Biomedical Flat and Nested Named Entity Recognition: Methods, Challenges, and Advances
Abstract
:1. Introduction
2. Background
2.1. Overview of Flat NER
2.2. Overview of Nested NER
2.3. Evaluation Metrics for NER
2.4. Text Representations
2.5. Biomedical NER Datasets
3. Deep Learning Methods for Flat NER
3.1. Sequence Labeling
3.2. Machine Reading Comprehension-Based Approach
3.3. Multi-Task Learning
4. Deep Learning Methods for Nested NER
Approach Type | Method | Performance (F1-Score) | Code | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|
GENIA | BB19 | ACE04 | ACE05 | KBP17 | |||||
Layer-based | Merge Label | - + | - | - | 82.40 | - | Yes | [83] | |
Pyramid | 79.19 | - | 86.28 | 84.66 | - | Yes | [84] | ||
Span labeling | Enumeration | PURE | - | - | 88.10 | 88.70 | - | Yes | [85] |
SpanMB | - | 81.80 | - | - | - | Yes | [86] | ||
PL-Marker | - | - | 88.80 | 89.80 | - | Yes | [87] | ||
Boundary | BENSC | 78.30 | - | 85.30 | 83.90 | - | No | [88] | |
Locate-and-Label | 80.54 | - | 87.41 | 86.67 | 84.05 | Yes | [89] | ||
MRC | BERT-MRC | 83.75 | - | 85.98 | 86.88 | 80.97 | Yes | [90] | |
PIQN | 81.77 | - | 88.14 | 87.42 | 84.50 | Yes | [91] | ||
Others | Sequence-to-set | Sequence-to-Set | 80.44 | - | 87.26 | 87.05 | 83.96 | Yes | [92] |
PnRNet | 81.85 | - | 88.12 | 87.63 | 85.27 | Yes | [93] | ||
Affine | Biaffine | 80.50 | - | 86.70 | 85.40 | - | Yes | [94] | |
Triaffine | 81.23 | - | 87.40 | 86.82 | - | Yes | [95] |
4.1. Layer-Based Approaches
4.2. Span Labeling Approaches
4.2.1. Enumeration Model
4.2.2. Boundary Model
4.2.3. MRC
4.3. Other Nested NER Approaches
5. Analysis of Entity Types and Span Representation
5.1. Similarities between Different Entity Types
5.2. Strategies for Obtaining Span Representations
5.3. Contribution of Re-Context and Decoding Layers
5.3.1. Comparison of Re-Context Layers
5.3.2. Comparison of Decoder Layers
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Yamada, K.; Miwa, M.; Sasaki, Y. Biomedical Relation Extraction with Entity Type Markers and Relation-specific Question Answering. In Proceedings of the 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks, Toronto, ON, Canada, 13–14 July 2023; pp. 377–384. [Google Scholar]
- Frisoni, G.; Italiani, P.; Moro, G.; Bartolini, I.; Boschetti, M.A.; Carbonaro, A. Graph-Enhanced Biomedical Abstractive Summarization via Factual Evidence Extraction. SN Comput. Sci. 2023, 4, 500. [Google Scholar] [CrossRef]
- Lai, P.-T.; Wei, C.-H.; Luo, L.; Chen, Q.; Lu, Z. BioREx: Improving biomedical relation extraction by leveraging heterogeneous datasets. J. Biomed. Inform. 2023, 146, 104487. [Google Scholar] [CrossRef] [PubMed]
- Al-Moslmi, T.; Ocaña, M.G.; Opdahl, A.L.; Veres, C. Named entity extraction for knowledge graphs: A literature overview. IEEE Access 2020, 8, 32862–32881. [Google Scholar] [CrossRef]
- Yang, S.; Yoo, S.; Jeong, O. DeNERT-KG: Named entity and relation extraction model using DQN, knowledge graph, and BERT. Appl. Sci. 2020, 10, 6429. [Google Scholar] [CrossRef]
- Park, Y.; Lee, J.; Moon, H.; Choi, Y.S.; Rho, M. Discovering microbe-disease associations from the literature using a hierarchical long short-term memory network and an ensemble parser model. Sci. Rep. 2021, 11, 4490. [Google Scholar] [CrossRef]
