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Abstract: The elasticity of red blood cells (RBCs) is crucial for their ability to fulfill their role in the
blood. Decreased RBC deformability is associated with various pathological conditions. This study
explores the application of machine learning to predict the elasticity of RBCs using both image data
and detailed physical measurements derived from simulations. We simulated RBC behavior in a
microfluidic channel. The simulation results provided the basis for generating data on which we
applied machine learning techniques. We analyzed the surface-area-to-volume ratio of RBCs as an
indicator of elasticity, employing statistical methods to differentiate between healthy and diseased
RBCs. The Kolmogorov–Smirnov test confirmed significant differences between healthy and diseased
RBCs, though distinctions among different types of diseased RBCs were less clear. We used decision
tree models, including random forests and gradient boosting, to classify RBC elasticity based on
predictors derived from simulation data. The comparison of the results with our previous work
on deep neural networks shows improved classification accuracy in some scenarios. The study
highlights the potential of machine learning to automate and enhance the analysis of RBC elasticity,
with implications for clinical diagnostics.

Keywords: red blood cell; elasticity; machine learning; surface-area-to-volume ratio; decision trees

1. Introduction

The elasticity of red blood cells (RBCs), also referred to as erythrocytes, is one of the
key physiological parameters that affect their functionality and ability to perform their
primary tasks, such as transporting oxygen and carbon dioxide between the lungs and
tissues. They must be able to deform and pass through narrow splenic slits with a width of
1–2 µm. Erythrocytes that are unable to properly squeeze through these splenic slits become
trapped and are removed from circulation [1,2]. A loss of RBC deformability accompanies
many pathological conditions, such as diabetes, sickle cell anemia, thalassemia, malaria,
and others [3–5]. Thus, RBC deformability is justified as a physical biomarker of RBC
dysfunction. Another area where RBC deformability is important is transfusion medicine,
as the loss of RBC deformability is a consequence of RBC aging and storage lesions [6].

The deformability of RBCs is determined by a combination of the viscoelasticity of
the plasma membrane, the viscosity of the cytoplasm, and cell geometry [7–10]. These
individual contributions are influenced by a wide range of endogenous and exogenous
factors, including the composition and structure of the cell membrane, intracellular factors,
physical and chemical environmental conditions, and various pathological states. A recent
review study [11] provides a summary of the latest findings on these factors and highlights
the need to analyze them in light of the new concept of eryptosis.

In the last decade, machine learning has been increasingly used in the biomedical
field to analyze complex biological data and improve diagnostic procedures. In the context
of determining the elasticity of RBCs, machine learning brings new possibilities for the
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analysis of large volumes of data, the identification of subtle patterns, and the prediction of
the mechanical properties of RBCs.

One of the main uses of machine learning in determining the elasticity of RBCs is the
analysis of image data obtained from microscopic measurements. Convolutional neural
networks (CNNs) find use in the automatic analyses of the microscopic images of RBCs
or for the segmentation of RBCs from complex images, which are crucial for subsequent
analysis [12,13]. CNNs can identify and quantify the deformations of RBCs based on their
shape and size, thus enabling the fast and accurate analysis of large datasets [14].

Machine learning methods are also used to predict the mechanical properties of
RBCs based on various input data [15,16]. Various regression or classification models can
be trained to predict RBC elasticity based on physiological and biochemical parameters
such as ion concentrations, membrane composition, and cytoskeleton state. Deep neural
networks can process complex data inputs and create predictive models that take into
account non-linear relationships between various biological factors and RBC elasticity.

One of the great advantages of using machine learning is the automation of analyses.
Machine learning algorithms can be integrated into diagnostic instruments, enabling the
rapid and accurate analysis of RBC elasticity in a clinical setting. They can also effectively
process and analyze big data, which is especially important for population studies and
clinical research.

Although machine learning methods offer significant benefits, there are also some
limitations and challenges. The most significant limitations include data quality, model
interpretability, and overfitting. The accuracy of the models depends on the quality and
quantity of input data. Poor-quality or incomplete data can lead to erroneous predictions.
Some models, especially deep neural networks, can be difficult to interpret, complicating
the understanding of biological mechanisms. And, in the absence of large enough datasets,
models can be overtrained, which leads to weaker generalization to new, independent data.

Problems with data quality and range can be solved in standard ways (data augmen-
tation, the identification and removal of outliers, etc.). We also used them in paper [17],
where we investigated the RBC elasticity problem with CNN tools. The results are briefly
mentioned in Section 3. In this study, we try other approaches and investigate whether
(and, if so, under what circumstances) they can produce comparable results. We based this
work on the same experiment and dataset as previously, but they are used differently and
processed by other tools. The same starting point allows us to compare the obtained results
more directly.

