Effective Prevention and Rehabilitation Strategies to Mitigate Non-Contact Anterior Cruciate Ligament Injuries: A Narrative Review
Abstract
:1. Introduction
2. Prevention of NC-ACLs
2.1. Targeting NC-ACL Modifiable Risk Factors
2.2. Strategies to Prevent the Occurrence of NC-ACLs
3. Rehabilitation Following NC-ACLs
3.1. Early Stage
3.2. Mid-Stage
3.3. Late Stage
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ambrosio, L.; Franco, D.; Vadalà, G.; Russo, F.; Papalia, R. Anterior Cruciate Ligament Repair Augmented with Dynamic Intraligamentary Stabilization Is Equivalent to Hamstring Autograft Reconstruction at Short- and Mid-Term Follow-Up: A Systematic Review. Arthrosc. J. Arthrosc. Relat. Surg. 2024, 40, 2121–2131.e1. [Google Scholar] [CrossRef] [PubMed]
- Ambrosio, L.; Vadalà, G.; Castaldo, R.; Gentile, G.; Nibid, L.; Rabitti, C.; Ambrosio, L.; Franceschetti, E.; Samuelsson, K.; Senorski, E.H.; et al. Massive Foreign Body Reaction and Osteolysis Following Primary Anterior Cruciate Ligament Reconstruction with the Ligament Augmentation and Reconstruction System (LARS): A Case Report with Histopathological and Physicochemical Analysis. BMC Musculoskelet. Disord. 2022, 23, 1140. [Google Scholar] [CrossRef] [PubMed]
- Papalia, R.; Cicione, C.; Russo, F.; Ambrosio, L.; Di Giacomo, G.; Vadalà, G.; Denaro, V. Does Vancomycin Wrapping in Anterior Cruciate Ligament Reconstruction Affect Tenocyte Activity In Vitro? Antibiotics 2021, 10, 1087. [Google Scholar] [CrossRef]
- Wang, L.-J.; Zeng, N.; Yan, Z.-P.; Li, J.-T.; Ni, G.-X. Post-Traumatic Osteoarthritis Following ACL Injury. Arthritis Res. Ther. 2020, 22, 57. [Google Scholar] [CrossRef]
- Mather, R.C.; Koenig, L.; Kocher, M.S.; Dall, T.M.; Gallo, P.; Scott, D.J.; Bach, B.R.; the MOON Knee Group; Spindler, K.P. Societal and Economic Impact of Anterior Cruciate Ligament Tears. J. Bone Jt. Surg. 2013, 95, 1751–1759. [Google Scholar] [CrossRef] [PubMed]
- Boden, B.P.; Dean, G.S.; Feagin, J.A.; Garrett, W.E. Mechanisms of Anterior Cruciate Ligament Injury. Orthopedics 2000, 23, 573–578. [Google Scholar] [CrossRef]
- Marmura, H.; Bryant, D.M.; Getgood, A.M. Infographic. Sex Differences and ACL Injuries. Br. J. Sports Med. 2021, 55, 1313–1314. [Google Scholar] [CrossRef]
- Krosshaug, T.; Slauterbeck, J.R.; Engebretsen, L.; Bahr, R. Biomechanical Analysis of Anterior Cruciate Ligament Injury Mechanisms: Three-dimensional Motion Reconstruction from Video Sequences. Scand. Med. Sci. Sports 2007, 17, 508–519. [Google Scholar] [CrossRef]
- Colby, S.; Francisco, A.; Bing, Y.; Kirkendall, D.; Finch, M.; Garrett, W. Electromyographic and Kinematic Analysis of Cutting Maneuvers: Implications for Anterior Cruciate Ligament Injury. Am. J. Sports Med. 2000, 28, 234–240. [Google Scholar] [CrossRef]
- Parsons, J.L.; Coen, S.E.; Bekker, S. Anterior Cruciate Ligament Injury: Towards a Gendered Environmental Approach. Br. J. Sports Med. 2021, 55, 984–990. [Google Scholar] [CrossRef]
- Crotti, M.; Heering, T.; Lander, N.; Fox, A.; Barnett, L.M.; Duncan, M.J. Extrinsic Risk Factors for Primary Noncontact Anterior Cruciate Ligament Injury in Adolescents Aged between 14 and 18 Years: A Systematic Review. Sports Med. 2024, 54, 875–894. [Google Scholar] [CrossRef] [PubMed]
- Souryal, T.O.; Freeman, T.R. Intercondylar Notch Size and Anterior Cruciate Ligament Injuries in Athletes: A Prospective Study. Am. J. Sports Med. 1993, 21, 535–539. [Google Scholar] [CrossRef] [PubMed]
- Shelbourne, K.D.; Facibene, W.A.; Hunt, J.J. Radiographic and Intraoperative Intercondylar Notch Width Measurements in Men and Women with Unilateral and Bilateral Anterior Cruciate Ligament Tears. Knee Surg. Sports Traumatol. Arthrosc. 1997, 5, 229–233. [Google Scholar] [CrossRef] [PubMed]
- McLean, S.G.; Lucey, S.M.; Rohrer, S.; Brandon, C. Knee Joint Anatomy Predicts High-Risk in Vivo Dynamic Landing Knee Biomechanics. Clin. Biomech. 2010, 25, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Shao, Q.; MacLeod, T.D.; Manal, K.; Buchanan, T.S. Estimation of Ligament Loading and Anterior Tibial Translation in Healthy and ACL-Deficient Knees During Gait and the Influence of Increasing Tibial Slope Using EMG-Driven Approach. Ann. Biomed. Eng. 2011, 39, 110–121. [Google Scholar] [CrossRef]
- Uhorchak, J.M.; Scoville, C.R.; Williams, G.N.; Arciero, R.A.; Pierre, P.S.; Taylor, D.C. Risk Factors Associated with Noncontact Injury of the Anterior Cruciate Ligament. Am. J. Sports Med. 2003, 31, 831–842. [Google Scholar] [CrossRef] [PubMed]
- Shimokochi, Y.; Shultz, S.J. Mechanisms of Noncontact Anterior Cruciate Ligament Injury. J. Athl. Train. 2008, 43, 396–408. [Google Scholar] [CrossRef]
- Dai, B.; Garrett, W.E.; Gross, M.T.; Padua, D.A.; Queen, R.M.; Yu, B. The Effect of Performance Demands on Lower Extremity Biomechanics during Landing and Cutting Tasks. J. Sport Health Sci. 2019, 8, 228–234. [Google Scholar] [CrossRef]
- Griffin, L.Y.; Albohm, M.J.; Arendt, E.A.; Bahr, R.; Beynnon, B.D.; DeMaio, M.; Dick, R.W.; Engebretsen, L.; Garrett, W.E.; Hannafin, J.A.; et al. Understanding and Preventing Noncontact Anterior Cruciate Ligament Injuries: A Review of the Hunt Valley II Meeting, January 2005. Am. J. Sports Med. 2006, 34, 1512–1532. [Google Scholar] [CrossRef]
- Mendiguchia, J.; Ford, K.R.; Quatman, C.E.; Alentorn-Geli, E.; Hewett, T.E. Sex Differences in Proximal Control of the Knee Joint. Sports Med. 2011, 41, 541–557. [Google Scholar] [CrossRef]
- Larwa, J.; Stoy, C.; Chafetz, R.S.; Boniello, M.; Franklin, C. Stiff Landings, Core Stability, and Dynamic Knee Valgus: A Systematic Review on Documented Anterior Cruciate Ligament Ruptures in Male and Female Athletes. Int. J. Environ. Res. Public Health 2021, 18, 3826. [Google Scholar] [CrossRef] [PubMed]
- Chappell, J.D.; Creighton, R.A.; Giuliani, C.; Yu, B.; Garrett, W.E. Kinematics and Electromyography of Landing Preparation in Vertical Stop-Jump: Risks for Noncontact Anterior Cruciate Ligament Injury. Am. J. Sports Med. 2007, 35, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Nessler, T.; Denney, L.; Sampley, J. ACL Injury Prevention: What Does Research Tell Us? Curr. Rev. Musculoskelet. Med. 2017, 10, 281–288. [Google Scholar] [CrossRef]
