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Abstract: As the market penetration rate (MPR) of autonomous vehicles increases, it is expected that
the safety of mixed traffic situations will change due to interactions between vehicles. A proactive
safety analysis of mixed traffic situations is needed for future intelligent transportation systems; thus,
it is necessary to determine the driving safety evaluation indicators that have a significant impact on
identifying hazardous sections of actual roads by each MPR. The purpose of this study is to simulate
autonomous vehicle behavior by analyzing real-world autonomous vehicle data and to derive a
promising integrated driving safety evaluation index for mixed traffic. Autonomous vehicle driving
data from an autonomous mobility testbed in Seoul were collected and analyzed to assess autonomous
vehicle behavior in VISSIM. The simulation environment was established to match the real road
environment. Decision tree (DT) analysis was adopted to derive the indicators influencing the
classification of hazardous sections of real roads by MPR. The vehicle–vehicle interaction indicators
used to evaluate driving safety were applied as the input variables of the DT, and the classification of
real-world hazardous road sections was the output variable. An integrated evaluation index was
developed using the promising evaluation indicators and information gains derived for each MPR.
The most hazardous section and the factors affecting the driving safety of the section based on the
integrated evaluation index for each MPR were then presented. The results of this study can be
utilized to proactively identify hazardous road sections in the real world through simulations of
mixed traffic conditions.

Keywords: autonomous vehicle data; autonomous vehicle MPR; decision tree; driving safety indicator;
integrated evaluation index

1. Introduction

Mixed traffic is an environment where a mix of autonomous and manual vehicles are
driving; mixed traffic situations will continue until all vehicles are autonomous. In addition,
the market penetration rate (MPR) of autonomous vehicles is gradually increasing with
the development of autonomous driving system technology. Safety can decrease due to
the different driving behaviors of autonomous and manual vehicles. Thus, traffic safety
can be affected by the MPR [1]. A proactive safety analysis of mixed traffic is needed for
future intelligent transportation systems. Currently, safety analysis is mainly based on
virtual-environment-based research due to the lack of real-world driving data. In addition,
simulations, which are mainly used for virtual-environment-based research, are utilized
in many studies because they can freely represent various situations and current road
conditions. It is important to simulate the real-world environment, and implementing
autonomous vehicle behavior in simulations is essential. Additionally, studies based on

Appl. Sci. 2024, 14, 9322. https://doi.org/10.3390/app14209322 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14209322
https://doi.org/10.3390/app14209322
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4217-2487
https://orcid.org/0000-0002-3910-5876
https://orcid.org/0000-0002-1431-9480
https://doi.org/10.3390/app14209322
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14209322?type=check_update&version=1


Appl. Sci. 2024, 14, 9322 2 of 15

simulation environments lack validation for the indicators selected and explanations for
why the indicators used are appropriate.

Therefore, this study simulates the behavior of autonomous vehicles using real-world
autonomous vehicle data to develop an integrated evaluation index that can identify haz-
ardous sections of actual roads. The data were collected from autonomous vehicles driving in
an autonomous mobility testbed in Seoul to analyze their driving behavior. The driving risk
index (DRI), a deceleration-based event occurrence rate, was computed using these collected
autonomous vehicle data; this index defines real-world hazardous sections. The simulation
was performed with the same traffic volume, signals, road geometry, number of bus stops, etc.,
as in a real road environment. Then, simulation-based promising evaluation indicators that
can identify real-world hazardous sections were derived through a decision tree (DT) analysis.
Vehicle-to-vehicle interaction indicators were adopted as candidate evaluation indicators
among the driving safety evaluation indicators and used as input variables in the DT analysis;
the DRI-based hazardous road sections were the output variables. The DT analysis revealed
promising evaluation indicators that are useful for identifying actual hazardous sections,
and these indicators were weighted to develop an integrated evaluation index. In addition,
the characteristics of the most hazardous sections were presented based on the integrated
evaluation index. The results of this study are expected to proactively identify hazardous
sections on actual roads through simulation.

This study consists of the following steps. The existing studies that have analyzed the
driving safety of autonomous vehicles by MPR are reviewed, and the differences among
these studies are presented. Next, a methodology for analyzing the driving safety of au-
tonomous vehicles and developing an integrated evaluation index is presented. Promising
simulation-based evaluation indicators and integrated evaluation indices are derived by
evaluating the driving behavior of real-world autonomous vehicles. Finally, the conclusions
of this study and future research issues are presented.

2. Literature Review

This study analyzes the driving behavior of autonomous vehicles operating in an au-
tonomous mobility testbed to simulate the behavior of autonomous vehicles. Additionally,
simulation-based driving-safety-integrated evaluation indices for each MPR of autonomous
vehicles are developed. In this regard, simulation-based studies analyzing the driving
safety of autonomous vehicles by MPR are reviewed to draw research opportunities.

The use of simulations to analyze driving safety in mixed traffic can be an important
factor in proactively enhancing traffic safety [2,3]. Alzoubaidi et al. used VISSIM to
evaluate the safety of connected vehicle (CV) technology at signalized intersections [4].
The indicators utilized in the analysis were time-to-collision (TTC), post-encroachment
time (PET), rear-end conflict (REC) count, lane change conflict (LCC) count, and the total
number of conflicts (TNCs). By comparing the evaluation index values for each MPR at
adjusted and unadjusted signalized intersections, it was determined that, the lower the
values for TTC and PET and the higher the values for REC, LCC, and TNC, the more
dangerous the driving safety. The safety analysis showed that, at the intersections where
CV technology was applied, safety increased across all the indicators, regardless of the
MPR. Furthermore, the risk decreased with an increasing MPR. Similarly, Hou evaluated
the impact of connected and automated vehicles (CAVs) on mobility and safety in mixed
traffic under adverse weather conditions, utilizing traffic safety alternative evaluation
indicators such as the TTC and time-exposed time-to-collision (TET) [5]. The evaluation
indicator values were compared in clear, rain, and snow weather conditions by MPR, using
TTC and TET to evaluate driving safety. The analysis revealed that, as the MPR of CAVs
increased, the overall traffic performance and safety under adverse weather conditions
increased. In addition, the results of existing studies have shown that increasing the MPR
of CAVs improves safety [6–8].