The first approach consists in monitoring the possibilities of obtaining similar results
by using significantly different and (if possible) simpler data inputs and mathematical tools
for their investigation. In Section 4, we use data on the surface and volume of moving
RBCs, which are significantly reduced by basic statistical methods and then compared, with
a focus on their elasticity. In Section 5, we directly focus on the RBC elasticity classification
problem. We use the classic tool of decision trees for this, but, within it, the dependence
of the range of used data and the accuracy of the obtained results are monitored in detail.
The use of the rich output data of the simulation experiment provides us with a good
opportunity for this.

The diagram in Figure 1 depicts the framework of our research. This study focuses on
the part highlighted with a green background; the other part is discussed in [17].
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Figure 1. Summary of the framework. Blue and magenta arrows represent actions performed with
training and evaluation data, respectively. Blue boxes represent input/output; orange boxes represent
actions performed with the data.

2. Materials and Methods
2.1. Underlying Computational Model

The source data used to classify the elasticity of red blood cells were obtained from
simulation experiments performed using the well-documented PyOIF module [18], which
is part of the open-source software package ESPResSo [19] (version 4.1.2 was used). PyOIF
uses a two-component model consisting of fluid and immersed elastic objects to model cell
flow. The fluid dynamics are governed by the lattice Boltzmann method (LBM) [20] and
the cells are represented using a spring mesh. Both components are linked via a dissipative
version of the immersed boundary method (IBM) [21]. In addition to the fluid force, elastic
forces act on the points of the cell mesh, which are evaluated from the deformation of the
cell and repulsive forces originating from cell–cell and cell–channel interactions (obstacle
or channel wall). At each time step, these forces are summed at each node of the cell
membrane and used to propagate the node in space using Newton’s second law of motion.
The cells are created of the spring network that is formed by mesh points linked together
by five elastic forces. These mesh points model the membrane of the cell, while the inside
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of the cell is filled with the same fluid as its surroundings. Elastic interactions, which are
parameterized by elastic coefficients, model either the local elastic properties of the cell
membrane (the stretching, bending, and local area interactions) or elastic properties related
to the whole cell (the global volume and global area interactions).

2.2. Channel Geometry And Flow Setting

When RBCs come into contact with embedded obstacles, the deformability of RBCs
is manifested to a greater extent. Therefore, the proposed microfluidic channel topology
contains a periodic array of cylindrical obstacles, as in Figure 2. Blood cells have enough
space to show their level of deformability during frequent interactions with obstacles. From
the entire periodic array of obstacles, only a part consisting of five obstacles was simulated,
while the periodic properties of the fluid were ensured in the direction of the fluid flow
and in the direction of the channel width. The dimensions of the simulation box were
104 × 60 × 40 µm and the radius of the obstacles was 20 µm (see Figure 2).

Figure 2. On the left, microfluidic channel topology is shown. Only the basic part with five obstacles
(depicted with blue colour) was simulated. The figure on the right shows the scheme of the simulation
box with the dimensions of the individual parts.

All simulations were performed with consistent channel and fluid flow parameters.
They differed only in the initial seeding of cells, with cells placed in random positions in the
simulation box. The fluid was discretized into a three-dimensional grid with an edge length
of 1 µm. We are interested in studying flows in physically relevant cases; therefore, the
density and viscosity values of the flowing fluid were 1025 kg/m3 and 1.3 mPa s, similar to
the values of blood plasma. External forces were used to initiate fluid flow, with values
chosen to achieve a maximum velocity of approximately 0.03 m/s.

2.3. Cell Settings

RBCs were represented by a surface mesh consisting of 374 nodes. In the relaxed
state, they had dimensions of 7.82 × 2.58 µm, and their volume and surface area were
92.7 µm3 and 132.9 µm2, respectively. In this study, four levels of RBC deformability were
used, and each level was indicated by its respective value of the stretching coefficient,
which has the greatest influence on deformability. All other coefficients had the same
values at all levels of deformability. The values of the elastic coefficients of a healthy
well-deformable RBC (denoted as ks = 0.05) were determined by calibration based on a
biological experiment with optical tweezers [22]. More details about RBC validation can
be found in [23]. The values of all the elastic coefficients of the healthy RBC are shown
in Table 1. The least deformable RBCs showed rigidity approximately at the level of cells
infected with malaria in the schizont stage (denoted as ks = 0.03). The elastic coefficients
were chosen by calibration based on the results of experiments in [24]. The remaining two
levels of RBC elasticity were equally distributed between healthy and infected RBCs with
ks values of 0.0133 and 0.0216, respectively.

Each simulation involved 36 RBCs, representing 9 cells from each level of deformability.
Mutual interactions between cells were modeled using the membrane_collision potential
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with the parameters mc_K = 0.01, mc_n = 1.0, mc_cut = 0.4. The interactions between the
cells and the walls and obstacles were modeled using the soft_sphere potential with the
parameters soft_K = 0.001, soft_n = 1.2, soft_cut = 0.5.

Table 1. Elastic coefficients of the healthy red blood cell (RBC) used in simulations.