- Gagnier, J.J.; Morgenstern, H.; Chess, L. Interventions Designed to Prevent Anterior Cruciate Ligament Injuries in Adolescents and Adults: A Systematic Review and Meta-Analysis. Am. J. Sports Med. 2013, 41, 1952–1962. [Google Scholar] [CrossRef]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Heidt, R.S.; Colosimo, A.J.; McLean, S.G.; Van Den Bogert, A.J.; Paterno, M.V.; Succop, P. Biomechanical Measures of Neuromuscular Control and Valgus Loading of the Knee Predict Anterior Cruciate Ligament Injury Risk in Female Athletes: A Prospective Study. Am. J. Sports Med. 2005, 33, 492–501. [Google Scholar] [CrossRef]
- Huston, L.J.; Wojtys, E.M. Neuromuscular Performance Characteristics in Elite Female Athletes. Am. J. Sports Med. 1996, 24, 427–436. [Google Scholar] [CrossRef]
- Chappell, J.D.; Yu, B.; Kirkendall, D.T.; Garrett, W.E. A Comparison of Knee Kinetics between Male and Female Recreational Athletes in Stop-Jump Tasks. Am. J. Sports Med. 2002, 30, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Barber-Westin, S.D.; Noyes, F.R.; Smith, S.T.; Campbell, T.M. Reducing the Risk of Noncontact Anterior Cruciate Ligament Injuries in the Female Athlete. Physician Sportsmed. 2009, 37, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Renstrom, P.; Ljungqvist, A.; Arendt, E.; Beynnon, B.; Fukubayashi, T.; Garrett, W.; Georgoulis, T.; Hewett, T.E.; Johnson, R.; Krosshaug, T.; et al. Non-Contact ACL Injuries in Female Athletes: An International Olympic Committee Current Concepts Statement. Br. J. Sports Med. 2008, 42, 394–412. [Google Scholar] [CrossRef]
- Chappell, J.D.; Limpisvasti, O. Effect of a Neuromuscular Training Program on the Kinetics and Kinematics of Jumping Tasks. Am. J. Sports Med. 2008, 36, 1081–1086. [Google Scholar] [CrossRef]
- Engebretsen, A.H.; Myklebust, G.; Holme, I.; Engebretsen, L.; Bahr, R. Prevention of Injuries among Male Soccer Players: A Prospective, Randomized Intervention Study Targeting Players with Previous Injuries or Reduced Function. Am. J. Sports Med. 2008, 36, 1052–1060. [Google Scholar] [CrossRef] [PubMed]
- Gilchrist, J.; Mandelbaum, B.R.; Melancon, H.; Ryan, G.W.; Silvers, H.J.; Griffin, L.Y.; Watanabe, D.S.; Dick, R.W.; Dvorak, J. A Randomized Controlled Trial to Prevent Noncontact Anterior Cruciate Ligament Injury in Female Collegiate Soccer Players. Am. J. Sports Med. 2008, 36, 1476–1483. [Google Scholar] [CrossRef]
- Heidt, R.S.; Sweeterman, L.M.; Carlonas, R.L.; Traub, J.A.; Tekulve, F.X. Avoidance of Soccer Injuries with Preseason Conditioning. Am. J. Sports Med. 2000, 28, 659–662. [Google Scholar] [CrossRef] [PubMed]
- Hewett, T.E.; Lindenfeld, T.N.; Riccobene, J.V.; Noyes, F.R. The Effect of Neuromuscular Training on the Incidence of Knee Injury in Female Athletes. Am. J. Sports Med. 1999, 27, 699–706. [Google Scholar] [CrossRef]
- Mandelbaum, B.R.; Silvers, H.J.; Watanabe, D.S.; Knarr, J.F.; Thomas, S.D.; Griffin, L.Y.; Kirkendall, D.T.; Garrett, W. Effectiveness of a Neuromuscular and Proprioceptive Training Program in Preventing Anterior Cruciate Ligament Injuries in Female Athletes: 2-Year Follow-Up. Am. J. Sports Med. 2005, 33, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Myer, G.D.; Ford, K.R.; Palumbo, J.P.; Hewett, T.E. Neuromuscular Training Improves Performance and Lower-Extremity Biomechanics in Female Athletes. J. Strength. Cond. Res. 2005, 19, 51. [Google Scholar] [CrossRef]
- Paterno, M.V.; Myer, G.D.; Ford, K.R.; Hewett, T.E. Neuromuscular Training Improves Single-Limb Stability in Young Female Athletes. J. Orthop. Sports Phys. Ther. 2004, 34, 305–316. [Google Scholar] [CrossRef]
- Pfeiffer, R.P.; Shea, K.G.; Roberts, D.; Grandstrand, S.; Bond, L. Lack of Effect of a Knee Ligament Injury Prevention Program on the Incidence of Noncontact Anterior Cruciate Ligament Injury. J. Bone Jt. Surg. 2006, 88, 1769–1774. [Google Scholar] [CrossRef]
- Steffen, K.; Myklebust, G.; Olsen, O.E.; Holme, I.; Bahr, R. Preventing Injuries in Female Youth Football—A Cluster-randomized Controlled Trial. Scand. Med. Sci. Sports 2008, 18, 605–614. [Google Scholar] [CrossRef]
- Alentorn-Geli, E.; Myer, G.D.; Silvers, H.J.; Samitier, G.; Romero, D.; Lázaro-Haro, C.; Cugat, R. Prevention of Non-Contact Anterior Cruciate Ligament Injuries in Soccer Players. Part 1: Mechanisms of Injury and Underlying Risk Factors. Knee Surg. Sports Traumatol. Arthrosc. 2009, 17, 705–729. [Google Scholar] [CrossRef]
- Chimera, N.J.; Swanik, K.A.; Swanik, C.B.; Straub, S.J. Effects of Plyometric Training on Muscle-Activation Strategies and Performance in Female Athletes. J. Athl. Train. 2004, 39, 24–31. [Google Scholar] [PubMed]
- Herman, D.C.; Weinhold, P.S.; Guskiewicz, K.M.; Garrett, W.E.; Yu, B.; Padua, D.A. The Effects of Strength Training on the Lower Extremity Biomechanics of Female Recreational Athletes during a Stop-Jump Task. Am. J. Sports Med. 2008, 36, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Zazulak, B.T.; Hewett, T.E.; Reeves, N.P.; Goldberg, B.; Cholewicki, J. Deficits in Neuromuscular Control of the Trunk Predict Knee Injury Risk: Prospective Biomechanical-Epidemiologic Study. Am. J. Sports Med. 2007, 35, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Wilk, K.E.; Escamilla, R.F.; Fleisig, G.S.; Barrentine, S.W.; Andrews, J.R.; Boyd, M.L. A Comparison of Tibiofemoral Joint Forces and Electromyographic Activit During Open and Closed Kinetic Chain Exercises. Am. J. Sports Med. 1996, 24, 518–527. [Google Scholar] [CrossRef]
- Maniar, N.; Cole, M.H.; Bryant, A.L.; Opar, D.A. Muscle Force Contributions to Anterior Cruciate Ligament Loading. Sports Med. 2022, 52, 1737–1750. [Google Scholar] [CrossRef]
- Alentorn-Geli, E.; Myer, G.D.; Silvers, H.J.; Samitier, G.; Romero, D.; Lázaro-Haro, C.; Cugat, R. Prevention of Non-Contact Anterior Cruciate Ligament Injuries in Soccer Players. Part 2: A Review of Prevention Programs Aimed to Modify Risk Factors and to Reduce Injury Rates. Knee Surg. Sports Traumatol. Arthrosc. 2009, 17, 859–879. [Google Scholar] [CrossRef]
- Holcomb, W.R.; Rubley, M.D.; Lee, H.J.; Guadagnoli, M.A. Effect of Hamstring-Emphasized Resistance Training on Hamstring:Quadriceps Strength Ratios. J. Strength. Cond. Res. 2007, 21, 41. [Google Scholar] [CrossRef]
- Hewett, T.E.; Stroupe, A.L.; Nance, T.A.; Noyes, F.R. Plyometric Training in Female Athletes: Decreased Impact Forces and Increased Hamstring Torques. Am. J. Sports Med. 1996, 24, 765–773. [Google Scholar] [CrossRef]
- Wilkerson, G.B.; Colston, M.A.; Short, N.I.; Neal, K.L.; Hoewischer, P.E.; Pixley, J.J. Neuromuscular Changes in Female Collegiate Athletes Resulting From a Plyometric Jump-Training Program. J. Athl. Train. 2004, 39, 17–23. [Google Scholar]