Shinha et al. utilized VISSIM to identify the impact of CAVs on crash frequency and
severity [9]. The VISSIM programming interface was used to develop and implement CAV
control algorithms to simulate CAV behavior. A signalized intersection was established in
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the simulation, and the MPR of CAVs was increased by 10% to evaluate the impact of CAVs
on crash frequency and severity. Sekar et al. also evaluated the impact of autonomous
vehicles on safety according to the MPR of CAVs, utilizing two driving logics (cautious
and all-knowing) for CoExist and Akins’ driving logic to evaluate safety impacts [10]. The
travel time and number of conflicts were utilized for performance measures to evaluate
mobility and safety, respectively. CoExist’s driving logic showed a decrease in the number
of conflicts as the MPR increased, while Akins’ driving logic showed a decrease in the
number of conflicts above an MPR of 50. On the other hand, Olia et al. used the TTC
and crash probability as evaluation indicators to evaluate the safety impact of the MPR
of CAVs, showing that safety increased up to an MPR of 50, but above this value, there
was an increased crash probability [11]. Similarly, existing studies have shown that safety
decreases or even increases after a certain MPR [12,13]. Ye and Yamamoto evaluated the
impact of CAVs on traffic safety at signalized intersections using the TTC [14]. Conflicts
were reduced by 90% for an MPR of 50 and by 50% for an MPR of 30. There was no safety
impact for MPRs lower than 20%. Essa and Sayed also analyzed the safety impacts of the
MPR of CAVs at signalized intersections and found that the crash rate was reduced by
approximately 50% at an MPR of 100%, whereas there was no safety impact at an MPR of
less than 20% [15].

Morando et al. analyzed the impact on autonomous vehicle safety by utilizing surro-
gate safety measures [16]. The driving safety of autonomous vehicles at signalized intersec-
tions and roundabouts by MPR was evaluated via simulation. The TTC was selected among
the surrogate safety measures and analyzed with different thresholds. An autonomous
vehicle MPR of 100% reduced the number of conflicts by 20% compared to an MPR of 0%
when a conflict was defined as a vehicle-following event with a TTC of 1 s or less at a
signalized intersection. Additionally, the number of conflicts consistently decreased as the
MPR of autonomous vehicles increased when a TTC of 0.7 s or less was defined as a conflict.
In addition, Elawady et al. analyzed the impact of MPR on the traffic mobility and safety of
CAVs at signalized intersections [17]. The evaluation indicators were average delay and
TTC, where the two thresholds of TTC-based conflicts were 0.75 s and 1 s. The analysis
showed that, as the MPR increased, the road capacity of CAVs increased and the travel time
decreased. While the number of conflicts did not change significantly depending on the
threshold value of the TTC, the results showed that the number of conflicts was 2% lower
when the threshold value was 1 s than when it was 0.75 s for an MPR of 50.

Park and Lee analyzed the mobility and safety impacts of MPR for autonomous
vehicles [1]. The parameters of the Wiedemann 99 model were adjusted to implement the
behavior of autonomous vehicles based on existing studies. Then, mobility and safety
analyses were performed at unsignalized intersections and roundabouts. The average delay
decreased as the MPR increased at unsignalized intersections, and the number of crashes
decreased when there was less variation in the traffic direction. The average delay per
vehicle decreased as the MPR increased at roundabouts, while rear-end and lane change
conflicts decreased and intersection conflicts increased. El-Hansali et al. implemented the
behavior of autonomous vehicles in VISSIM using the Wiedemann 74 and 99 models and
conducted a safety analysis using TTC, PET, and conflict points [18]. The results showed
that the number of collisions was greater for manual vehicles than for autonomous vehicles,
the number of rear-end collisions was greater for conventional vehicles, and the number of
lane change collisions was greater for autonomous vehicles.

Although simulation-based driving safety analyses of autonomous vehicle MPRs have
been continuously conducted, the basis for selecting the evaluation indicators selected for
these driving safety analyses is not clear. Thus, a rational basis that indicators should be able
to represent the real-world safety level of mixed traffic streams consisting of AVs and MVs is
required. Therefore, this study collected and analyzed real-world autonomous vehicle data
and utilized them in the simulation of autonomous vehicle behavior. Existing studies have
mainly used TTC and TTC-based conflict counts to perform safety analyses. This study
derived inter-vehicle interaction indicators such as the average spacings and SDI-based
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collision counts to evaluate driving safety. Furthermore, simulation-based driving safety
evaluation indicators that effectively identify hazardous road sections in the real world via
autonomous vehicle MPR were derived. In addition, an integrated evaluation index was
developed in this study.

3. Methodology
3.1. Overall Framework

This study utilizes autonomous vehicle data to simulate mixed traffic conditions.
Additionally, a methodology is developed to derive an integrated driving safety evaluation
index based on the MPR of autonomous vehicles, as shown in Figure 1. First, autonomous
vehicle data (AVD) collected from real-world autonomous vehicles are used to perform a
driving behavior analysis and define hazardous sections on real roads. Then, automated
driving behavior based on the AVD analysis is implemented in a traffic simulation with
a network and set of scenarios. Vehicle-to-vehicle interaction indicators are selected as
candidate simulation-based driving safety evaluation indicators and utilized as DT input
variables. Then, a DT model is developed, with the output variables indicating whether an
actual road segment defined as normal or hazardous is unsafe. Through the established
model, promising simulation evaluation indicators that can effectively identify actual
hazardous road sections by autonomous vehicle MPR are derived.
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3.2. AVD Collection and Preprocessing

AVD were collected from autonomous vehicles driving in an autonomous mobility
testbed in Sangam, Seoul. AVD are collected when the autonomous vehicle is driven in
autonomous driving mode (AD mode) and when it is driven in manual driving mode
(MD mode). The AVD include the driving date, driving speed, latitude, longitude, and
driving mode. The data for this study come from five autonomous vehicles that were
driven for a total of three months between 1 August and 31 October 2022. The AVD
from the period when the autonomous vehicle was actually operating were used, and the
acceleration and jerk were computed from the speed. In addition, the intersection influence
zone and noninfluence zone were categorized according to the criteria for determining the
intersection influence zone in the Rules on the Connection of Roads with Other Roads of
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the Road Act. The intersection influence zone was defined as 30 m from the stop line before
entering the intersection and 30 m after the intersection square. The coordinates of the
influence and noninfluence zones on the map were collected, and the latitude and longitude
data in the AVD were utilized to identify the influence zone. The preprocessed data were
used to analyze the driving behavior of vehicles in the influence and noninfluence zones
by driving mode.