Parameter Value

stretching coefficient (ks) 5 × 10−6 N/m
bending coefficient (kb) 3 × 10−19 N/m

coefficient of local area conservation (kal) 2 × 10−5 N/m
coefficient of global area conservation (kag) 7 × 10−4 N/m

coefficient of volume conservation (kv) 900 N/m2

3. Summary of Neural Network Results

In the previous study detailed in [17], we investigated the classification of RBCs
from video recordings using convolutional neural networks, specifically employing neural
networks with ResNet or EfficientNet architectures as the primary backbone. The video
recordings were obtained from the simulation described above. The best accuracy was
achieved with EfficientNet_v2_B0 as the core model.

We categorized RBCs into four types based on their varying elasticity. Initially, for
the task of four-class classification, we achieved an accuracy of 55.48%. However, upon
subsequently reducing the target space to two classes, healthy and sick, we attained a sig-
nificantly improved classification accuracy of 93.91%. Notably, this accuracy outperformed
that of training neural networks directly for classifying RBCs into two classes, which had a
final accuracy of 61.72%. The results are summarized in Table 2.

Table 2. Results obtained by neural networks with EfficientNet_v2_B0 as the core model.

Training Number of Classes Validation and Testing
Number of Classes Accuracy

4 4 55.48%
2 2 61.72%
4 2 93.91%

These findings led us to hypothesize that RBCs can be effectively segregated into
healthy and diseased categories, with the distinction between individual types of diseased
RBCs proving to be challenging. Our results suggest a division between healthy and
diseased RBCs and the difficulty in distinguishing between specific types of diseased RBCs
using current classification methodologies.

4. Statistical Analysis of Elasticity from the Perspective of Red Blood Cell
Surface Optimization

One of the typical and key properties of RBCs is to achieve a shape that maximizes its
surface for a given volume. We normally describe this value as the surface-area-to-volume
(SA : V) ratio. Although elasticity is a dominant factor for other important properties of
RBCs (the ability to penetrate the membrane in healthy RBCs; the clumping of RBCs in
sickle-cell anemia and malaria), we were curious about the relationship, i.e., whether (and,
if so, how) the different elasticities of RBCs would statistically manifest and differ in the
values of the parameter SA : V. Articles [7,8] show that similar research and results can
be obtained when studying the behavior of real RBCs. We investigated the relationship
between RBC volume and surface area in our simulation model in [25].

4.1. Data and Analysis Tools

The basic data for comparison were calculated, and we recorded the surface area and
volume values of individual RBCs in the simulation experiment. We are aware that the
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possibilities of obtaining these data from real experiments are limited, and the following
analysis is methodologically suitable, especially for in silico experiments. Study [7], how-
ever, indicates the possibility of measuring SA : V values also within in vitro experiments,
including their connection to computational experiments. Study [8] also deals with the
measurement of SA and V values.

We deliberately chose the statistical methods for further data processing to be as
simple as possible in order to find out whether even such an approach will already bring
relevant results. This simplicity should be somewhat of a counterpoint when compared to
the latest machine learning methods.

4.2. Method of Analysis

As an output of the described simulation experiment, for each of the 36 cells with
4 different elasticity values, we used a sequence of 2356 values of its surface area and
volume during the movement of RBCs in the simulation channel. We recorded the values
after every 1000 simulation steps, which corresponded to a displacement of the RBC by an
average of 1 to 2 micrometers in the x-axis direction of the channel. From each pair of SA
and V values, we then calculated their SA : V ratio and continued to work with these data.

The time series of the SA : V parameter for each individual RBC generates interesting
graphs (Figure 3), but statistically they are still quite large and confusing data.

0 0.5 1 1.5 2

Simulation steps 10
6

1.4

1.42

1.44

1.46

1.48

1.5

1.52

 S
A

 :
 V

Figure 3. Time series plot of surface-area-to-volume (SA : V) ratio for a single healthy RBC.

We therefore decided to fundamentally reduce the data and, for each RBC from all
2356 values of the SA : V ratio, we selected only their 4 basic characteristics: the maximum,
minimum, average, and variance of SA : V values. Figure 4 shows three of these four
characteristics for all nine healthy RBCs.

1 2 3 4 5 6 7 8 9

RBC

1.4

1.45

1.5

1.55

 S
A

 :
 V

minimum

maximum

average

Figure 4. Minimum, maximum, and average SA : V ratio for nine healthy RBCs. Cells are sorted
by average.

For each statistic, we thus obtained four sets of nine values for the individual groups
of RBCs with the same elasticity. Our next goal was to analyze whether it is possible to
distinguish between these four sets based on these values.
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4.3. Analysis Results

The combined display of the values of individual statistics for 4 × 9 RBCs in Figure 5
indicates that we obtain a good differentiation of healthy RBCs (type 0) from other types for
the average and maximum values of SA : V. We do not see a difference for the minimum
and variance values of SA : V, and we do not see a clear distinction between the three
types of RBCs with reduced elasticity (type 1 to 3) in any of the statistics.
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Figure 5. Average, minimum, maximum, and variance of SA : V ratio for all 4 cell types. Cells of
each type are sorted by the observed characteristic for each plot.