- Grishman, R.; Sundheim, B.M. Message understanding conference-6: A brief history. In Proceedings of the COLING 1996 Volume 1: The 16th International Conference on Computational Linguistics, Copenhagen, Denmark, 5–9 August 1996. [Google Scholar]
- Li, J.; Sun, A.; Han, J.; Li, C. A survey on deep learning for named entity recognition. IEEE Trans. Knowl. Data Eng. 2020, 34, 50–70. [Google Scholar] [CrossRef]
- Campos, D.; Matos, S.; Oliveira, J.L. Biomedical named entity recognition: A survey of machine-learning tools. Theory Appl. Adv. Text Min. 2012, 11, 175–195. [Google Scholar]
- Wang, X.; Yang, C.; Guan, R. A comparative study for biomedical named entity recognition. Int. J. Mach. Learn. Cybern. 2018, 9, 373–382. [Google Scholar] [CrossRef]
- Song, B.; Li, F.; Liu, Y.; Zeng, X. Deep learning methods for biomedical named entity recognition: A survey and qualitative comparison. Brief. Bioinform. 2021, 22, bbab282. [Google Scholar] [CrossRef]
- Gaizauskas, R. Term recognition and classification in biological science journal articles. In Proceedings of the Workshop on Computational Terminology for Medical and Biological Applications, Patras, Greece, 2–4 June 2000. [Google Scholar]
- Song, M.; Yu, H.; Han, W.-S. Developing a hybrid dictionary-based bio-entity recognition technique. BMC Med. Inform. Decis. Mak. 2015, 15, 1–8. [Google Scholar] [CrossRef]
- Zhou, G. Recognizing names in biomedical texts using mutual information independence model and SVM plus sigmoid. Int. J. Med. Inform. 2006, 75, 456–467. [Google Scholar] [CrossRef] [PubMed]
- Alex, B.; Haddow, B.; Grover, C. Recognising nested named entities in biomedical text. In Proceedings of the Biological, Translational, and Clinical Language Processing, Prague, Czech Republic, 29 June 2007; pp. 65–72. [Google Scholar]
- Leaman, R.; Wei, C.-H.; Lu, Z. tmChem: A high performance approach for chemical named entity recognition and normalization. J. Cheminform. 2015, 7, S3. [Google Scholar] [CrossRef] [PubMed]
- Gridach, M. Character-level neural network for biomedical named entity recognition. J. Biomed. Inform. 2017, 70, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Yoon, W.; So, C.H.; Lee, J.; Kang, J. Collabonet: Collaboration of deep neural networks for biomedical named entity recognition. BMC Bioinform. 2019, 20, 55–65. [Google Scholar] [CrossRef]
- Cho, H.; Lee, H. Biomedical named entity recognition using deep neural networks with contextual information. BMC Bioinform. 2019, 20, 735. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.R.; Le, Q.V. Xlnet: Generalized autoregressive pretraining for language understanding. arXiv 2019, arXiv:1906.08237. [Google Scholar]
- Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A. Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901. [Google Scholar]
- Lee, J.; Yoon, W.; Kim, S.; Kim, D.; Kim, S.; So, C.H.; Kang, J. BioBERT: A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 2020, 36, 1234–1240. [Google Scholar] [CrossRef]
- Naseem, U.; Musial, K.; Eklund, P.; Prasad, M. Biomedical named-entity recognition by hierarchically fusing biobert representations and deep contextual-level word-embedding. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8. [Google Scholar]