- Nyland, J.A.; Caborn, D.N.; Shapiro, R.; Johnson, D.L. Crossover Cutting during Hamstring Fatigue Produces Transverse Plane Knee Control Deficits. J. Athl. Train. 1999, 34, 137–143. [Google Scholar]
- Olsen, O.-E.; Myklebust, G.; Engebretsen, L.; Holme, I.; Bahr, R. Exercises to Prevent Lower Limb Injuries in Youth Sports: Cluster Randomised Controlled Trial. BMJ 2005, 330, 449. [Google Scholar] [CrossRef] [PubMed]
- Myer, G.D.; Ford, K.R.; Brent, J.L.; Hewett, T.E. Differential Neuromuscular Training Effects onACL Injury Risk Factors in “high-Risk” versus “Low-Risk” Athletes. BMC Musculoskelet. Disord. 2007, 8, 39. [Google Scholar] [CrossRef] [PubMed]
- LaBella, C.R.; Huxford, M.R.; Grissom, J.; Kim, K.-Y.; Peng, J.; Christoffel, K.K. Effect of Neuromuscular Warm-up on Injuries in Female Soccer and Basketball Athletes in Urban Public High Schools: Cluster Randomized Controlled Trial. Arch. Pediatr. Adolesc. Med. 2011, 165, 1033. [Google Scholar] [CrossRef]
- Caraffa, A.; Cerulli, G.; Projetti, M.; Aisa, G.; Rizzo, A. Prevention of Anterior Cruciate Ligament Injuries in Soccer: A Prospective Controlled Study of Proprioceptive Training. Knee Surg. Sports Traumatol. Arthrosc. 1996, 4, 19–21. [Google Scholar] [CrossRef]
- Myklebust, G.; Engebretsen, L.; Brækken, I.H.; Skjølberg, A.; Olsen, O.-E.; Bahr, R. Prevention of Anterior Cruciate Ligament Injuries in Female Team Handball Players: A Prospective Intervention Study Over Three Seasons. Clin. J. Sport Med. 2003, 13, 71–78. [Google Scholar] [CrossRef]
- Irmischer, B.S.; Harris, C.; Pfeiffer, R.P.; DeBeliso, M.A.; Adams, K.J.; Shea, K.G. Effects of a Knee Ligament Injury Prevention Exercise Program on Impact Forces in Women. J. Strength. Cond. Res. 2004, 18, 703. [Google Scholar] [CrossRef]
- Kiani, A. Prevention of Soccer-Related Knee Injuries in Teenaged Girls. Arch. Intern. Med. 2010, 170, 43. [Google Scholar] [CrossRef] [PubMed]
- Pasanen, K.; Parkkari, J.; Pasanen, M.; Hiilloskorpi, H.; Mäkinen, T.; Järvinen, M.; Kannus, P. Neuromuscular Training and the Risk of Leg Injuries in Female Floorball Players: Cluster Randomised Controlled Study. Br. J. Sports Med. 2008, 42, 802–805. [Google Scholar] [CrossRef]
- Ettlinger, C.F.; Johnson, R.J.; Shealy, J.E. A Method to Help Reduce the Risk of Serious Knee Sprains Incurred in Alpine Skiing. Am. J. Sports Med. 1995, 23, 531–537. [Google Scholar] [CrossRef]
- Van Melick, N.; Van Cingel, R.E.H.; Brooijmans, F.; Neeter, C.; Van Tienen, T.; Hullegie, W.; Nijhuis-van Der Sanden, M.W.G. Evidence-Based Clinical Practice Update: Practice Guidelines for Anterior Cruciate Ligament Rehabilitation Based on a Systematic Review and Multidisciplinary Consensus. Br. J. Sports Med. 2016, 50, 1506–1515. [Google Scholar] [CrossRef]
- Buckthorpe, M. Optimising the Late-Stage Rehabilitation and Return-to-Sport Training and Testing Process After ACL Reconstruction. Sports Med. 2019, 49, 1043–1058. [Google Scholar] [CrossRef] [PubMed]
- Buckthorpe, M.; Della Villa, F. Optimising the ‘Mid-Stage’ Training and Testing Process After ACL Reconstruction. Sports Med. 2020, 50, 657–678. [Google Scholar] [CrossRef] [PubMed]
- Buckthorpe, M.; Gokeler, A.; Herrington, L.; Hughes, M.; Grassi, A.; Wadey, R.; Patterson, S.; Compagnin, A.; La Rosa, G.; Della Villa, F. Optimising the Early-Stage Rehabilitation Process Post-ACL Reconstruction. Sports Med. 2024, 54, 49–72. [Google Scholar] [CrossRef] [PubMed]
- Bleakley, C.; McDonough, S.; MacAuley, D. The Use of Ice in the Treatment of Acute Soft-Tissue Injury: A Systematic Review of Randomized Controlled Trials. Am. J. Sports Med. 2004, 32, 251–261. [Google Scholar] [CrossRef]
- Kotsifaki, R.; Korakakis, V.; King, E.; Barbosa, O.; Maree, D.; Pantouveris, M.; Bjerregaard, A.; Luomajoki, J.; Wilhelmsen, J.; Whiteley, R. Aspetar Clinical Practice Guideline on Rehabilitation after Anterior Cruciate Ligament Reconstruction. Br. J. Sports Med. 2023, 57, 500–514. [Google Scholar] [CrossRef]
- Bleakley, C.M.; Glasgow, P.; MacAuley, D.C. PRICE Needs Updating, Should We Call the POLICE? Br. J. Sports Med. 2012, 46, 220–221. [Google Scholar] [CrossRef]
- Raynor, M.; Pietrobon, R.; Guller, U.; Higgins, L. Cryotherapy After ACL Reconstruction—A Meta-Analysis. J. Knee Surg. 2005, 18, 123–129. [Google Scholar] [CrossRef]
- Harner, C.D.; Honkamp, N.J.; Ranawat, A.S. Anteromedial Portal Technique for Creating the Anterior Cruciate Ligament Femoral Tunnel. Arthrosc. J. Arthrosc. Relat. Surg. 2008, 24, 113–115. [Google Scholar] [CrossRef]
- Shelbourne, K.D.; Gray, T. Minimum 10-Year Results after Anterior Cruciate Ligament Reconstruction: How the Loss of Normal Knee Motion Compounds Other Factors Related to the Development of Osteoarthritis After Surgery. Am. J. Sports Med. 2009, 37, 471–480. [Google Scholar] [CrossRef]
- Marques, F.D.S.; Barbosa, P.H.B.; Alves, P.R.; Zelada, S.; Nunes, R.P.D.S.; De Souza, M.R.; Pedro, M.D.A.C.; Nunes, J.F.; Alves, W.M.; De Campos, G.C. Anterior Knee Pain After Anterior Cruciate Ligament Reconstruction. Orthop. J. Sports Med. 2020, 8, 232596712096108. [Google Scholar] [CrossRef]
- Guerra-Pinto, F.; Thaunat, M.; Daggett, M.; Kajetanek, C.; Marques, T.; Guimaraes, T.; Quelard, B.; Sonnery-Cottet, B. Hamstring Contracture After ACL Reconstruction Is Associated With an Increased Risk of Cyclops Syndrome. Orthop. J. Sports Med. 2017, 5, 232596711668412. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.; Logerstedt, D.; Hunter-Giordano, A.; Axe, M.J.; Snyder-Mackler, L. Current Concepts for Anterior Cruciate Ligament Reconstruction: A Criterion-Based Rehabilitation Progression. J. Orthop. Sports Phys. Ther. 2012, 42, 601–614. [Google Scholar] [CrossRef] [PubMed]
- Popper, H.R.; Fliegel, B.E.; Elliott, D.M.; Su, A.W. Surgical Management of Traumatic Meniscus Injuries. Pathophysiology 2023, 30, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Calanna, F.; Duthon, V.; Menetrey, J. Rehabilitation and Return to Sports after Isolated Meniscal Repairs: A New Evidence-Based Protocol. J. Exp. Orthop. 2022, 9, 80. [Google Scholar] [CrossRef]
- Za, P.; Ambrosio, L.; Vasta, S.; Russo, F.; Papalia, G.F.; Vadalà, G.; Papalia, R. How to Improve Meniscal Repair through Biological Augmentation: A Narrative Review. J. Clin. Med. 2024, 13, 4688. [Google Scholar] [CrossRef]