We verified these observations with the classical Kolmogorov–Smirnov (KS) test for
the hypothesis that two given datasets come from the same (unspecified) probability
distribution. The results are summarized in Tables 3–6. We reject the mentioned hypothesis
for the values of averages and the values of maxima when comparing type 0 cells with
the cells of types 1, 2, or 3 (green background). We can reject it at the standard level of
significance of 5%; however, except for one case, the p-value is even less than 1%.

Table 3. Kolmogorov–Smirnov (KS) test results for average SA : V.

D-Value
p-Value

Type 0 Type 1 Type 2 Type 3

type 0 0 0.0007 0.0007
type 1 1 0.3517 0.9895
type 2 0.8889 0.4444 0.7301
type 3 0.8889 0.2222 0.3333

Table 4. KS test results for minimum SA : V.

D-Value
p-Value

Type 0 Type 1 Type 2 Type 3

type 0 0.3517 0.7301 0.3517
type 1 0.4444 0.7301 0.9895
type 2 0.3333 0.3333 0.7301
type 3 0.4444 0.2222 0.3333
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Table 5. KS test results for maximum SA : V.

D-Value
p-Value

Type 0 Type 1 Type 2 Type 3

type 0 0.0336 0 0.0063
type 1 0.6667 0.1256 0.1259
type 2 1 0.5556 0.9895
type 3 0.7778 0.5556 0.2222

Table 6. KS test results for the variance of SA : V.

D-Value
p-Value

Type 0 Type 1 Type 2 Type 3

type 0 0.7301 0.9895 0.9895
type 1 0.3333 0.7301 0.9895
type 2 0.2222 0.3333 0.9895
type 3 0.2222 0.2222 0.2222

Thus, we can conclude that, by using the elementary statistics of maximum, minimum,
average, and variance and the basic KS test, we can significantly differentiate the average
and maximum values of the SA : V ratio between healthy (type 0) and the other RBCs
with reduced elasticity. We are not able to distinguish between types 1, 2, and 3 using
these statistics.

We are aware of the limitation of the validity of our conclusion due to the small range
of analyzed data given by the design of the simulation experiment. However, we consider
the simplicity of the proposed methodology as a benefit since we can use it to verify the
conclusions in a larger experiment in silico—and possibly also in vitro.

The confirmation of the result for the simulation experiments can also be expected based
on the verified consistency and robustness of the computational model, when added RBCs, or
a longer length of their simulated flow, should not cause significantly different behavior.

From the nature of the simulation model and the behavior of the real RBC, it is known
that, during the described experiment or simulation run, i.e., during the flow of RBC
through the channel, the RBC should maintain its volume, but its surface area may vary.
We verified this assumption statistically (Figure 6) when the variance of the surface area
values of simulated RBCs in the range [0.5, 6] was approximately one hundred times greater
than the variance of volume values in the range [0.005, 0.06]. Therefore, the obtained results
would be essentially the same if we limited ourselves to examining only the SA values.
This fact can be used to partially simplify the design of the necessary experiments or
requirements for their output data.
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Figure 6. Variance of surface area and volume for cell types 0 and 3.

5. Classification Using Decision Trees

In [17], we dealt with the question of whether it is possible to classify RBC stiffness
using deep learning based on analyzing the video recording of the flow of RBCs and what
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accuracy the classification can achieve in this way. Video recording is relatively easy to
obtain. However, if we had more detailed data available on cell movement, which can be
obtained, e.g., by recording the flow from several sides or using different sensors, it can be
expected that the classification accuracy would be improved.

If we use video images directly for classification, it is natural to choose deep neural
networks as the model. However, in the case where we have the specific properties of the
captured cell available as data, describing its shape, speed, and changes in these properties
over time, it makes sense to apply models that are suitable for working with tabular data.
The simulation from which we generated the videos can be used as well to generate such
data. Before investing in experiments with expensive sensors, we can thus verify the
classification accuracy that can theoretically be expected with such a procedure. At the
same time, we will be able to compare the classification ability of individual models and
also evaluate which predictors have a significant impact on classification accuracy. This
can be important when designing real experiments.

5.1. Used Predictors

We use cell triangulation to calculate predictors from the simulation. The output of the
simulation for each cell is the position of each of the 374 triangulation nodes, determined
by three coordinates in three-dimensional space. Various characteristics can be calculated
from these data, which we subsequently use as predictors in classification. When designing
the predictors, one should consider two aspects:

• How difficult it may be to extract the predictor from real experiments;
• Why one should expect that the elasticity of RBCs affects the given predictor.

In total, we created 41 predictors. We divided them into several sets according to the
estimated complexity of obtaining them from a real experiment. Based on this, we created
six tests, ordered according to the number of predictors we use. In the first test, we use
only the most easily obtainable predictors, while, in the final test, we use all of them.