3.3. Definition of Hazardous Road Sections

The AVD were used to define hazardous sections of real-world roads. Hazardous
road sections were determined by whether the autonomous emergency braking (AEB)
system, which detects unexpected events based on longitudinal deceleration, was activated.
The driving risk index (DRI) was defined as the proportion of events exceeding 0.5 g
(4.9 m/s2), the maximum deceleration of the AEB function proposed in the international
standard ISO-22179, among all events in which the AEB system was activated [19]. A total
of 219 sections were divided into sections based on the intersection influence area of 30 m.
However, school zones, within which the AD mode is not allowed under current Korean
law, were excluded from the analysis; thus, a total of 186 sections were utilized in the
analysis. The DRI was computed for each section, and a section was defined as hazardous
if its DRI was greater than the average for the entire section; otherwise, the section was
considered as normal. The DRI-based hazardous sections and normal sections were the
output variables of the DT analysis. The DRI computation is presented in Equation (1).

DRIi
AEB =

∑ HDEi
AEB

ni
AD

(1)

where DRIi
AEB is the autonomous driving risk index based on hazardous events in segment

i, HDEi
AEB is the number of hazardous events occurring in segment i, and ni

AD is the
number of driving events in AD mode for segment i (every second).

3.4. Simulation of Autonomous Vehicle Driving Behavior

VISSIM, a microscopic traffic simulation tool, was utilized to evaluate the safety of
mixed traffic conditions on urban roads depending on the MPR of autonomous vehicles.
The Wiedemann 74 model, which is mainly used for urban roads, was selected to construct
the car-following model. The parameters that can adjust the behavior of autonomous
vehicles are presented in Table 1 [20]. Three distribution parameters could be used to
adjust the behavior of autonomous vehicles in the simulations using the analysis results
for autonomous vehicle driving behavior on actual roads. ‘Desired speed distribution’ is
a parameter that allows the speed distribution to be adjusted according to the intersec-
tion influence and noninfluence zones and also allows the speed distribution of vehicles
to be adjusted. Additionally, ‘desired acceleration functions’ and ‘desired deceleration
functions’ are parameters that adjust the acceleration and deceleration distributions of
vehicles. The driving behavior of vehicles is adjusted based on their speed, acceleration,
and deceleration distributions according to the driving mode. For other parameters, such
as car-following and lane change parameters, values derived from the literature were
applied [21].

Table 1. Adjustment of VISSIM driver behavior parameters for each driving mode.

Division Parameter MD Mode AD Mode

Distribution
Desired speed distribution

Results of driving behavior using AVDDesired acceleration functions
Desired deceleration functions

Car following 1

(Wiedemann 74)

Average standstill distance [m] 2.0 2.0
Additive part of safety distance [m] 2.0 1.5

Multiplicative part of safety distance [m] 3.0 2.5
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Table 1. Cont.

Division Parameter MD Mode AD Mode

Lane change 1

Waiting time before diffusion [s] 60.0 60.0
Minimum headway (front/rear) [m] 0.5 0.2
Safety distance reduction factor [m] 0.6 0.3

Maximum deceleration for cooperative braking [m/s2] −3.0 −3.0
1 Parameter values adopted from prior research.

The simulation analysis section was selected as the autonomous mobility testbed in
Seoul, Sangam. The simulated sections were divided in the same way as the DRI-based
hazardous sections to compare the actual hazardous road sections and the simulated
hazardous sections. The traffic volume was obtained from View-T, a national traffic database
used when establishing a network. Then, signals were applied using the actual signals
at the intersections. In addition, bus stops, crosswalks, bicycle priority roads, and other
road facilities were constructed to obtain an environment similar to that of the actual roads.
Four scenarios were established with the MPR of autonomous vehicles ranging from 20%
to 80% in 20% increments. In total, 90 min of simulation experiments were conducted, of
which 30 min was a warm-up period.

3.5. Derivation of Promising Evaluation Indicators and Development of an Integrated Evaluation Index

Eleven vehicle interaction indicators were selected for the analysis of this study. The in-
dicators included the TTC-based conflict count, stopping distance index (SDI)-based crash
count, average deceleration rate to avoid a crash (DRAC), DRAC-based conflict count, crash
potential index (CPI), average spacing, standard deviation of spacing, time-varying volatil-
ity (VF) of spacing, average headway, standard deviation of headway, and time-varying
volatility of headway.

The TTC-based conflict count is defined as the number of conflicts with a TTC of less
than 1.5 s [22]. The SDI is a safety evaluation indicator that judges safe/unsafe conditions
based on the difference between the minimum stopping distance of the leading vehicle and
that of the trailing vehicle. When the stopping distance of the trailing vehicle is greater
than the stopping distance of the leading vehicle, the scenario is unsafe, as shown in
Equation (2). A conflict is defined as an SDI of less than 0 [23]. DRAC is the collision
avoidance deceleration when the trailing vehicle recognizes a hazard and starts to slow
down. As the DRAC increases, the safety decreases; the formula for this is shown in
Equation (3). Additionally, if the DRAC exceeds 3.35 m/s2, it is defined as a conflict [24].
The CPI is the probability that the DRAC exceeds the maximum available deceleration
rate (MADR) in a given time interval [25]. As the CPI increases, safety decreases; this
computation is shown in Equation (4). The time-varying volatility is the variability of the
indicator value over time [26]. As the time-varying volatility increases, the safety decreases,
as shown in Equation (5).