- Beltagy, I.; Peters, M.E.; Cohan, A. Longformer: The long-document transformer. arXiv 2020, arXiv:2004.05150. [Google Scholar]
- Sanh, V. DistilBERT, A Distilled Version of BERT: Smaller, Faster, Cheaper and Lighter. arXiv 2019, arXiv:1910.01108. [Google Scholar]
- Rohanian, O.; Nouriborji, M.; Kouchaki, S.; Clifton, D.A. On the effectiveness of compact biomedical transformers. Bioinformatics 2023, 39, btad103. [Google Scholar] [CrossRef] [PubMed]
- Sang, E.F.; De Meulder, F. Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition. arXiv 2003, arXiv:cs/0306050. [Google Scholar]
- Ratinov, L.; Roth, D. Design challenges and misconceptions in named entity recognition. In Proceedings of the Thirteenth Conference on Computational Natural Language Learning (CoNLL-2009), Boulder, CO, USA, 4–5 June 2009; pp. 147–155. [Google Scholar]
- Ramshaw, L.A.; Marcus, M.P. Text chunking using transformation-based learning. In Natural Language Processing Using Very Large Corpora; Springer: Berlin/Heidelberg, Germany, 1999; pp. 157–176. [Google Scholar]
- Lample, G. Neural architectures for named entity recognition. arXiv 2016, arXiv:1603.01360. [Google Scholar]
- Finkel, J.R.; Manning, C.D. Nested named entity recognition. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, Singapore, 6–7 August 2009; pp. 141–150. [Google Scholar]
- Wang, Y.; Tong, H.; Zhu, Z.; Li, Y. Nested named entity recognition: A survey. ACM Trans. Knowl. Discov. Data (TKDD) 2022, 16, 108. [Google Scholar] [CrossRef]
- Olson, D.L.; Delen, D. Advanced Data Mining Techniques; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their compositionality. In Proceedings of the Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013, Lake Tahoe, NV, USA, 5–10 December 2013. [Google Scholar]
- Pennington, J.; Socher, R.; Manning, C.D. Glove: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1532–1543. [Google Scholar]
- Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T. Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 2017, 5, 135–146. [Google Scholar] [CrossRef]
- Chen, X.; Xu, L.; Liu, Z.; Sun, M.; Luan, H. Joint learning of character and word embeddings. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, 25–31 July 2015. [Google Scholar]
- Peters, M.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep contextualized word representations. arXiv 2018, arXiv:1802.05365. [Google Scholar]
- Huang, K.; Altosaar, J.; Ranganath, R. Clinicalbert: Modeling clinical notes and predicting hospital readmission. arXiv 2019, arXiv:1904.05342. [Google Scholar]
- Gu, Y.; Tinn, R.; Cheng, H.; Lucas, M.; Usuyama, N.; Liu, X.; Naumann, T.; Gao, J.; Poon, H. Domain-specific language model pretraining for biomedical natural language processing. ACM Trans. Comput. Healthc. (HEALTH) 2021, 3, 2. [Google Scholar] [CrossRef]
- Fang, L.; Chen, Q.; Wei, C.-H.; Lu, Z.; Wang, K. Bioformer: An efficient transformer language model for biomedical text mining. arXiv 2023, arXiv:2302.01588. [Google Scholar]
- Luo, L.; Lai, P.T.; Wei, C.H.; Arighi, C.N.; Lu, Z. BioRED: A rich biomedical relation extraction dataset. Brief. Bioinform. 2022, 23, bbac282. [Google Scholar] [CrossRef] [PubMed]
- Mohan, S.; Li, D. Medmentions: A large biomedical corpus annotated with umls concepts. arXiv 2019, arXiv:1902.09476. [Google Scholar]