The following list describes the six predictor sets that we use in these tests (a compre-
hensive list of the predictors is included in Appendix A):

• Set 1: It consists of only two predictors—the dimensions of the rectangle in which the
monitored cell is located, i.e., the dimensions of the cell in the direction of the x-axis
and in the direction of the y-axis. These values can be easily obtained from a (static)
snapshot of the cell. We may expect that the bounding box of an elastic RBC will vary
in size more than the bounding box of a stiff RBC;

• Set 2: The additional predictors are velocities and changes in the velocity of the cell in
the x- and y-directions. These data can be calculated from several consecutive images.
The elasticity of an RBC affects its shape, which may affect the velocity of the cell in
the flow;

• Set 3: It also includes dimensions and velocities in the z-axis direction. These values
can be obtained from images taken from a different angle;

• Set 4: We added the cell axis length and the maximum and minimum diameter of the
cell equator, which can potentially be determined from multi-angle images. While it is
more difficult to obtain these characteristics from real experiments, one may expect
that the shape of a cell is better represented by these values than just by the bounding
box dimensions alone;

• Set 5: It additionally contains predictors that can be calculated from the complete cell
triangulation—cell surface, cell volume and means, standard deviations and skewness
coefficients calculated from the lengths of all triangulation edges, angles formed by
every two triangulation triangles, and solid angles at all triangulation nodes. Cell
triangulation is quite difficult to obtain from a real experiment; it would require the
creation of a 3D image of the cell from the scanned flow. However, by using these
complex characteristics, we may be able to distinguish more subtle changes in the
shape of the RBC than with just the basic dimensions;



Appl. Sci. 2024, 14, 9315 10 of 20

• Set 6: It also contains the means, standard deviations, and coefficients of the skewness
of deviations and the absolute deviations of the characteristics added in the fifth set.
The deviations are calculated from the cell in a relaxed state, so, for the calculation, we
need to have the basic triangulation of the cell, which, in our procedure, corresponds to
the cell in the first step of the simulation. One may expect that quantifying the changes
of the shape represents the elasticity better than the original quantities themselves.

The mentioned predictors correspond to the current state of the cell at one monitored
moment (in one step of the simulation). During experiments, however, we have the
opportunity to observe the cell for longer during several steps. It can be expected that the
classification accuracy will improve if we track the cell longer. To assess this effect, for each
S = 1, 10, 20, 40, 80, 160, 320, 640, and 1280, we created a model in which we monitored each
cell for 1000S simulation steps, with the simulation record saved once per 1000 steps. (Note
that one pass of a cell through the channel corresponds to approximately 100,000 simulation
steps.) Since the values of the individual predictors change during the movement of the
cell through the channel, we have S values for each predictor instead of just one value.
From these values, we calculated the mean and standard deviation and used them as
predictors—in total, we have two predictors for each value described in the bulleted list
above (with the exception of the case of S = 1, where we only work with static snapshots
of the cells).

The technique to extract predictors from series data using statistics like mean, standard
deviation, and skewness, described both in the previous paragraph and in the fifth and
sixth predictor set, is a common approach [26–28], which was previously also used for RBC
classification [29].

5.2. Used Machine Learning Tools

Given the nature of the data (number of predictors, high correlation of some predic-
tors), we consider models based on decision trees, which usually achieve the best results
for tabular data [30,31], to be a suitable tool for classification. We used two of the most
popular techniques: random forest and gradient decision trees. For the implementation,
we used the Python language (version 3.10.12) and the methods ForestClassifier from
the sklearn library and XGBClassifier from the xgboost library.

The goal in this section was not to maximize the accuracy to the highest possible
level; therefore, we did not optimize the hyperparameters of individual models and were
satisfied with the default values.

For each of the six sets of predictors and each of the nine S values, we trained two
models using both methods—one for classification into four classes (four types of cell stiff-
ness), the other for classification into two classes (healthy/diseased cell). When evaluating
the accuracy of the classification into two classes, in addition to the second model, we
also used the first model, in which we combined the three types of stiffness into the result
“diseased cell” (similarly, as we performed in [17]).

5.3. Data Preparation

We sampled the simulation for each recorded simulation step, after which followed at
least 1000(S − 1) additional steps (so that we could calculate predictors for a given value
of S). However, we removed the first 100,000 steps of the simulation. The total number of
generated samples is, thus, equal to C · (N − 100 − S + 1), where C is the total number of
cells in the simulation and N is the total number of recorded simulation steps. (We remind
you that every 1000th step is recorded, so the total number of steps is approx. 1000 N).

It follows from the above that many generated samples are very similar to each other.
The reason is that the cell changes little between two consecutive steps; moreover, for
S > 1, two samples recorded close to each other have a large part of the data from which
we generate the predictors in common (the last S − 1 recorded steps of the sample are
identical to the first S − 1 recorded steps of the following sample). This must be kept in
mind when dividing the set into a possible training and validation or testing part—it is not
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appropriate to use data from one simulation in several parts and a new simulation must be
used each time.