SDIt = dLV,t − dFV,t (2)

where dFV,t is the stopping distance of the trailing vehicle at time t (m) and dLV,t is the
stopping distance of the leading vehicle at time t (m).

DRACt =
(VFV,t − VLV,t)

2

2st
(3)

where VFV,t is the velocity of the trailing vehicle at time t (m/s), VLV,t is the velocity of the
leading vehicle at time t (m/s), and st is the spacing at time t (m).

CPI = ∑ Pr(MADR ≤ DRACt)

T
(4)

where MADR is the maximum available deceleration rate (m/s2), DRACt is the maximum
deceleration at time t (m/s2), and T is the analysis unit time.
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VF =

√√√√ 1
n − 1

T

∑
t=1

(rt − r)2 (5)

where rt is the relative change in the indicator value at time t (%), n is the number of data
points, and t is the sampling interval.

Both autonomous vehicle and manually driven vehicle driving data were utilized to
derive the aforementioned evaluation indicators for the evaluation of mixed traffic condi-
tions. For the simulation-based hazardous road sections, 186 sections were selected, which
were the same as the sections defined as actual hazardous road sections. The evaluation in-
dicators were calculated for each road section. The definitions and equations for obtaining
the candidate evaluation indicators are presented in Table 2.

Table 2. Candidate indicators for driving safety analysis.

Variable Name Definition Equation

TTC-based conflict count
A safety assessment metric that

determines safe/unsafe conditions based
on TTC

TTCt =
st

VFV,t−VLV,t

SDI-based conflict count

A safety assessment metric that
determines safe/unsafe conditions based
on the difference of minimum stopping

distances between the leading
and following vehicles

SDIt = dLV,t − dFV,t

Avg. DRAC

The average collision evasion deceleration
rate when the following vehicle begins

to perceive a hazardous situation
and initiates deceleration

DRACt =
(V FV,t−VLV,t)

2

2st

DRAC-based conflict count When the DRAC is greater than 3.35 m/s2,
it is defined as a conflict

Number o f DRAC >
3.35 m/s2

CPI The probability of the DRAC exceeding
the MADR within a given time interval CPI = ∑ Pr(MADR≤DRACt)

T

Avg. spacing
The average distance from the rear of

the leading vehicle to the front
of the following vehicle

s = 1
n

T
∑
t

st

Std. spacing The standard deviation of vehicle spacing σs =

√
∑(st−s)2

n

VF spacing The spacing variability over time VFs =

√
1

n−1

T
∑

t=1
(rt − r)2

Avg. headway
The time difference between the preceding

vehicle and following vehicles
when passing a specific point on the road

h = 1
n

T
∑
t

ht

Std. headway The standard deviation of headway
σh =

√
∑(ht−h)

2

n

VF headway The headway variability over time VFh =

√
1

n−1

T
∑

t=1
(rt − r)2

The DT analysis technique was used to select promising evaluation indicators that can
be used to effectively identify hazardous sections on actual roads. The 11 simulation-based
vehicle interaction safety evaluation indicators were used as input variables in the DT
analysis. Then, binary indicators representing DRI-based hazardous road sections and
normal sections were used as output variables to derive promising evaluation indicators
that affect the classification of real hazardous road sections. A DT is an analytical method
that categorizes or predicts data by plotting decision rules in a tree structure according to
specific criteria. DTs are intuitively easy to understand and are often used to determine
which variables have the most significant impact by providing key variables and separation
criteria, allowing for the easy interpretation of results [27]. It is necessary to apply an
optimal parameter, a hyperparameter, to prevent overfitting and select an appropriate tree
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size for DT analysis. The information gain is a quantification of the independent variable
and the criterion value that results in the lowest entropy between parent and child nodes
when classifying data [28]. The information gain quantifies the impact of each input variable
on the classification of the output variable and can be used to determine the importance
of variables. Information gain is a value between 0 and 1, where higher values mean that
the independent variable has a greater impact on classification. Thus, indicators with large
information gains are good indicators for identifying hazardous sections. An evaluation
indicator with a nonzero information gain is defined as a promising evaluation indicator
that increases the accuracy of real-world hazardous road section classification, which can
be computed through the formula in Equation (6).

In f ormation gain = Entropy(be f ore)−
k

∑
j=1

Entropy(j, a f ter) (6)

where Entropy(be f ore) is the prior entropy, Entropy(j, a f ter) is the posterior entropy, and j
is a child node.

The definition of an integrated evaluation index according to MPR requires weighting
by promising indicators. Weights are assigned using the information gain, which allows for
comparisons of the importance of variables. Since the sum of the information gains of all
promising indicators is 1, the derived value can be utilized as a weight. Next, normalization
should be performed when computing the integrated index due to the different units of
each promising indicator and the range of indicator values. Min–max normalization was
used, a normalization method that represents different indicators as values between 0 and
1, as shown in Equation (7) [29]. For each scenario, a total of four integrated indices were
computed, with a higher value indicating a more hazardous section. The integrated index
can be computed by using Equation (8) for each scenario.

Vx =
x − Min.(x)

Max.(x)− Min.(x)
(7)

where Vx is the normalized value of the evaluation indicator and x is the evaluation
indicator value.

YMPRj = w1 ∗
(
V1

)
+ w2 ∗

(
V2

)
+ . . . + wn ∗

(
Vn

)
(8)

where YMPRj is the integrated evaluation index for the MPR j, wi is the information gain
weight of evaluation indicator i, and Vi is the average normalized value of evaluation index
i for each section.