- Bada, M.; Eckert, M.; Evans, D.; Garcia, K.; Shipley, K.; Sitnikov, D.; Baumgartner, W.A., Jr.; Cohen, K.B.; Verspoor, K.; Blake, J.A.; et al. Concept annotation in the CRAFT corpus. BMC Bioinform. 2012, 13, 161. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-D.; Ohta, T.; Tsuruoka, Y.; Tateisi, Y.; Collier, N. Introduction to the bio-entity recognition task at JNLPBA. In Proceedings of the International Joint Workshop on Natural Language Processing in Biomedicine and Its Applications, Geneva, Switzerland, 28–29 August 2004; pp. 70–75. [Google Scholar]
- Neves, M.; Damaschun, A.; Kurtz, A.; Leser, U. Annotating and evaluating text for stem cell research. In Proceedings of the Third Workshop on Building and Evaluation Resources for Biomedical Text Mining (BioTxtM 2012) at Language Resources and Evaluation (LREC), Istanbul, Turkey, 21–27 May 2012; pp. 16–23. [Google Scholar]
- Bagewadi, S.; Bobić, T.; Hofmann-Apitius, M.; Fluck, J.; Klinger, R. Detecting miRNA mentions and relations in biomedical literature. F1000Research 2014, 3, 205. [Google Scholar] [CrossRef] [PubMed]
- Nagel, K.; Jimeno-Yepes, A.; Rebholz-Schuhmann, D. Annotation of protein residues based on a literature analysis: Cross-validation against UniProtKb. BMC Bioinform. 2009, 10, S4. [Google Scholar] [CrossRef]
- Thompson, P.; Iqbal, S.A.; McNaught, J.; Ananiadou, S. Construction of an annotated corpus to support biomedical information extraction. BMC Bioinform. 2009, 10, 349. [Google Scholar] [CrossRef]
- Li, J.; Sun, Y.; Johnson, R.J.; Sciaky, D.; Wei, C.-H.; Leaman, R.; Davis, A.P.; Mattingly, C.J.; Wiegers, T.C.; Lu, Z. BioCreative V CDR task corpus: A resource for chemical disease relation extraction. Database 2016, 2016, baw068. [Google Scholar] [CrossRef]
- Miranda, A.; Mehryary, F.; Luoma, J.; Pyysalo, S.; Valencia, A.; Krallinger, M. Overview of DrugProt BioCreative VII track: Quality evaluation and large scale text mining of drug-gene/protein relations. In Proceedings of the Seventh BioCreative Challenge Evaluation Workshop, Virtual Event, 8–10 November 2021; pp. 11–21. [Google Scholar]
- Wei, C.-H.; Allot, A.; Riehle, K.; Milosavljevic, A.; Lu, Z. tmVar 3.0: An improved variant concept recognition and normalization tool. Bioinformatics 2022, 38, 4449–4451. [Google Scholar] [CrossRef]
- Smith, L.; Tanabe, L.K.; Kuo, C.-J.; Chung, I.; Hsu, C.-N.; Lin, Y.-S.; Klinger, R.; Friedrich, C.M.; Ganchev, K.; Torii, M. Overview of BioCreative II gene mention recognition. Genome Biol. 2008, 9, S2. [Google Scholar] [CrossRef]
- Wang, X.; Tsujii, J.i.; Ananiadou, S. Disambiguating the species of biomedical named entities using natural language parsers. Bioinformatics 2010, 26, 661–667. [Google Scholar] [CrossRef]
- Gerner, M.; Nenadic, G.; Bergman, C.M. An exploration of mining gene expression mentions and their anatomical locations from biomedical text. In Proceedings of the 2010 Workshop on Biomedical Natural Language Processing, Uppsala, Sweden, 15 July 2010; pp. 72–80. [Google Scholar]
- Cejuela, J.M.; Vinchurkar, S.; Goldberg, T.; Prabhu Shankar, M.S.; Baghudana, A.; Bojchevski, A.; Uhlig, C.; Ofner, A.; Raharja-Liu, P.; Jensen, L.J. LocText: Relation extraction of protein localizations to assist database curation. BMC Bioinform. 2018, 19, 15. [Google Scholar] [CrossRef] [PubMed]