- Irarrázaval, S.; Yaseen, Z.; Guenther, D.; Fu, F.H. Clinical Management of Ligament Injuries of the Knee and Postoperative Rehabilitation. In Regenerative Strategies for the Treatment of Knee Joint Disabilities; Oliveira, J.M., Reis, R.L., Eds.; Studies in Mechanobiology, Tissue Engineering and Biomaterials; Springer International Publishing: Cham, Switzerland, 2017; Volume 21, pp. 323–348. ISBN 978-3-319-44783-4. [Google Scholar]
- Goertz, S.; Brook, E.M.; Matzkin, E.G. Meniscal and Ligamentous Injuries of the Knee. In Principles of Orthopedic Practice for Primary Care Providers; Schoenfeld, A.J., Blauwet, C.A., Katz, J.N., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 453–471. ISBN 978-3-030-74624-7. [Google Scholar]
- Buckthorpe, M.; Pirotti, E.; Villa, F.D. Benefits and Use of Aquatic Therapy during Rehabilitation after Acl Reconstruction—A Clinical Commentary. Int. J. Sports Phys. Ther. 2019, 14, 978–993. [Google Scholar] [CrossRef] [PubMed]
- Sonnery-Cottet, B.; Ripoll, T.; Cavaignac, E. Prevention of Knee Stiffness Following Ligament Reconstruction: Understanding the Role of Arthrogenic Muscle Inhibition (AMI). Orthop. Traumatol. Surg. Res. 2024, 110, 103784. [Google Scholar] [CrossRef]
- Lewek, M.; Rudolph, K.; Axe, M.; Snyder-Mackler, L. The Effect of Insufficient Quadriceps Strength on Gait after Anterior Cruciate Ligament Reconstruction. Clin. Biomech. 2002, 17, 56–63. [Google Scholar] [CrossRef]
- Felson, D.T.; Niu, J.; McClennan, C.; Sack, B.; Aliabadi, P.; Hunter, D.J.; Guermazi, A.; Englund, M. Knee Buckling: Prevalence, Risk Factors, and Associated Limitations in Function. Ann. Intern. Med. 2007, 147, 534. [Google Scholar] [CrossRef]
- Amin, S.; Baker, K.; Niu, J.; Clancy, M.; Goggins, J.; Guermazi, A.; Grigoryan, M.; Hunter, D.J.; Felson, D.T. Quadriceps Strength and the Risk of Cartilage Loss and Symptom Progression in Knee Osteoarthritis. Arthritis Rheum. 2009, 60, 189–198. [Google Scholar] [CrossRef]
- Culvenor, A.G.; Patterson, B.E.; Guermazi, A.; Morris, H.G.; Whitehead, T.S.; Crossley, K.M. Accelerated Return to Sport After Anterior Cruciate Ligament Reconstruction and Early Knee Osteoarthritis Features at 1 Year: An Exploratory Study. PMR 2018, 10, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Grindem, H.; Snyder-Mackler, L.; Moksnes, H.; Engebretsen, L.; Risberg, M.A. Simple Decision Rules Can Reduce Reinjury Risk by 84% after ACL Reconstruction: The Delaware-Oslo ACL Cohort Study. Br. J. Sports Med. 2016, 50, 804–808. [Google Scholar] [CrossRef] [PubMed]
- Snyder-Mackler, L.; Delitto, A.; Bailey, S.L.; Stralka, S.W. Strength of the Quadriceps Femoris Muscle and Functional Recovery after Reconstruction of the Anterior Cruciate Ligament. A Prospective, Randomized Clinical Trial of Electrical Stimulation. J. Bone Jt. Surg. 1995, 77, 1166–1173. [Google Scholar] [CrossRef] [PubMed]
- Palmieri-Smith, R.M.; Lepley, L.K. Quadriceps Strength Asymmetry After Anterior Cruciate Ligament Reconstruction Alters Knee Joint Biomechanics and Functional Performance at Time of Return to Activity. Am. J. Sports Med. 2015, 43, 1662–1669. [Google Scholar] [CrossRef]
- Kyritsis, P.; Bahr, R.; Landreau, P.; Miladi, R.; Witvrouw, E. Likelihood of ACL Graft Rupture: Not Meeting Six Clinical Discharge Criteria before Return to Sport Is Associated with a Four Times Greater Risk of Rupture. Br. J. Sports Med. 2016, 50, 946–951. [Google Scholar] [CrossRef]
- Lepley, L.K. Deficits in Quadriceps Strength and Patient-Oriented Outcomes at Return to Activity After ACL Reconstruction: A Review of the Current Literature. Sports Health 2015, 7, 231–238. [Google Scholar] [CrossRef]
- Hopkins, J.; Ingersoll, C.D.; Edwards, J.; Klootwyk, T.E. Cryotherapy and Transcutaneous Electric Neuromuscular Stimulation Decrease Arthrogenic Muscle Inhibition of the Vastus Medialis After Knee Joint Effusion. J. Athl. Train. 2002, 37, 25–31. [Google Scholar]
- Norte, G.; Rush, J.; Sherman, D. Arthrogenic Muscle Inhibition: Best Evidence, Mechanisms, and Theory for Treating the Unseen in Clinical Rehabilitation. J. Sport Rehabil. 2022, 31, 717–735. [Google Scholar] [CrossRef]
- Rice, D.; McNair, P.J.; Dalbeth, N. Effects of Cryotherapy on Arthrogenic Muscle Inhibition Using an Experimental Model of Knee Swelling. Arthritis Rheum. 2009, 61, 78–83. [Google Scholar] [CrossRef]
- Lepley, L.K.; Wojtys, E.M.; Palmieri-Smith, R.M. Combination of Eccentric Exercise and Neuromuscular Electrical Stimulation to Improve Quadriceps Function Post-ACL Reconstruction. Knee 2015, 22, 270–277. [Google Scholar] [CrossRef]
- Arvidsson, I.; Eriksson, E. Postoperative TENS Pain Relief After Knee Surgery: Objective Evaluation. Orthopedics 1986, 9, 1346–1351. [Google Scholar] [CrossRef] [PubMed]
- Harkey, M.S.; Gribble, P.A.; Pietrosimone, B.G. Disinhibitory Interventions and Voluntary Quadriceps Activation: A Systematic Review. J. Athl. Train. 2014, 49, 411–421. [Google Scholar] [CrossRef]
- Hauger, A.V.; Reiman, M.P.; Bjordal, J.M.; Sheets, C.; Ledbetter, L.; Goode, A.P. Neuromuscular Electrical Stimulation Is Effective in Strengthening the Quadriceps Muscle after Anterior Cruciate Ligament Surgery. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 399–410. [Google Scholar] [CrossRef]
- Gorgey, A.S.; Timmons, M.K.; Dolbow, D.R.; Bengel, J.; Fugate-Laus, K.C.; Michener, L.A.; Gater, D.R. Electrical Stimulation and Blood Flow Restriction Increase Wrist Extensor Cross-Sectional Area and Flow Meditated Dilatation Following Spinal Cord Injury. Eur. J. Appl. Physiol. 2016, 116, 1231–1244. [Google Scholar] [CrossRef] [PubMed]
- Natsume, T.; Ozaki, H.; Saito, A.I.; Abe, T.; Naito, H. Effects of Electrostimulation with Blood Flow Restriction on Muscle Size and Strength. Med. Sci. Sports Exerc. 2015, 47, 2621–2627. [Google Scholar] [CrossRef] [PubMed]
- Rush, J.L.; Glaviano, N.R.; Norte, G.E. Assessment of Quadriceps Corticomotor and Spinal-Reflexive Excitability in Individuals with a History of Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis. Sports Med. 2021, 51, 961–990. [Google Scholar] [CrossRef] [PubMed]
- Sherman, D.A.; Glaviano, N.R.; Norte, G.E. Hamstrings Neuromuscular Function After Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis. Sports Med. 2021, 51, 1751–1769. [Google Scholar] [CrossRef] [PubMed]