The variables that normalize the evaluation indicators used to develop the integrated
evaluation index are presented as follows. First, the TTC-based conflict count is VCC

TTC, the
SDI-based conflict count is VCC

SDI , and the DRAC-based conflict count is VCC
DRAC. Second,

the average spacing and average headway indicate greater safety as their values increase.
Therefore, the integrated evaluation index uses the inverse of these two indicators, so that
larger values represent more hazardous sections. This is shown as V1/Avg.

spac. and V1/Avg.
hdwy. . Fi-

nally, the normalized average DRAC is expressed as VAvg.
DRAC, and the time-varying volatility

and standard deviation are represented as VVF
indicator and VStd.

indicator.

4. Results
4.1. Adjustment of VISSIM Parameters Based on Driving Behavior Analysis

Descriptive statistics were obtained to identify the characteristics of the different
driving behaviors of autonomous vehicles and manual vehicles. The descriptive statistics
of speed for each driving mode in the areas influenced and not influenced by intersections
were compared using real-world AVD, and the results are presented in Table 3. The average
and standard deviation of the AD mode speed were lower than those of the MD mode
speed in the intersection-influenced zone, which can be interpreted as more stable driving.
Since the AD mode had a slightly greater average speed and lower standard deviation of
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speed than the MD mode in the noninfluence zone, the AD mode can be interpreted as
leading to faster driving than the MD mode in the noninfluence zone and slower driving as
the vehicle entered the intersection-influenced zone.

Table 3. Results of speed driving behavior analysis.

(a) Intersection Influence Zone

Descriptive statistics

Mode N Avg. Std. Var. 85th% Range Min. Max.

AD 2191 25.56 10.64 113.23 36.00 42 1 43

MD 3585 27.57 11.31 127.98 39.00 67 1 68

(b) Intersection Noninfluence Zone

Descriptive statistics

Mode N Avg. Std. Var. 85th% Range Min. Max.

AD 2975 29.67 11.24 126.41 40.00 49 1 50

MD 4279 29.22 12.67 160.53 42.00 70 1 71

The VISSIM parameters that could be adjusted based on the results of the driving
behavior analysis were the desired speed distribution, the desired acceleration functions,
and the desired deceleration functions. The desired speed distribution can be applied to
the simulation in two ways. First, the behavior of the vehicles can be adjusted, in which
case, the speed distribution is applied without distinguishing between the intersection-
influenced zone and the noninfluence zone. Second, the desired distribution can be applied
to the speed distribution of the road, in which case, it is different in the influenced zone
and the noninfluence zone.

The desired acceleration functions and desired deceleration functions are parameters
that can only be adjusted by utilizing all three following values: average, maximum,
and minimum acceleration or deceleration. Both parameters can be applied in the form
of a distribution that shows the acceleration or deceleration values for a specific speed.
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The three distribution parameters of VISSIM were adjusted based on the results of the
driving behavior analysis in terms of speed.

4.2. Derivation of Actual Hazardous Road Sections

The first step was to define the actual hazardous road sections to select the indicators
that were effective in identifying such sections from among the candidate indicators.
A total of 3,238,883 autonomous driving mode data points and 867,065 deceleration data
points were collected from the AVD. There were 9658 events with AEB values greater than
4.9 m/s2. These were used to obtain the DRI for each section. The descriptive statistics
of deceleration in AEB-based risk events and the descriptive statistics of DRI by section
are presented in Table 4. Also, an example of a DRI-based hazardous section is shown
in Figure 2. The sections were chosen as an example of a hazardous section when three
or more consecutive road sections were hazardous. The example of a hazardous section
shown in the figure is a section where autonomous vehicles perform a right turn.

Table 4. Descriptive statistics of deceleration for risky event and DRI by section.

Descriptive Statistics

Statistics N Avg. Std. Var. 85th% Range Min. Max.

Deceleration for risk event 9658 −0.798 0.726 0.527 −1.111 13.833 −13.889 −0.056

DRI by section 186 0.338 0.947 0.896 0.464 5.708 0 5.708
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4.3. Derivation of Promising Evaluation Indicators and the Integrated Evaluation Index

A DT analysis was conducted to derive the promising evaluation indicators that should
be used to identify hazardous sections on actual roads from among the candidate interaction
safety evaluation indicators. In establishing the DT model, simulation-based interaction
safety evaluation indicators were used as the input variables; the output variables were the
DRI-based hazardous road sections and normal sections defined using AVD. All scenarios
were analyzed with a 7:3 ratio of training data to test data, with a total of 186 data points.
The hyperparameters of the model were determined from this analysis. The definitions of
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the parameters and the optimized values of the parameters for each scenario are presented
in Table 5 [30].

Table 5. Parameter optimization results.

Parameter Definition MPR 20 MPR 40 MPR 60 MPR 80

Class weight Whether to apply the weight of each class None None None None

Criterion The function to measure
the quality of a split Gini Entropy Entropy Entropy

Splitter The strategy used to choose
the split at each node Best Best Best Best

Max depth The maximum depth of the tree 3 4 4 4

Min samples split
The minimum number of
samples required to split

an intermediate node
13 13 7 13

Min sample leaf The minimum number of samples
required to be at a leaf node 7 13 11 13

Max features
The number of features

to consider when looking
for the best split

Sqrt Log2 Sqrt Log2

The confusion matrix and information gain of MPR 20 are shown in Table 6 as an
example of the results of the decision tree analysis. The MPR 20 scenario resulted in a
classification accuracy of 87.50%, while the MPR 40, 60, and 80 scenarios resulted in 78.57%,
85.71%, and 80.36% accuracies, respectively. The number of promising indicators that
affected the classification of hazardous sections varied by scenario. First, four promising
indicators of MPR 20 and their respective information gains are as follows. The average
spacing was 0.359, the SDI-based conflict count was 0.332, the time-varying volatility of
headway was 0.270, and the standard deviation of headway was 0.039. These values
were used as weights to develop an integrated index. Second, three promising indicators
were derived for MPR 40, namely, the average spacing, TTC-based conflict count, and
headway-based time-varying volatility, which were used as weights to develop the inte-
grated evaluation index. For MPRs of 60 and 80, the same method was used to develop
the integrated evaluation index. The formulas for the integrated evaluation indices for
the scenarios with MPRs of 20, 40, 60, and 80 are presented in Equations (9), (10), (11),
and (12), respectively. The average spacing was found to be a promising indicator and
was included in the integrated index in all scenarios. Additionally, it was the indicator
that best identified hazardous road sections among the candidate evaluation indicators
for each scenario. Regardless of the MPR of autonomous vehicles, spacing is an indicator
that affects driving safety; the shorter the distance is, the more hazardous driving is. The
developed integrated evaluation indices were utilized to derive hazardous road sections
for each scenario.