- Faessler, E.; Modersohn, L.; Lohr, C.; Hahn, U. ProGene—A large-scale, high-quality protein-gene annotated benchmark corpus. In Proceedings of the 12th Language Resources and Evaluation Conference, Marseille, France, 11–16 May 2020; pp. 4585–4596. [Google Scholar]
- Islamaj, R.; Wei, C.-H.; Cissel, D.; Miliaras, N.; Printseva, O.; Rodionov, O.; Sekiya, K.; Ward, J.; Lu, Z. NLM-Gene, a richly annotated gold standard dataset for gene entities that addresses ambiguity and multi-species gene recognition. J. Biomed. Inform. 2021, 118, 103779. [Google Scholar] [CrossRef] [PubMed]
- Kolárik, C.; Klinger, R.; Friedrich, C.M.; Hofmann-Apitius, M.; Fluck, J. Chemical names: Terminological resources and corpora annotation. In Proceedings of the Workshop on Building and Evaluating Resources for Biomedical Text Mining (6th Edition of the Language Resources and Evaluation Conference), Osaka, Japan, 11–16 December 2008. [Google Scholar]
- Herrero-Zazo, M.; Segura-Bedmar, I.; Martínez, P.; Declerck, T. The DDI corpus: An annotated corpus with pharmacological substances and drug–drug interactions. J. Biomed. Inform. 2013, 46, 914–920. [Google Scholar] [CrossRef]
- Krallinger, M.; Rabal, O.; Leitner, F.; Vazquez, M.; Salgado, D.; Lu, Z.; Leaman, R.; Lu, Y.; Ji, D.; Lowe, D.M. The CHEMDNER corpus of chemicals and drugs and its annotation principles. J. Cheminform. 2015, 7, S2. [Google Scholar] [CrossRef] [PubMed]
- Islamaj, R.; Leaman, R.; Kim, S.; Kwon, D.; Wei, C.-H.; Comeau, D.C.; Peng, Y.; Cissel, D.; Coss, C.; Fisher, C. NLM-Chem, a new resource for chemical entity recognition in PubMed full text literature. Sci. Data 2021, 8, 91. [Google Scholar] [CrossRef] [PubMed]
- Gurulingappa, H.; Klinger, R.; Hofmann-Apitius, M.; Fluck, J. An empirical evaluation of resources for the identification of diseases and adverse effects in biomedical literature. In Proceedings of the 2nd Workshop on Building and Evaluating Resources for Biomedical Text Mining (7th Edition of the Language Resources and Evaluation Conference), Valetta, Malta, 18 March 2010; pp. 15–22. [Google Scholar]
- Doğan, R.I.; Leaman, R.; Lu, Z. NCBI disease corpus: A resource for disease name recognition and concept normalization. J. Biomed. Inform. 2014, 47, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gerner, M.; Nenadic, G.; Bergman, C.M. LINNAEUS: A species name identification system for biomedical literature. BMC Bioinform. 2010, 11, 85. [Google Scholar] [CrossRef] [PubMed]
- Luoma, J.; Nastou, K.; Ohta, T.; Toivonen, H.; Pafilis, E.; Jensen, L.J.; Pyysalo, S. S1000: A better taxonomic name corpus for biomedical information extraction. Bioinformatics 2023, 39, btad369. [Google Scholar] [CrossRef]
- Thomas, P.E.; Klinger, R.; Furlong, L.I.; Hofmann-Apitius, M.; Friedrich, C.M. Challenges in the association of human single nucleotide polymorphism mentions with unique database identifiers. BMC Bioinform. 2011, 12, S4. [Google Scholar] [CrossRef]
- Kim, J.-D.; Ohta, T.; Tateisi, Y.; Tsujii, J.i. GENIA corpus—A semantically annotated corpus for bio-textmining. Bioinformatics 2003, 19, i180–i182. [Google Scholar] [CrossRef]