- Perriman, A.; Leahy, E.; Semciw, A.I. The Effect of Open-Versus Closed-Kinetic-Chain Exercises on Anterior Tibial Laxity, Strength, and Function Following Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis. J. Orthop. Sports Phys. Ther. 2018, 48, 552–566. [Google Scholar] [CrossRef]
- Wilk, K.E.; Arrigo, C.A.; Bagwell, M.S.; Finck, A.N. Considerations with Open Kinetic Chain Knee Extension Exercise Following ACL Reconstruction. Int. J. Sports Phys. Ther. 2021, 16, 282–284. [Google Scholar] [CrossRef]
- Escamilla, R.F.; Macleod, T.D.; Wilk, K.E.; Paulos, L.; Andrews, J.R. ACL Strain and Tensile Forces for Weight Bearing and Non—Weight-Bearing Exercises After ACL Reconstruction: A Guide to Exercise Selection. J. Orthop. Sports Phys. Ther. 2012, 42, 208–220. [Google Scholar] [CrossRef]
- Claes, S.; Verdonk, P.; Forsyth, R.; Bellemans, J. The “Ligamentization” Process in Anterior Cruciate Ligament Reconstruction: What Happens to the Human Graft? A Systematic Review of the Literature. Am. J. Sports Med. 2011, 39, 2476–2483. [Google Scholar] [CrossRef] [PubMed]
- Fleming, B.C.; Oksendahl, H.; Beynnon, B.D. Open- or Closed-Kinetic Chain Exercises After Anterior Cruciate Ligament Reconstruction? Exerc. Sport Sci. Rev. 2005, 33, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Culvenor, A.G.; Øiestad, B.E.; Holm, I.; Gunderson, R.B.; Crossley, K.M.; Risberg, M.A. Anterior Knee Pain Following Anterior Cruciate Ligament Reconstruction Does Not Increase the Risk of Patellofemoral Osteoarthritis at 15- and 20-Year Follow-Ups. Osteoarthr. Cartil. 2017, 25, 30–33. [Google Scholar] [CrossRef]
- Escamilla, R.F.; Fleisig, G.S.; Zheng, N.; Barrentine, S.W.; Wilk, K.E.; Andrews, J.R. Biomechanics of the Knee during Closed Kinetic Chain and Open Kinetic Chain Exercises. Med. Sci. Sports Exerc. 1998, 30, 556–569. [Google Scholar] [CrossRef]
- Nagelli, C.V.; Hewett, T.E. Should Return to Sport Be Delayed Until 2 Years After Anterior Cruciate Ligament Reconstruction? Biological and Functional Considerations. Sports Med. 2017, 47, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Vogl, T.J.; Schmitt, J.; Lubrich, J.; Hochmuth, K.; Diebold, T.; Del Tredici, K.; Südkamp, N. Reconstructed Anterior Cruciate Ligaments Using Patellar Tendon Ligament Grafts: Diagnostic Value of Contrast-Enhanced MRI in a 2-Year Follow-up Regimen. Eur. Radiol. 2001, 11, 1450–1456. [Google Scholar] [CrossRef]
- Zaffagnini, S.; De Pasquale, V.; Marchesini Reggiani, L.; Russo, A.; Agati, P.; Bacchelli, B.; Marcacci, M. Neoligamentization Process of BTPB Used for ACL Graft: Histological Evaluation from 6 Months to 10 Years. Knee 2007, 14, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Morrissey, M.C.; Hudson, Z.L.; Drechsler, W.I.; Csoutts, F.J.; Knight, P.R.; King, J.B. Effects of Open versus Closed Kinetic Chain Training on Knee Laxity in the Early Period after Anterior Cruciate Ligament Reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2000, 8, 343–348. [Google Scholar] [CrossRef]
- Luque-Seron, J.A.; Medina-Porqueres, I. Anterior Cruciate Ligament Strain In Vivo: A Systematic Review. Sports Health 2016, 8, 451–455. [Google Scholar] [CrossRef]
- Ardern, C.L.; Webster, K.E.; Taylor, N.F.; Feller, J.A. Hamstring Strength Recovery After Hamstring Tendon Harvest for Anterior Cruciate Ligament Reconstruction: A Comparison Between Graft Types. Arthrosc. J. Arthrosc. Relat. Surg. 2010, 26, 462–469. [Google Scholar] [CrossRef]
- Nomura, Y.; Kuramochi, R.; Fukubayashi, T. Evaluation of Hamstring Muscle Strength and Morphology after Anterior Cruciate Ligament Reconstruction. Scand. Med. Sci. Sports 2015, 25, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Tengman, E.; Brax Olofsson, L.; Stensdotter, A.K.; Nilsson, K.G.; Häger, C.K. Anterior Cruciate Ligament Injury after More than 20 Years. II. Concentric and Eccentric Knee Muscle Strength. Scand. Med. Sci. Sports 2014, 24, e501–e509. [Google Scholar] [CrossRef] [PubMed]
- Timmins, R.G.; Bourne, M.N.; Shield, A.J.; Williams, M.D.; Lorenzen, C.; Opar, D.A. Biceps Femoris Architecture and Strength in Athletes with a Previous Anterior Cruciate Ligament Reconstruction. Med. Sci. Sports Exerc. 2016, 48, 337–345. [Google Scholar] [CrossRef]
- Vairo, G.L. Knee Flexor Strength and Endurance Profiles After Ipsilateral Hamstring Tendons Anterior Cruciate Ligament Reconstruction. Arch. Phys. Med. Rehabil. 2014, 95, 552–561. [Google Scholar] [CrossRef] [PubMed]
- Bourne, M.N.; Bruder, A.M.; Mentiplay, B.F.; Carey, D.L.; Patterson, B.E.; Crossley, K.M. Eccentric Knee Flexor Weakness in Elite Female Footballers 1–10 Years Following Anterior Cruciate Ligament Reconstruction. Phys. Ther. Sport 2019, 37, 144–149. [Google Scholar] [CrossRef]
- Irie, K.; Tomatsu, T. Atrophy of Semitendinosus and Gracilis and Flexor Mechanism Function After Hamstring Tendon Harvest for Anterior Cruciate Ligament Reconstruction. Orthopedics 2002, 25, 491–495. [Google Scholar] [CrossRef]
- Snow, B.J.; Wilcox, J.J.; Burks, R.T.; Greis, P.E. Evaluation of Muscle Size and Fatty Infiltration with MRI Nine to Eleven Years Following Hamstring Harvest for ACL Reconstruction. J. Bone Jt. Surg. 2012, 94, 1274–1282. [Google Scholar] [CrossRef]
- Williams, G.N.; Snyder-Mackler, L.; Barrance, P.J.; Axe, M.J.; Buchanan, T.S. Muscle and Tendon Morphology after Reconstruction of the Anterior Cruciate Ligament with Autologous Semitendinosus-Gracilis Graft. J. Bone Jt. Surg. Am. Vol. 2004, 86, 1936–1946. [Google Scholar] [CrossRef]
- Johnston, P.T.; Feller, J.A.; McClelland, J.A.; Webster, K.E. Strength Deficits and Flexion Range of Motion Following Primary Anterior Cruciate Ligament Reconstruction Differ between Quadriceps and Hamstring Autografts. J. ISAKOS Jt. Disord. Orthop. Sports Med. 2021, 6, 88–93. [Google Scholar] [CrossRef]
- Carofino, B.; Fulkerson, J. Medial Hamstring Tendon Regeneration Following Harvest for Anterior Cruciate Ligament Reconstruction: Fact, Myth, and Clinical Implication. Arthrosc. J. Arthrosc. Relat. Surg. 2005, 21, 1257–1265. [Google Scholar] [CrossRef]
- Ristanis, S.; Tsepis, E.; Giotis, D.; Stergiou, N.; Cerulli, G.; Georgoulis, A.D. Electromechanical Delay of the Knee Flexor Muscles Is Impaired After Harvesting Hamstring Tendons for Anterior Cruciate Ligament Reconstruction. Am. J. Sports Med. 2009, 37, 2179–2186. [Google Scholar] [CrossRef] [PubMed]
- Buckthorpe, M.; Danelon, F.; La Rosa, G.; Nanni, G.; Stride, M.; Della Villa, F. Recommendations for Hamstring Function Recovery After ACL Reconstruction. Sports Med. 2021, 51, 607–624. [Google Scholar] [CrossRef] [PubMed]