YMPR20 = 0.359 ∗
(

V1/Avg.
spac.

)
+ 0.332 ∗

(
VCC

SDI

)
+ 0.270 ∗

(
VVF

hdwy.

)
+ 0.039 ∗

(
VStd.

hdwy.

)
(9)

YMPR40 = 0.671 ∗
(

V1/Avg.
spac.

)
+ 0.180 ∗

(
VCC

TTC

)
+ 0.149 ∗

(
VVF

hdwy.

)
(10)

YMPR60 = 0.316 ∗
(

V1/Avg.
spac.

)
+ 0.205 ∗

(
VVF

spac.

)
+ 0.127 ∗

(
VCC

SDI

)
+ 0.126 ∗

(
V1/Avg.

hdwy.

)
+ 0.116 ∗

(
VStd.

hdwy.

)
+ 0.110 ∗

(
VAvg.

DRAC

)
(11)

YMPR80 = 0.419 ∗
(

V1/Avg.
spac.

)
+ 0.229 ∗

(
VCC

SDI

)
+ 0.151 ∗

(
VVF

hdwy.

)
+ 0.117 ∗

(
VStd.

hdwy.

)
+ 0.084 ∗

(
VCC

DRAC

)
(12)



Appl. Sci. 2024, 14, 9322 12 of 15

Table 6. An example of DT analysis results.

Confusion Matrix

Criterion
Prediction Recall (%)

Normal Hazard

Actual
Normal 41 2

69.57
Hazard 5 8

Precision (%) 80.00 87.50

Information Gain

The road characteristics of the most hazardous sections according to the integrated
indicators for each scenario are shown in Figure 3. The most hazardous section in the MPR
20 scenario was segment 93, as shown in Figure 3a. Segment 93 is a four-lane approach that
includes an exclusive right-turn lane. Slowing down to make a right turn can result in a
rear-end collision with a vehicle that does not maintain a safe distance. Additionally, when
a vehicle stops due to pedestrians or bicyclists moving to the traffic island, it may interact
with the following vehicle, increasing the potential for conflict. The most hazardous section
in the case of MPR 40 was segment 23, as shown in Figure 3b, where a lane drop exists.
In segment 23, the lanes decrease to one lane, and a right turn is necessary to join the main
road. As right-turning vehicles in this section join the main road, there are interactions with
vehicles going straight on the main road, which would increase the potential for conflicts.
In addition, pedestrians crossing at the unsignalized crosswalk can cause collisions due to
the difficulty of maintaining a safe distance from following vehicles when stopping.
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The most hazardous section in the case of MPR 60 was segment 18, as shown in
Figure 3c, with an approach to an unsignalized intersection. A vehicle stopping when a
pedestrian crosses the unsignalized intersection can result in a rear-end collision with a
following vehicle, while driving cautiously by decelerating before crossing the unsignal-
ized intersection can result in an interaction with a following vehicle, which can cause a
crash. In the MPR 80 scenario, the most hazardous section based on the integrated index
was segment 204, as shown in Figure 3d. Segment 204 is a signalized intersection with
three lanes for each direction, where frequent stop-and-go traffic occurs. The rightmost
lane of the section is a right-turn lane, which requires vehicles that aim to continue straight
from the right-turn lane or perform a right turn from the straight lane to perform a lane
change. Safety can be degraded due to interactions between vehicles changing lanes.

When comparing the integrated evaluation index values of the most hazardous sec-
tions by MPR, MPR 20 had a value of 0.462, MPR 40 had a value of 0.791, MPR 60 had a
value of 0.466, and MPR 80 had a value of 0.496. The results for the four MPR scenarios in
this analysis show that the most hazardous section of MPR 40, section 23, had the highest
integrated evaluation index value of 0.791. Segment 23, which requires a lane change due
to a lane drop, a right turn, and a stop due to an unsignalized crosswalk, had a high value
of the integrated evaluation index because it is a segment where various driving influence
factors should be considered.

5. Conclusions

Mixed traffic conditions continue to persist; in addition, the MPR of autonomous
vehicles on roads is expected to gradually increase as autonomous driving technology
develops. Recently, studies have been performed that consider the MPR of autonomous
vehicles for future intelligent transportation systems, and it is important to include a
realistic representation of the real-world road environment in a simulation to ensure the
reliability of such research. In addition, it is necessary to select realistic evaluation indicators
that effectively identify hazardous sections for driving safety on actual roads from among
various evaluation indicators in the simulation environment.