- Bossy, R.; Deléger, L.; Chaix, E.; Ba, M.; Nédellec, C. Bacteria biotope at BioNLP open shared tasks 2019. In Proceedings of the 5th Workshop on BioNLP Open Shared Tasks, Hong Kong, China, 4 November 2019; pp. 121–131. [Google Scholar]
- Kühnel, L.; Fluck, J. We are not ready yet: Limitations of state-of-the-art disease named entity recognizers. J. Biomed. Semant. 2022, 13, 26. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Yang, Z.; Wang, L.; Zhang, Y.; Lin, H.; Wang, J. Biomedical named entity recognition using BERT in the machine reading comprehension framework. J. Biomed. Inform. 2021, 118, 103799. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.R.; Ziyadi, M.; AbdelHady, M. Mt-bioner: Multi-task learning for biomedical named entity recognition using deep bidirectional transformers. arXiv 2020, arXiv:2001.08904. [Google Scholar]
- Chai, Z.; Jin, H.; Shi, S.; Zhan, S.; Zhuo, L.; Yang, Y. Hierarchical shared transfer learning for biomedical named entity recognition. BMC Bioinform. 2022, 23, 8. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, P.; Pal, K.K.; Devarakonda, M.; Baral, C. Biomedical named entity recognition via knowledge guidance and question answering. ACM Trans. Comput. Healthc. 2021, 2, 33. [Google Scholar] [CrossRef]
- Luo, L.; Wei, C.-H.; Lai, P.-T.; Leaman, R.; Chen, Q.; Lu, Z. AIONER: All-in-one scheme-based biomedical named entity recognition using deep learning. Bioinformatics 2023, 39, btad310. [Google Scholar] [CrossRef]
- Moscato, V.; Postiglione, M.; Sansone, C.; Sperli, G. Taughtnet: Learning multi-task biomedical named entity recognition from single-task teachers. IEEE J. Biomed. Health Inform. 2023, 27, 2512–2523. [Google Scholar] [CrossRef]
- Moen, S.; Ananiadou, T.S.S. Distributional semantics resources for biomedical text processing. In Proceedings of the LBM 2013, Tokyo, Japan, 12–13 December 2013; pp. 39–44. [Google Scholar]
- Jin, Q.; Dhingra, B.; Cohen, W.W.; Lu, X. Probing biomedical embeddings from language models. arXiv 2019, arXiv:1904.02181. [Google Scholar]
- Doddington, G.R.; Mitchell, A.; Przybocki, M.A.; Ramshaw, L.A.; Strassel, S.M.; Weischedel, R.M. The automatic content extraction (ace) program-tasks, data, and evaluation. In Proceedings of the LREC, Lisbon, Portugal, 26–28 May 2004; pp. 837–840. [Google Scholar]
- Walker, C.; Consortium, L.D. ACE 2005 Multilingual Training Corpus; Linguistic Data Consortium: Philadelphia, PA, USA, 2005. [Google Scholar]
- Getman, J.; Ellis, J.; Song, Z.; Tracey, J.; Strassel, S.M. Overview of Linguistic Resources for the TAC KBP 2017 Evaluations: Methodologies and Results. In Proceedings of the TAC, Gaithersburg, MD, USA, 13–14 November 2017. [Google Scholar]
- Fisher, J.; Vlachos, A. Merge and Label: A novel neural network architecture for nested NER. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019), Florence, Italy, 28 July–2 August 2019; pp. 5840–5850. [Google Scholar]
- Wang, J.; Shou, L.; Chen, K.; Chen, G. Pyramid: A layered model for nested named entity recognition. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 5918–5928. [Google Scholar]
- Zhong, Z.; Chen, D. A Frustratingly Easy Approach for Entity and Relation Extraction. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Online, 6–11 June 2021; pp. 50–61. [Google Scholar]