- Vakos, J.P.; Nitz, A.J.; Threlkeld, A.J.; Shapiro, R.; Horn, T. Electromyographic Activity of Selected Trunk Adn Hip Muscles During a Squat Left: Effect of Barying the Lumbar Posture. Spine 1994, 19, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Petersen, W.; Taheri, P.; Forkel, P.; Zantop, T. Return to Play Following ACL Reconstruction: A Systematic Review about Strength Deficits. Arch. Orthop. Trauma. Surg. 2014, 134, 1417–1428. [Google Scholar] [CrossRef]
- Khayambashi, K.; Ghoddosi, N.; Straub, R.K.; Powers, C.M. Hip Muscle Strength Predicts Noncontact Anterior Cruciate Ligament Injury in Male and Female Athletes: A Prospective Study. Am. J. Sports Med. 2016, 44, 355–361. [Google Scholar] [CrossRef]
- Sigward, S.M.; Chan, M.-S.M.; Lin, P.E.; Almansouri, S.Y.; Pratt, K.A. Compensatory Strategies that Reduce Knee Extensor Demand during a Bilateral Squat Change from 3 to 5 Months following Anterior Cruciate Ligament Reconstruction. J. Orthop. Sports Phys. Ther. 2018, 48, 713–718. [Google Scholar] [CrossRef]
- Decker, M.J.; Torry, M.R.; Noonan, T.J.; Riviere, A.; Sterett, W.I. Landing Adaptations after ACL Reconstruction. Med. Sci. Sports Exerc. 2002, 34, 1408–1413. [Google Scholar] [CrossRef] [PubMed]
- Buckthorpe, M. Recommendations for Movement Re-Training After ACL Reconstruction. Sports Med. 2021, 51, 1601–1618. [Google Scholar] [CrossRef]
- Gokeler, A.; Neuhaus, D.; Benjaminse, A.; Grooms, D.R.; Baumeister, J. Principles of Motor Learning to Support Neuroplasticity After ACL Injury: Implications for Optimizing Performance and Reducing Risk of Second ACL Injury. Sports Med. 2019, 49, 853–865. [Google Scholar] [CrossRef]
- Palmieri-Smith, R.M.; Thomas, A.C.; Wojtys, E.M. Maximizing Quadriceps Strength After ACL Reconstruction. Clin. Sports Med. 2008, 27, 405–424. [Google Scholar] [CrossRef]
- Hart, J.M.; Pietrosimone, B.; Hertel, J.; Ingersoll, C.D. Quadriceps Activation Following Knee Injuries: A Systematic Review. J. Athl. Train. 2010, 45, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Bodkin, S.; Goetschius, J.; Hertel, J.; Hart, J. Relationships of Muscle Function and Subjective Knee Function in Patients After ACL Reconstruction. Orthop. J. Sports Med. 2017, 5, 232596711771904. [Google Scholar] [CrossRef] [PubMed]
- Zwolski, C.; Schmitt, L.C.; Quatman-Yates, C.; Thomas, S.; Hewett, T.E.; Paterno, M.V. The Influence of Quadriceps Strength Asymmetry on Patient-Reported Function at Time of Return to Sport After Anterior Cruciate Ligament Reconstruction. Am. J. Sports Med. 2015, 43, 2242–2249. [Google Scholar] [CrossRef] [PubMed]
- Pietrosimone, B.; Lepley, A.S.; Kuenze, C.; Harkey, M.S.; Hart, J.M.; Blackburn, J.T.; Norte, G. Arthrogenic Muscle Inhibition Following Anterior Cruciate Ligament Injury. J. Sport Rehabil. 2022, 31, 694–706. [Google Scholar] [CrossRef] [PubMed]
- Matre, D.; Arendt-Nielsen, L.; Knardahl, S. Effects of Localization and Intensity of Experimental Muscle Pain on Ankle Joint Proprioception. Eur. J. Pain. 2002, 6, 245–260. [Google Scholar] [CrossRef]
- Giles, L.; Webster, K.E.; McClelland, J.; Cook, J.L. Quadriceps Strengthening with and without Blood Flow Restriction in the Treatment of Patellofemoral Pain: A Double-Blind Randomised Trial. Br. J. Sports Med. 2017, 51, 1688–1694. [Google Scholar] [CrossRef]
- Whiteley, R. Blood Flow Restriction Training in Rehabilitation: A Useful Adjunct or Lucy’s Latest Trick? J. Orthop. Sports Phys. Ther. 2019, 49, 294–298. [Google Scholar] [CrossRef]
- Binder-Macleod, S.A.; Halden, E.E.; Jungles, K.A. Effects of Stimulation Intensity on the Physiological Responses of Human Motor Units. Med. Sci. Sports Exerc. 1995, 27, 556–565. [Google Scholar] [CrossRef]
- Cabric, M.; Appell, H.-J.; Resic, A. Fine Structural Changes in Electrostimulated Human Skeletal Muscle: Evidence for Predominant Effects on Fast Muscle Fibres. Europ. J. Appl. Physiol. 1988, 57, 1–5. [Google Scholar] [CrossRef]
- Trimble, M.H.; Enoka, R.M. Mechanisms Underlying the Training Effects Associated with Neuromuscular Electrical Stimulation. Phys. Ther. 1991, 71, 273–280. [Google Scholar] [CrossRef]
- Rutherford, O.M.; Jones, D.A. The Role of Learning and Coordination in Strength Training. Europ. J. Appl. Physiol. 1986, 55, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Cacchio, A.; Don, R.; Ranavolo, A.; Guerra, E.; McCaw, S.T.; Procaccianti, R.; Camerota, F.; Frascarelli, M.; Santilli, V. Effects of 8-Week Strength Training with Two Models of Chest Press Machines on Muscular Activity Pattern and Strength. J. Electromyogr. Kinesiol. 2008, 18, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Bobbert, M.F.; Van Soest, A.J. Effects of Muscle Strengthening on Vertical Jump Height: A Simulation Study. Med. Sci. Sports Exerc. 1994, 26, 1012–1020. [Google Scholar] [CrossRef] [PubMed]
- Buckthorpe, M.; Gimpel, M.; Wright, S.; Sturdy, T.; Stride, M. Hamstring Muscle Injuries in Elite Football: Translating Research into Practice. Br. J. Sports Med. 2018, 52, 628–629. [Google Scholar] [CrossRef]
- Noehren, B.; Snyder-Mackler, L. Who’s Afraid of the Big Bad Wolf? Open-Chain Exercises After Anterior Cruciate Ligament Reconstruction. J. Orthop. Sports Phys. Ther. 2020, 50, 473–475. [Google Scholar] [CrossRef]
- Jewiss, D.; Ostman, C.; Smart, N. Open versus Closed Kinetic Chain Exercises Following an Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis. J. Sports Med. 2017, 2017, 4721548. [Google Scholar] [CrossRef]
- Zult, T.; Gokeler, A.; Van Raay, J.J.A.M.; Brouwer, R.W.; Zijdewind, I.; Hortobágyi, T. An Anterior Cruciate Ligament Injury Does Not Affect the Neuromuscular Function of the Non-Injured Leg except for Dynamic Balance and Voluntary Quadriceps Activation. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 172–183. [Google Scholar] [CrossRef]
- Harput, G.; Ulusoy, B.; Yildiz, T.I.; Demirci, S.; Eraslan, L.; Turhan, E.; Tunay, V.B. Cross-Education Improves Quadriceps Strength Recovery after ACL Reconstruction: A Randomized Controlled Trial. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 68–75. [Google Scholar] [CrossRef]
- Carroll, T.J.; Herbert, R.D.; Munn, J.; Lee, M.; Gandevia, S.C. Contralateral Effects of Unilateral Strength Training: Evidence and Possible Mechanisms. J. Appl. Physiol. 2006, 101, 1514–1522. [Google Scholar] [CrossRef]