Driving data of autonomous vehicles in the autonomous mobility testbed were col-
lected to analyze driving behavior by driving mode. Using this information, promising
evaluation indicators for determining hazardous sections on actual roads were derived
after establishing a realistic simulation environment, and integrated evaluation indices
were developed. The intersection-influenced zone and noninfluence zone were separated
by driving mode when analyzing driving behavior. The results showed that the AD mode
exhibited more stable driving behavior than the MD mode did. The driving behavior
analysis results were used to simulate the behavior of autonomous and manual vehicles
according to the driving behavior of vehicles on actual roads. Additionally, the simulation
network was established to be the same as the autonomous mobility testbed by including
factors such as bus stops and crosswalks, and scenarios were examined in which the MPR
of autonomous vehicles varied. A total of 11 interaction evaluation indicators were selected
to evaluate driving safety according to the interactions between vehicles under mixed traffic
conditions. Then, a DT analysis was conducted to derive evaluation indicators that affect
the identification of hazardous road sections, which is defined as a classification problem.
A DT model was developed with the interaction safety evaluation indicators as input
variables and the actual hazardous road sections as output variables. The results of the DT
analysis showed that the promising evaluation indicators that improved the accuracy of
hazardous section classification varied by scenario. The promising evaluation indicators for
each scenario and the information gains of the evaluation indicators were used as weights
to develop an integrated evaluation index. Therefore, this study applied driving behavior
in simulations according to analyses of real-world autonomous vehicles. The parameters
adjusted the vehicle behavior, and this technique can be used when conducting research
using urban road simulation. In addition, the numbers of lanes, signals, crosswalks, illegal
parking vehicles, bus stops, etc., were constructed similarly to those of the actual road
environment when establishing the simulation network, which ensured the reliability of
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the results of this study. Furthermore, the proposed methodology for developing the
integrated index is expected to be utilized for the selection of evaluation indices in future
simulation-based driving safety analyses of vehicle interactions. Policymakers can develop
effective safety measures to address issues associated with mixed traffic situations that
would be affected by MPRs. In addition, proper evaluation indicators can be selected in
the consideration of the level of autonomous vehicles being developed and promote the
development of autonomous vehicle technology.

Further research should be conducted to obtain more generalized results. First, more
AVD should be collected. Since the AVD used in this study can only support the analysis of
longitudinal individual vehicle driving behavior, this was the type of analysis performed. In
addition, because the definition of actual hazardous road sections is based on longitudinal
deceleration, it is necessary to apply the methodology of this study again after collecting
further data in the future. Second, mapping actual crash data with the integrated index
needs to be conducted to evaluate the feasibility of the outcomes of this study. There is
a need for a comparative analysis of accident occurrence zones and hazard zones based
on the integrated evaluation index derived in this study using the accident history data
of autonomous vehicles. Additional incident history data can be collected to perform a
comparative analysis in order to improve the reliability of the results of this study. Finally,
real-world autonomous vehicle data can be widely used to support policymakers’ decision
making. As autonomous vehicle technology develops, real-world data need to be collected,
and the proposed index in this study needs to be derived based on such real-world data.

Author Contributions: Conceptualization, C.O. and M.K.; methodology, C.O. and M.K.; formal anal-
ysis, M.K.; data curation, M.K. and H.K.; writing—original draft preparation, M.K.; writing—review
and editing, C.O. and H.K.; supervision, C.O. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Korea Agency for Infrastructure Technology Advancement
(KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant RS-2021-KA160881,
Future Road Design and Testing for Connected and Autonomous Vehicles).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Park, S.Y.; Lee, S.Y. Traffic Safety Analysis according to Autonomous driving MPR (Market Penetration Rate). J. Korea Contents

Assoc. 2023, 23, 57–66. [CrossRef]
2. Hussain, M.S.; Bahrha, G.; Goswami, A.K. An integrated VISSIM-SSAM approach to predicting and mitigating pedestrian crashes

and severity along urban crossings. Case Stud. Transp. Policy 2024, 15, 101153. [CrossRef]
3. Killi, D.V.; Vedagiri, P. Proactive evaluation of traffic safety at an unsignalized intersection using micro-simulation. J. Traffic Logis.

Eng. 2014, 2, 140–145. [CrossRef]
4. Alzoubaidi, M.; Zlatkovic, M.; Jadaan, K.; Farid, A. Safety assessment of coordinated signalized intersections in a connected

vehicle environment: A microsimulation approach. Int. J. Inj. Control Saf. Promot. 2023, 30, 26–33. [CrossRef]
5. Hou, G. Evaluating Efficiency and Safety of Mixed Traffic with Connected and Autonomous Vehicles in Adverse Weather.

Sustainability 2023, 15, 3138. [CrossRef]
6. Abdel-Aty, M.; Wu, Y.; Saad, M.; Rahman, M.S. Safety and operational impact of connected vehicles’ lane configuration on

freeway facilities with managed lanes. Accid. Anal. Prev. 2020, 144, 105616. [CrossRef]
7. Guglielmi, J.; Yanagisawa, M.; Swanson, E.; Stevens, S.; Najm, W. Estimation of Safety Benefits for Heavy-Vehicle Crash Warning

Applications Based on Vehicle-to-Vehicle Communications; No. DOT HS 812 429; Department of Transportation, National Highway
Traffic Safety Administration: Washington, DC, USA, 2017.

8. Virdi, N.; Grzybowska, H.; Waller, S.T.; Dixit, V. A safety assessment of mixed fleets with connected and autonomous vehicles
using the surrogate safety assessment module. Accid. Anal. Prev. 2019, 131, 95–111. [CrossRef]

https://doi.org/10.5392/JKCA.2023.23.02.057
https://doi.org/10.1016/j.cstp.2024.101153
https://doi.org/10.12720/jtle.2.2.140-145
https://doi.org/10.1080/17457300.2022.2098343
https://doi.org/10.3390/su15043138
https://doi.org/10.1016/j.aap.2020.105616
https://doi.org/10.1016/j.aap.2019.06.001


Appl. Sci. 2024, 14, 9322 15 of 15

9. Sinha, A.; Chand, S.; Wijayaratna, K.P.; Virdi, N.; Dixit, V. Comprehensive safety assessment in mixed fleets with connected and
automated vehicles: A crash severity and rate evaluation of conventional vehicles. Accid. Anal. Prev. 2020, 142, 105567. [CrossRef]
[PubMed]

10. Sekar, N.K.; Malaghan, V.; Pawar, D.S. Micro-simulation insights into the safety and operational benefits of autonomous vehicles.
J. Intell. Connect. Veh. 2023, 6, 202–210. [CrossRef]

11. Olia, A.; Abdelgawad, H.; Abdulhai, B.; Razavi, S.N. Assessing the potential impacts of connected vehicles: Mobility, environ-
mental, and safety perspectives. J. Intell. Transp. Syst. 2016, 20, 229–243. [CrossRef]