- Zuo, M.; Zhang, Y. A span-based joint model for extracting entities and relations of bacteria biotopes. Bioinformatics 2022, 38, 220–227. [Google Scholar] [CrossRef]
- Ye, D.; Lin, Y.; Li, P.; Sun, M. Packed Levitated Marker for Entity and Relation Extraction. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Dublin, Ireland, 22–27 May 2022; pp. 4904–4917. [Google Scholar]
- Tan, C.A.Q.; Qiu, W.; Chen, M.S.; Wang, R.; Huang, F. Boundary Enhanced Neural Span Classification for Nested Named Entity Recognition. AAAI Conf. Artif. Intell. 2020, 34, 9016–9023. [Google Scholar] [CrossRef]
- Shen, Y.; Ma, X.; Tan, Z.; Zhang, S.; Wang, W.; Lu, W. Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Virtual Event, 1–6 August 2021; pp. 2782–2794. [Google Scholar]
- Li, X.; Feng, J.; Meng, Y.; Han, Q.; Wu, F.; Li, J. A Unified MRC Framework for Named Entity Recognition. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 5849–5859. [Google Scholar]
- Shen, Y.; Wang, X.; Tan, Z.; Xu, G.; Xie, P.; Huang, F.; Lu, W.; Zhuang, Y. Parallel Instance Query Network for Named Entity Recognition. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Dublin, Ireland, 22–27 May 2022; pp. 947–961. [Google Scholar]
- Tan, Z.; Shen, Y.; Zhang, S.; Lu, W.; Zhuang, Y. A sequence-to-set network for nested named entity recognition. arXiv 2021, arXiv:2105.08901. [Google Scholar]
- Wu, S.; Shen, Y.; Tan, Z.; Lu, W. Propose-and-refine: A two-stage set prediction network for nested named entity recognition. arXiv 2022, arXiv:2204.12732. [Google Scholar]
- Yu, J.; Bohnet, B.; Poesio, M. Named Entity Recognition as Dependency Parsing. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 6470–6476. [Google Scholar]
- Yuan, Z.; Tan, C.; Huang, S.; Huang, F. Fusing Heterogeneous Factors with Triaffine Mechanism for Nested Named Entity Recognition. In Proceedings of the Findings of the Association for Computational Linguistics: ACL 2022, Dublin, Ireland, 22–27 May 2022; pp. 3174–3186. [Google Scholar]
- Dozat, T.; Manning, C.D. Deep biaffine attention for neural dependency parsing. arXiv 2016, arXiv:1611.01734. [Google Scholar]
- Dice, L.R. Measures of the amount of ecologic association between species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Yu, J.; Ji, B.; Li, S.; Ma, J.; Liu, H.; Xu, H. S-NER: A Concise and Efficient Span-Based Model for Named Entity Recognition. Sensors 2022, 22, 2852. [Google Scholar] [CrossRef]
- Luan, Y.; He, L.; Ostendorf, M.; Hajishirzi, H. Multi-task identification of entities, relations, and coreference for scientific knowledge graph construction. arXiv 2018, arXiv:1808.09602. [Google Scholar]
- Chen, P.; Wang, J.; Lin, H.; Zhao, D.; Yang, Z. Few-shot biomedical named entity recognition via knowledge-guided instance generation and prompt contrastive learning. Bioinformatics 2023, 39, btad496. [Google Scholar] [CrossRef]
- Zhou, R.; Li, X.; He, R.; Bing, L.; Cambria, E.; Si, L.; Miao, C. MELM: Data augmentation with masked entity language modeling for low-resource NER. arXiv 2021, arXiv:2108.13655. [Google Scholar]
- Wang, S.; Sun, X.; Li, X.; Ouyang, R.; Wu, F.; Zhang, T.; Li, J.; Wang, G. Gpt-ner: Named entity recognition via large language models. arXiv 2023, arXiv:2304.10428. [Google Scholar]
Approach Type | Model | Performance (F1-Score) | Code | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|