Due to the tree models used and the omission of hyperparameter optimization, we did
not need the validation part, so we we only needed two simulations. We created training
samples from the simulation with values of C = 36 and N = 2356; the total number of
training samples is, thus, in the range from 81,216 (for S = 1) to 35,172 (for S = 1280). The
second simulation, from which we generated test samples, has parameters C = 36 and
N = 2289, so the number of samples is in a similar range (from 78,804 for S = 1 to 32,760
for S = 1280).

We recall that the simulations are the same as we used in [17], that is, there are 9 cells
from each class among the 36 cells.

5.4. Classification Results

Let us first have a look at the classification accuracy based on the value of S, that is,
let us analyze the effect of the number of steps that we monitor on each cell. From the
plots in Figures 7 and 8, it can be concluded that increasing S has a positive effect up to the
level around the values of S = 160 or 320, from which the classification accuracy ceases to
improve continuously. Thus, it seems pointless to track the cell for significantly longer than
one pass through the channel (approx. 100,000 simulation steps).
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Figure 7. Dependence of classification results on S when predicting 4 classes.
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Figure 8. Dependence of classification results on S when predicting 2 classes.

The plots in Figures 9 and 10 show how the classification accuracy changes, depending
on which set of predictors we use. Especially when classifying into four classes, a significant
improvement in accuracy can be observed when moving from the fourth set to the fifth set.
On the other side, the effect of the third dimension (the transition from the second set to
the third set) does not seem to be very significant.

In all Figures 7–10, the dashed line shows the accuracy that we achieved in the
classification using deep neural networks in [17]. Within that approach, we observed
each cell during one passage through the channel, which corresponds approximately to
a model with S = 80. In Figure 9 in the middle plot, it can be seen that, when classifying
into four classes, we outperformed the neural networks’ results with the second predictor
set. Similarly, the middle plot in Figure 10 shows that, in the case of two classes, we
outperformed neural networks with the fourth predictor set.

In [17], we observed a fairly significant difference in the result between a pair of
models created for binary classification (healthy/diseased cell). The model that was trained
directly for the classification of two classes achieved less accuracy (slightly above 60%) than
the model trained for the classification of four classes, in which we determined the resulting
binary classification only by merging the classes containing diseased cells with three
different stiffness levels into one class (accuracy above 90%). This strange phenomenon
did not appear when decision trees were used—in Figures 8 and 10, it can be seen that the
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accuracy of models trained for the classification of four classes (blue and red color) does
not differ significantly from the accuracy of models trained directly for binary classification
(yellow and purple color).

A comparison of random forest (RF) and gradient decision trees (XGB) does not come
out significantly in favor of either method—as can be seen from Figures 7–10, the results are
very similar to each other. One can notice that, in the case of classification into four classes
(Figure 7), XGB outperforms RF on predictor sets 4–6 for S ≤ 160, but its classification
accuracy drops for S ≥ 320. We believe the reason is that XGB is more prone to overfitting
than RF and, for higher values of S, the data contain many samples that are very similar to
one another, which may cause the model to fit to noise more easily than for smaller values
of S with a greater variety of samples.
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Figure 9. Dependence of classification results on predictor set when predicting 4 classes.
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Figure 10. Dependence of classification results on predictor set when predicting 2 classes.

To see which predictors have the biggest impact on the classification, let us take a
closer look at the models for S = 80 (i.e., those where we observe approximately one
passage of a cell through the channel) with the sixth set of predictors and the fourth set
of predictors. For these models in Figures 11 and 12, we present the significance of the
predictors calculated by the permutation_importance method from the sklearn library.
This is a technique used to evaluate the significance of each predictor in a trained machine
learning model. This method rates how much each predictor contributes to the model’s
classification accuracy by measuring the change in the accuracy when the values of the
single predictor are randomly shuffled along the entire data. It was first described in [32].

In the case of the sixth set and classification into four classes, the “edge length delta abs
deviation” predictor appears to be the most significant in both models, that is, the predictor
indicating the standard deviation of the absolute changes in the lengths of the edges of the
triangulation against the relaxed state of the cell. When classifying into two classes, “edge
angle delta abs mean” and “edge length delta skewness” are significant for both models,
that is, the average absolute change in the angles at the edges of the triangulation compared
to the relaxed state and the coefficient of the skewness of the changes in the lengths of
the edges of the triangulation compared to the relaxed state. For the simpler fourth set of



Appl. Sci. 2024, 14, 9315 15 of 20

predictors, the most significant predictor for all models is the mean of the cell axis length.
An explanation of the meaning of each predictor is given in Appendix A.