12. Xiao, G.; Lee, J.; Jiang, Q.; Huang, H.; Abdel-Aty, M.; Wang, L. Safety improvements by intelligent connected vehicle technologies:
A meta-analysis considering market penetration rates. Accid. Anal. Prev. 2021, 159, 106234. [CrossRef] [PubMed]

13. Yue, L.; Abdel-Aty, A.M.; Wu, Y.; Farid, A. The practical effectiveness of advanced driver assistance systems at different roadway
facilities: System limitation, adoption, and usage. IEEE Trans. Intell. Transp. Syst. 2019, 21, 3859–3870. [CrossRef]

14. Ye, L.; Yamamoto, T. Evaluating the impact of connected and autonomous vehicles on traffic safety. Phys. A Stat. Mech. Its Appl.
2019, 526, 121009. [CrossRef]

15. Essa, M.; Sayed, T. Self-learning adaptive traffic signal control for real-time safety optimization. Accid. Anal. Prev. 2020, 146, 105713.
[CrossRef]

16. Morando, M.M.; Tian, Q.; Truong, L.T.; Vu, H.L. Studying the safety impact of autonomous vehicles using simulation-based
surrogate safety measures. J. Adv. Transp. 2018, 2018, 6135183. [CrossRef]

17. Elawady, A.; Abuzwidah, M.; Zeiada, W. The benefits of using connected vehicles system on traffic delay and safety at urban
signalized intersections. In Proceedings of the 2022 Advances in Science and Engineering Technology International Conferences
(ASET), Dubai, United Arab Emirates, 21–24 February 2022; pp. 1–6.

18. El-Hansali, Y.; Farrag, S.; Yasar, A.; Shakshuki, E.; Al-Abri, K. Using surrogate measures to evaluate the safety of autonomous
vehicles. Procedia Comput. Sci. 2021, 191, 151–159. [CrossRef]

19. ISO 22179; Intelligent Transport Systems-Full Speed Range Adaptive Cruise Control (FSRA) Systems-Performance Requirements
and Test Procedures. ISO: Geneva, Switzerland, 2009.

20. Durrani, U.; Lee, C.; Maoh, H. Calibrating the Wiedemann’s vehicle-following model using mixed vehicle-pair interactions.
Transp. Res. Part. C Emerg. Technol. 2016, 67, 227–242. [CrossRef]

21. Bhin, M.; Son, S.; Lee, C. A Study of Effectiveness Evaluation of Internet of Things Traffic Control Devices in Preparation of
Autonomous Vehicle Operation Using Simulation. J. Korean Soc. Transp. 2021, 39, 737–752. [CrossRef]

22. El-Basyouny, K.; Sayed, T. Safety performance functions using traffic conflicts. Saf. Sci. 2013, 51, 160–164. [CrossRef]
23. Oh, C.; Jo, J.I.; Kim, J.H.; Oh, J.T. Methodology for Evaluating Real-time Rear-end Collision Risks based on Vehicle Trajectory

Data Extracted from Video Image Tracking. J. Korean Soc. Transp. 2007, 25, 173–182.
24. Archer, J. Indicators for Traffic Safety Assessment and Prediction and Their Application in Micro-Simulation Modelling: A Study

of Urban and Suburban Intersections. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2005.
25. Cunto, F.J.C.; Saccomanno, F.F. Microlevel traffic simulation method for assessing crash potential at intersections. In Proceedings

of the Transportation Research Board 86th annual Meeting, Washington DC, USA, 21–25 January 2007.
26. Jo, Y.; Jung, A.; Park, H.; Park, J.; Oh, C. Prioritizing driving safety indicators using real-world C-ITS data to identify hazardous

freeway sections. J. Korean Soc. Transp. 2022, 40, 863–878. [CrossRef]
27. Park, J.T.; Lee, S.B. Effects Analysis of Traffic Safety Improvement Program Using Data Mining: Focusing on Urban Area. J. Transp.

Res. 2011, 18, 77–91.
28. Yaghoubzadeh-Bavandpour, A.; Bozorg-Haddad, O.; Zolghadr-Asli, B.; Singh, V.P. Computational intelligence: An introduction.

In Computational Intelligence for Water and Environmental Sciences, 2nd ed.; Bozorg-Haddad, O., Zolghadr-Asli, B., Eds.; Springer:
Singapore, 2022; Volume 1043, pp. 411–427.

29. Patro, S.; Sahu, K.K. Normalization: A preprocessing stage. arXiv 2015, arXiv:1503.06462. [CrossRef]
30. Breiman, L.; Friedman, J.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees, 1st ed.; Chapman and Hall/CRC: New York,

NY, USA, 1984; p. 368.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.aap.2020.105567
https://www.ncbi.nlm.nih.gov/pubmed/32361477
https://doi.org/10.26599/JICV.2023.9210007
https://doi.org/10.1080/15472450.2015.1062728
https://doi.org/10.1016/j.aap.2021.106234
https://www.ncbi.nlm.nih.gov/pubmed/34119818
https://doi.org/10.1109/TITS.2019.2935195
https://doi.org/10.1016/j.physa.2019.04.245
https://doi.org/10.1016/j.aap.2020.105713
https://doi.org/10.1155/2018/6135183
https://doi.org/10.1016/j.procs.2021.07.020
https://doi.org/10.1016/j.trc.2016.02.012
https://doi.org/10.7470/jkst.2021.39.6.737
https://doi.org/10.1016/j.ssci.2012.04.015
https://doi.org/10.7470/jkst.2022.40.6.863
https://doi.org/10.17148/IARJSET.2015.2305

	Introduction 
	Literature Review 
	Methodology 
	Overall Framework 
	AVD Collection and Preprocessing 
	Definition of Hazardous Road Sections 
	Simulation of Autonomous Vehicle Driving Behavior 
	Derivation of Promising Evaluation Indicators and Development of an Integrated Evaluation Index 

	Results 
	Adjustment of VISSIM Parameters Based on Driving Behavior Analysis 
	Derivation of Actual Hazardous Road Sections 
	Derivation of Promising Evaluation Indicators and the Integrated Evaluation Index 

	Conclusions 
	References