- Fong, C.-M.; Blackburn, J.T.; Norcross, M.F.; McGrath, M.; Padua, D.A. Ankle-Dorsiflexion Range of Motion and Landing Biomechanics. J. Athl. Train. 2011, 46, 5–10. [Google Scholar] [CrossRef]
- Dorn, T.W.; Schache, A.G.; Pandy, M.G. Muscular Strategy Shift in Human Running: Dependence of Running Speed on Hip and Ankle Muscle Performance. J. Exp. Biol. 2012, 215, 1944–1956. [Google Scholar] [CrossRef] [PubMed]
- Maniar, N.; Schache, A.G.; Sritharan, P.; Opar, D.A. Non-Knee-Spanning Muscles Contribute to Tibiofemoral Shear as Well as Valgus and Rotational Joint Reaction Moments during Unanticipated Sidestep Cutting. Sci. Rep. 2018, 8, 2501. [Google Scholar] [CrossRef] [PubMed]
- Mokhtarzadeh, H.; Yeow, C.H.; Hong Goh, J.C.; Oetomo, D.; Malekipour, F.; Lee, P.V.-S. Contributions of the Soleus and Gastrocnemius Muscles to the Anterior Cruciate Ligament Loading during Single-Leg Landing. J. Biomech. 2013, 46, 1913–1920. [Google Scholar] [CrossRef]
- Dhillon, M.S.; Bali, K.; Prabhakar, S. Differences among Mechanoreceptors in Healthy and Injured Anterior Cruciate Ligaments and Their Clinical Importance. Muscles Ligaments Tendons J. 2012, 2, 38–43. [Google Scholar] [PubMed]
- Kapreli, E.; Athanasopoulos, S. The Anterior Cruciate Ligament Deficiency as a Model of Brain Plasticity. Med. Hypotheses 2006, 67, 645–650. [Google Scholar] [CrossRef]
- Chaudhari, A.M.W.; Briant, P.L.; Bevill, S.L.; Koo, S.; Andriacchi, T.P. Knee Kinematics, Cartilage Morphology, and Osteoarthritis after ACL Injury. Med. Sci. Sports Exerc. 2008, 40, 215–222. [Google Scholar] [CrossRef]
- Paterno, M.V.; Schmitt, L.C.; Ford, K.R.; Rauh, M.J.; Myer, G.D.; Huang, B.; Hewett, T.E. Biomechanical Measures during Landing and Postural Stability Predict Second Anterior Cruciate Ligament Injury after Anterior Cruciate Ligament Reconstruction and Return to Sport. Am. J. Sports Med. 2010, 38, 1968–1978. [Google Scholar] [CrossRef]
- Kaplan, Y.; Witvrouw, E. When Is It Safe to Return to Sport After ACL Reconstruction? Reviewing the Criteria. Sports Health 2019, 11, 301–305. [Google Scholar] [CrossRef]
- Lai, C.C.H.; Ardern, C.L.; Feller, J.A.; Webster, K.E. Eighty-Three per Cent of Elite Athletes Return to Preinjury Sport after Anterior Cruciate Ligament Reconstruction: A Systematic Review with Meta-Analysis of Return to Sport Rates, Graft Rupture Rates and Performance Outcomes. Br. J. Sports Med. 2018, 52, 128–138. [Google Scholar] [CrossRef]
- Zaffagnini, S.; Grassi, A.; Marcheggiani Muccioli, G.M.; Tsapralis, K.; Ricci, M.; Bragonzoni, L.; Della Villa, S.; Marcacci, M. Return to Sport after Anterior Cruciate Ligament Reconstruction in Professional Soccer Players. Knee 2014, 21, 731–735. [Google Scholar] [CrossRef]
- Ardern, C.L.; Webster, K.E.; Taylor, N.F.; Feller, J.A. Return to the Preinjury Level of Competitive Sport After Anterior Cruciate Ligament Reconstruction Surgery: Two-Thirds of Patients Have Not Returned by 12 Months After Surgery. Am. J. Sports Med. 2011, 39, 538–543. [Google Scholar] [CrossRef] [PubMed]
- Wiggins, A.J.; Grandhi, R.K.; Schneider, D.K.; Stanfield, D.; Webster, K.E.; Myer, G.D. Risk of Secondary Injury in Younger Athletes After Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis. Am. J. Sports Med. 2016, 44, 1861–1876. [Google Scholar] [CrossRef] [PubMed]
- Webster, K.E.; Feller, J.A. Exploring the High Reinjury Rate in Younger Patients Undergoing Anterior Cruciate Ligament Reconstruction. Am. J. Sports Med. 2016, 44, 2827–2832. [Google Scholar] [CrossRef] [PubMed]
- Thomeé, R.; Kaplan, Y.; Kvist, J.; Myklebust, G.; Risberg, M.A.; Theisen, D.; Tsepis, E.; Werner, S.; Wondrasch, B.; Witvrouw, E. Muscle Strength and Hop Performance Criteria Prior to Return to Sports after ACL Reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2011, 19, 1798–1805. [Google Scholar] [CrossRef]
- Wellsandt, E.; Failla, M.J.; Snyder-Mackler, L. Limb Symmetry Indexes Can Overestimate Knee Function After Anterior Cruciate Ligament Injury. J. Orthop. Sports Phys. Ther. 2017, 47, 334–338. [Google Scholar] [CrossRef]
- Mangine, G.T.; Hoffman, J.R.; Wang, R.; Gonzalez, A.M.; Townsend, J.R.; Wells, A.J.; Jajtner, A.R.; Beyer, K.S.; Boone, C.H.; Miramonti, A.A.; et al. Resistance Training Intensity and Volume Affect Changes in Rate of Force Development in Resistance-Trained Men. Eur. J. Appl. Physiol. 2016, 116, 2367–2374. [Google Scholar] [CrossRef]
- Dingenen, B.; Gokeler, A. Optimization of the Return-to-Sport Paradigm After Anterior Cruciate Ligament Reconstruction: A Critical Step Back to Move Forward. Sports Med. 2017, 47, 1487–1500. [Google Scholar] [CrossRef]
- Waldén, M.; Krosshaug, T.; Bjørneboe, J.; Andersen, T.E.; Faul, O.; Hägglund, M. Three Distinct Mechanisms Predominate in Non-Contact Anterior Cruciate Ligament Injuries in Male Professional Football Players: A Systematic Video Analysis of 39 Cases. Br. J. Sports Med. 2015, 49, 1452–1460. [Google Scholar] [CrossRef]
- Della Villa, S.; Boldrini, L.; Ricci, M.; Danelon, F.; Snyder-Mackler, L.; Nanni, G.; Roi, G.S. Clinical Outcomes and Return-to-Sports Participation of 50 Soccer Players After Anterior Cruciate Ligament Reconstruction Through a Sport-Specific Rehabilitation Protocol. Sports Health 2012, 4, 17–24. [Google Scholar] [CrossRef]
- Small, K.; McNaughton, L.; Greig, M.; Lovell, R. Effect of Timing of Eccentric Hamstring Strengthening Exercises During Soccer Training: Implications for Muscle Fatigability. J. Strength. Cond. Res. 2009, 23, 1077–1083. [Google Scholar] [CrossRef]
- Bizzini, M.; Hancock, D.; Impellizzeri, F. Suggestions From the Field for Return to Sports Participation Following Anterior Cruciate Ligament Reconstruction: Soccer. J. Orthop. Sports Phys. Ther. 2012, 42, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Brinlee, A.W.; Dickenson, S.B.; Hunter-Giordano, A.; Snyder-Mackler, L. ACL Reconstruction Rehabilitation: Clinical Data, Biologic Healing, and Criterion-Based Milestones to Inform a Return-to-Sport Guideline. Sports Health 2022, 14, 770–779. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.D.; Abrams, G.D.; Bach, B.R.; Williams, D.; Heidloff, D.; Bush-Joseph, C.A.; Verma, N.N.; Forsythe, B.; Cole, B.J. Return to Sport After ACL Reconstruction. Orthopedics 2014, 37, e103–e108. [Google Scholar] [CrossRef]