XGB, 4 classes

0 0.1 0.2 0.3

surface

edge angle mean

edge length deviation

equator diameter min

edge length delta skewness

rbc velocity y std

edge length deviation std

edge length delta deviation

edge angle delta abs mean

edge length delta abs deviation

XGB, 2 classes

0 0.1 0.2

rbc velocity y std

edge length delta abs skewness std

span z std

edge length delta abs skewness

edge angle delta abs skewness

surface

edge angle skewness

edge angle mean

edge length delta skewness

edge angle delta abs mean

RF, 4 classes

0 0.02 0.04 0.06

edge length delta skewness

node angle mean

edge length deviation

rbc velocity y std

edge length delta abs mean

edge length delta abs skewness

node angle delta mean

edge length deviation std

edge length delta deviation

edge length delta abs deviation

RF, 2 classes

0 0.001 0.002

edge angle delta abs deviation

surface std

volume

edge length delta abs skewness

volume std

edge angle skewness

surface

edge angle delta abs mean

edge angle delta deviation

edge length delta skewness

Figure 11. Importance of predictors from the 6th set.

XGB, 4 classes

0 0.05 0.1 0.15 0.2

span z std

equator diameter

vel diff z std

equator diameter min

equator diameter std

vel diff y std

rbc velocity y std

vel diff x std

span x

cell axis length

XGB, 2 classes

0 0.05 0.1 0.15

equator diameter min std

span x

vel diff x std

equator diameter min

vel diff y std

vel diff z std

span z std

rbc velocity x

rbc velocity y std

cell axis length

RF, 4 classes

0 0.05 0.1

rbc velocity y std

equator diameter

span x

span z std

equator diameter std

vel diff z std

equator diameter min

vel diff y std

vel diff x std

cell axis length

RF, 2 classes

0 0.02 0.04 0.06 0.08

rbc velocity x

equator diameter min std

vel diff z std

vel diff x std

rbc velocity y std

span z std

equator diameter

equator diameter min

vel diff y std

cell axis length

Figure 12. Importance of predictors from the 4th set.



Appl. Sci. 2024, 14, 9315 16 of 20

6. Discussion

In Section 4, we focused on examining the elasticity of RBCs based on data on the
SA : V ratio during their flow through a channel. These data represent one of the funda-
mental characteristics of RBCs; they are frequently studied and can also be obtained from
real experiments, not just from simulation. The data from the movement of each RBC were
first reduced to four basic statistics: the maximum, minimum, average, and dispersion
of the SA : V ratio. The classical KS test revealed that the maximum and average values
could differentiate healthy RBCs from a combined group of damaged ones based on their
elasticity. However, it is not possible to differentiate between the three groups of damaged
RBCs. The minimum and dispersion values do not distinguish between RBC groups at
all using the chosen statistical methods. These findings are noted as statistical facts, even
though it would be possible to look for different physical justifications for the specific
design of the experiment.

In any case, we consider it worth noting that the possibility of distinguishing RBCs ac-
cording to their elasticity found here qualitatively corresponds to the result obtained using
the CNN mentioned in Section 3. Here, the classification of RBCs into four categories of
elasticity was used when training the CNN, but the correct classification was achieved only
for the group of healthy and aggregated group of damaged cells. Due to the fundamental
difference in the tools used to achieve these results, a direct numerical comparison is not
possible, but it inspires a further investigation of this phenomenon.

Our experiments with decision trees in Section 5 reveal insights into the efficiency
of various predictor sets and the impact of recorded sequence length on the classification
accuracy. Our results suggest that increasing the length of the sequence (S) generally
improves classification accuracy up to a certain point, after which the improvements starts
to be negligible. This indicates that, while longer observation periods can be beneficial,
excessively long monitoring may not yield proportional gains in accuracy. Specifically,
monitoring cells for approximately one complete passage through the channel appears
sufficient for optimal performance.

The comparison between deep neural networks and decision tree-based models reveals
that the latter can achieve comparable or better accuracy with simpler predictor sets.
This is particularly evident in the classification into four classes, where decision trees
outperformed neural networks using the second predictor set. This confirms that decision
trees are a proper tool to effectively handle tabular data, providing a more interpretable
and efficient alternative to neural networks. In addition to stating the numerical differences
in classification accuracy, it is appropriate to note that the input data for both methods
are different: the input for CNN was the video recording of the flow, while the input for
decision trees was the predictors extracted from the simulation output. Video recording
is based on 2D data, while predictor sets 3–6 benefit from 3D data. On the other hand,
predictor sets 1 and 2 work with very simple 2D-data-based features, and one can expect
that a CNN will be able to extract more information from the video. Table 7 shows the
classification accuracy on the test dataset. In the case of decision tree methods, we list here
only the models for S = 80, which approximately corresponds to one pass of a cell through
the channel—that was also the case in video recordings used in CNN models.

Future research can focus on several directions to further improve the classification
of RBC elasticity. One potential way is the integration of various data sources, such as
combining video recordings with additional sensors capturing the mechanical properties or
biochemical markers of RBCs. This could provide a richer dataset and better classification
accuracy. Performing experimental validation using actual RBC samples will be essential
to confirm the theoretical findings and translate them into practical diagnostic tools.
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Table 7. Comparison of the classification accuracy of convolutional neural network (CNN) and
decision tree-based models (with S = 80).

