https://doi.org/10.3390/app14209301