Gene/Protein | Disease | Chemical | Species | ||||||
BC2GM | NCBI Disease | BC5CDR Disease | BC5CDR Chemical | BC4CHEMD | LINNAEUS | ||||
Sequence labeling | BioBERT | 84.72 | 89.71 | 87.15 | 93.47 | 92.36 | 88.24 | Yes | [23] |
Naseem et al. | 86.05 | 91.23 | 88.34 | 94.24 | 92.28 | - | No | [24] | |
MRC | BioBERT-MRC | 85.48 | 90.04 | 87.83 | 94.19 | 92.92 | - | Yes | [72] |
Multi-task learning | MT-BioNER | 83.01 | 88.10 | - | 89.50 | - | - | No | [73] |
MTL-LS | 82.92 | 89.25 | 87.28 | 93.83 | 92.42 | 86.37 | No | [74] | |
BERT-CNN | 83.47 | 89.72 | - | - | 92.39 | 92.63 | Yes | [75] | |
AIONER | - | 89.59 | 87.89 | 92.84 | - | 90.63 | Yes | [76] | |
TaughtNet | 84.84 | 89.20 | - | 93.95 | - | - | Yes | [77] |
Span Repr. Strategy | GENIA | BB19 | SciERC | ||||||
---|---|---|---|---|---|---|---|---|---|
P | R | F | P | R | F | P | R | F | |
Concatenation | 78.07 | 76.96 | 77.47 | 78.31 | 72.63 | 75.35 | 65.78 | 67.91 | 66.78 |
Max-pooling | 78.11 | 76.73 | 77.40 | 79.52 | 73.80 | 76.55 | 67.57 | 68.09 | 67.81 |
Mean-pooling | 78.84 | 76.37 | 77.58 | 79.92 | 74.89 | 77.31 | 67.52 | 68.48 | 67.98 |
PL-Marker | 78.34 | 78.01 | 78.16 | 79.17 | 73.25 | 76.09 | 67.53 | 70.27 | 68.86 |
Re-Context Layer | NCBI Disease | BC2GM | BC5CDR Chemical | ||||||
---|---|---|---|---|---|---|---|---|---|
P | R | F | P | R | F | P | R | F | |
Base model | 86.14 | 89.10 | 87.60 | 82.85 | 84.08 | 83.46 | 92.36 | 93.46 | 92.90 |
1dCNN | 86.93 | 89.08 | 87.99 | 82.98 | 84.14 | 83.55 | 92.67 | 93.89 | 93.28 |
2dCNN | 86.70 | 88.94 | 87.80 | 83.19 | 84.44 | 83.81 | 92.42 | 93.29 | 92.86 |
BiLSTM | 86.91 | 89.19 | 88.03 | 83.05 | 84.17 | 83.60 | 92.72 | 93.38 | 93.05 |
1dCNN-attn | 86.73 | 89.31 | 88.00 | 83.02 | 84.64 | 83.82 | 92.99 | 93.28 | 93.13 |
2dCNN-attn | 86.33 | 88.96 | 87.63 | 83.02 | 84.30 | 83.65 | 92.84 | 93.75 | 93.29 |
BiLSTM-attn | 86.52 | 89.21 | 87.84 | 83.43 | 84.37 | 83.90 | 92.41 | 93.28 | 92.84 |
Decoding Layer | NCBI Disease | BC2GM | BC5CDR Chemical | ||||||
---|---|---|---|---|---|---|---|---|---|
P | R | F | P | R | F | P | R | F | |
SoftMax | 86.14 | 89.10 | 87.60 | 82.85 | 84.08 | 83.46 | 92.36 | 93.46 | 92.90 |
CRF | 86.04 | 89.27 | 87.62 | 83.49 | 84.77 | 84.13 | 92.74 | 93.68 | 93.20 |
RNN | 87.32 | 89.40 | 88.35 | 83.61 | 84.45 | 84.02 | 92.49 | 93.96 | 93.22 |
Span labeling | 87.06 | 87.48 | 87.27 | 85.36 | 83.31 | 84.32 | 93.38 | 92.43 | 92.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, Y.; Son, G.; Rho, M. Biomedical Flat and Nested Named Entity Recognition: Methods, Challenges, and Advances. Appl. Sci. 2024, 14, 9302. https://doi.org/10.3390/app14209302
Park Y, Son G, Rho M. Biomedical Flat and Nested Named Entity Recognition: Methods, Challenges, and Advances. Applied Sciences. 2024; 14(20):9302. https://doi.org/10.3390/app14209302
Chicago/Turabian StylePark, Yesol, Gyujin Son, and Mina Rho. 2024. "Biomedical Flat and Nested Named Entity Recognition: Methods, Challenges, and Advances" Applied Sciences 14, no. 20: 9302. https://doi.org/10.3390/app14209302
APA StylePark, Y., Son, G., & Rho, M. (2024). Biomedical Flat and Nested Named Entity Recognition: Methods, Challenges, and Advances. Applied Sciences, 14(20), 9302. https://doi.org/10.3390/app14209302