Training Number
of Classes

Testing Number
of Classes Model Predictors Accuracy

4 4

CNN video recordings 55.48%
XGB set 1 45.98%
RF set 1 45.27%

XGB set 2 60.81%
RF set 2 60.39%

XGB set 3 63.64%
RF set 3 62.85%

XGB set 4 69.16%
RF set 4 67.51%

XGB set 5 91.14%
RF set 5 86.73%

XGB set 6 93.90%
RF set 6 89.96%

2 2

CNN video recordings 61.72%
XGB set 1 82.81%
RF set 1 82.35%

XGB set 2 92.00%
RF set 2 91.39%

XGB set 3 93.32%
RF set 3 93.27%

XGB set 4 96.50%
RF set 4 95.55%

XGB set 5 98.04%
RF set 5 98.32%

XGB set 6 98.97%
RF set 6 99.08%

4 2

CNN video recordings 93.91%
XGB set 1 81.57%
RF set 1 80.89%

XGB set 2 91.55%
RF set 2 90.60%

XGB set 3 93.10%
RF set 3 93.00%

XGB set 4 96.03%
RF set 4 95.23%

XGB set 5 97.92%
RF set 5 97.93%

XGB set 6 98.92%
RF set 6 98.84%
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Abbreviations
The following abbreviations are used in this manuscript:

CNN convolutional neural network
IBM immersed boundary method
KS test Kolmogorov–Smirnov test
LBM lattice Boltzmann method
RBC red blood cell
RF random forest classifier from the sklearn library
XGB gradient decision trees classifier from the xgboost library

Appendix A. List of Predictors

Table A1 presents 41 predictors used in Section 5. When referring to predictors for
tests with S > 1, suffix “std” added to the predictor name indicates the standard deviation
of all S values, while the absence of this suffix indicates the mean of all S values (see
Figures 11 and 12).

Table A1. Predictors used in decision tree classification.

Set Predictor Description

1 span x size of the bounding box of the cell in the direction of x-axis
span y size of the bounding box of the cell in the direction of y-axis

2

rbc velocity x velocity of the cell in the direction of x-axis
rbc velocity y velocity of the cell in the direction of y-axis
vel diff x change of the velocity of the cell in the direction of x-axis
vel diff y change of the velocity of the cell in the direction of y-axis

3
rbc velocity z velocity of the cell in the direction of z-axis
span z size of the bounding box of the cell in the direction of z-axis
vel diff z change of the velocity of the cell in the direction of z-axis

4
cell axis length distance between the two nodes of the cell which form the central axis of the cell
equator diameter maximum distance between two opposite nodes on the perimeter of the cell
equator diameter min minimum distance between two opposite nodes on the perimeter of the cell

5

volume cell volume
surface cell surface
edge angle mean mean of the angles between neighbouring triangles of the cell triangulation
edge angle deviation standard deviation of the angles between neighbouring triangles of the cell triangulation
edge angle skewness skewness coefficient of the angles between neighbouring triangles of the cell triangulation
node angle mean mean of the solid angles at the nodes of the cell triangulation
node angle deviation standard deviation of the solid angles at the nodes of the cell triangulation
node angle skewness skewness coefficient of the solid angles at the nodes of the cell triangulation
edge length mean mean of the lengths of the edges of the cell triangulation
edge length deviation standard deviation of the lengths of the edges of the cell triangulation
edge length skewness skewness coefficient of the lengths of the edges of the cell triangulation

https://github.com/nofto/RBC-Elasticity-Classification
https://github.com/icimrak/espresso/tree/python
https://github.com/icimrak/espresso/tree/python
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Table A1. Cont.

Set Predictor Description

6

edge angle delta mean as “edge angle mean”, calculated based on the deviations from the relaxed state
edge angle delta deviation as “edge angle deviation”, calculated based on the deviations from the relaxed state
edge angle delta skewness as “edge angle skewness”, calculated based on the deviations from the relaxed state
node angle delta mean as ‘node angle mean”, calculated based on the deviations from the relaxed state
node angle delta deviation as “node angle deviation”, calculated based on the deviations from the relaxed state
node angle delta skewness as "node angle skewness", calculated based on the deviations from the relaxed state
edge length delta mean as “edge length mean”, calculated based on the deviations from the relaxed state
edge length delta deviation as “edge length deviation”, calculated based on the deviations from the relaxed state
edge length delta skewness as “edge length skewness”, calculated based on the deviations from the relaxed state
edge angle delta abs mean as “edge angle delta mean”, based on the absolute deviations
edge angle delta abs deviation as “edge angle delta deviation”, based on the absolute deviations
edge angle delta abs skewness as “edge angle delta skewness”, based on the absolute deviations
node angle delta abs mean as “node angle delta mean”, based on the absolute deviations
node angle delta abs deviation as “node angle delta deviation”, based on the absolute deviations
node angle delta abs skewness as “node angle delta skewness”, based on the absolute deviations
edge length delta abs mean as “edge length delta mean”, based on the absolute deviations
edge length delta abs deviation as “edge length delta deviation”, based on the absolute deviations
edge length delta abs skewness as “edge length delta skewness”, based on the absolute deviations
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