- Betsch, M.; Darwich, A.; Chang, J.; Whelan, D.; Ogilvie-Harris, D.; Chahal, J.; Theodoropoulos, J. Wide Variability in Return-to-Sport Criteria Used by Team Physicians After Anterior Cruciate Ligament Reconstruction in Elite Athletes—A Qualitative Study. Arthrosc. Sports Med. Rehabil. 2022, 4, e1759–e1766. [Google Scholar] [CrossRef] [PubMed]
Study | Study Design | Sample Size (M/F) | Risk Factors | Prevention Strategies | Training Duration | Conclusions |
---|---|---|---|---|---|---|
Herman et al., 2008 [42] | Controlled laboratory study | 66 (0/66) | Hip muscle weakness and excessive hip flexion | Resistance bands and exercise balls to train quadriceps, hamstrings, gluteus medius, and gluteus maximus muscles | 6 weeks | Strength training alone did not improve lower limb biomechanics |
Zazulak et al., 2007 [43] | PS | 277 (136/141) | Decreased core muscle control | Core stability and proprioceptive exercises, landing technique training | 3 years | Greater trunk displacement, particularly in the lateral direction, was associated with an increased risk of knee injuries in female athletes |
Holcomb et al., 2007 [47] | PS | 12 (0/12) | Altered isokinetic hamstrings to quadriceps ratio | Hamstring strength-focused training program | 7 weeks | Eccentric hamstring to concentric quadriceps ratio exceeded 1 after training |
Hewett et al., 2005 [25] | PS | 205 (0/205) | Increased dynamic knee valgus and high abduction loads | Neuromuscular training program | 6 weeks | Correction of landing biomechanics, neuromuscular control, and knee valgus loading decreased the risk of ACL injury |
Myer et al., 2007 [52] | PS | 53 (0/53) | Muscle co-activation imbalance, increased activation time, decreased strength | Plyometric, core strengthening, balance and resistance training | 6 weeks | A comprehensive training program demonstrated multiple benefits in adolescent female athletes |
Hewett et al., 1999 [34] | RCT | 1263 (434/829) | Not following a neuromuscular training program before the start of the sports season | Neuromuscular, flexibility, strength, and jumping power exercises | 6 weeks | Neuromuscular training can reduce the risk of knee injuries in female athletes |
Gilchrist et al., 2008 [32] | RCT | 1435 (0/1435) | Incorrect neuromuscular and biomechanical control | PEP warm-up program | 1 season | On-the-field exercises may prevent NC-ACLs in young female soccer players |
Caraffa et al., 1996 [54] | PS | 600 (600/0) | Alteration of lower extremity proprioception and dynamic balance | Progressive proprioception training and neuromuscular facilitation program | 3 consecutive seasons | Significant reduction in the incidence of ACL injury without distinguishing between NC-ACL and for contact ACL injuries |
Myklebust et al., 2003 [55] | PS | 2647 (0/2647) | Neuromuscular imbalances, improper landing techniques, and hormonal fluctuations | Neuromuscular training, proprioceptive exercises, and education on proper landing techniques | 5 weeks per 2 consecutive seasons | Neuromuscular training could significantly reduce the incidence of knee injuries in female athletes, particularly those who were untrained |
Heidt et al., 2000 [33] | PS | 300 (0/300) | Alteration of lower extremity dynamic balance | Cardiovascular, plyometric, strength, flexibility exercises and agility drills | 7 weeks | The trained group experienced a significantly lower incidence of injury than the untrained group |
Irmischer et al., 2004 [56] | PS | 28 (0/28) | High impact forces during landing | KLIP program | 9 weeks | Plyometric exercise program significantly reduced impact force in female athletes, potentially reducing the risk of knee injuries |
Pfeiffer et al., 2006 [38] | PS | 1439 (0/1439) | Incorrect jump-landing and running-deceleration mechanics | KLIP program | 12 weeks | The employed training program did not decrease NC-ACL rates in high-school female athletes |
Mandelbaum et al., 2005 [35] | PS | 5703 (0/5703) | Muscle co-activation imbalance with increased activation time; decreased muscular strength and landing mechanics | Warm-up program with athletic gesture education, stretching, strengthening, plyometrics, and agility | 12 weeks | A neuromuscular training program may decrease the rate of ACL injuries in female soccer players |
Olsen et al., 2005 [51] | RCT | 1837 (246/1591) | Lower strength with decreased joint stability | Strength exercises, proprioception exercises, and plyometrics | 8 months | Strength training can be an effective strategy for knee injury prevention |
LaBella et al., 2011 [53] | RCT | 1492 (0/1492) | Lack of neuromuscular control | Neuromuscular warm-up program for the entire sports season with exercises targeting strength, balance, agility, plyometrics, and flexibility | 1 season | Neuromuscular warm-up program significantly reduced the rate of non-contact lower extremity injuries in females |
Kiani et al., 2010 [57] | PS | 1506 (0/1506) | Female sex and young age | HarmoKnee preventive program | 1 season | HarmoKnee preventive program reduced the incidence of acute knee injuries by 77% and non-contact knee injuries by 90% in young female soccer players |
Pasanen et al., 2008 [58] | RCT | 457 (0/457) | Poor neuromuscular control, inadequate balance, and lack of strength | Training program to enhance players’ motor skills and body control | 26 weeks | Neuromuscular training significantly prevented NC-ACLs in female floorball players |
Ettlinger et al., 2005 [59] | PS | 4700 (NS) | Lack of understanding of how to react when a skier is in a position that could lead to an ACL injury | “ACL Awareness Training” program designed to educate skiers on the mechanisms of ACL injuries and how to avoid them | 1 season | A 62% reduction in ACL tears was found in the trained group compared to the control group |
Rehabilitation Stage | Main Contents | Objective |
---|---|---|
Early stage | Pain medication, cryotherapy, compression, and elevation [64,66] | Solve pain and swelling |
Active and passive mobilization exercises prioritizing the recovery of full extension [63,83] | Recover complete ROM | |
Ice, NMES, TENS, BFR, fatigue exercises for the hamstrings, and active exercise of the quadriceps [79,89,90,91,95,142] | AMI resolution and muscle reactivation | |
OKC exercises should be safe with a reduced ROM (45–90°) and low load [63,110,148] | ||
If hamstrings were chosen as grafts, their functional recovery should be delayed until 6–8 weeks after surgery [63,110,124] | ||
The resumption of weight bearing depends on the procedures associated with ACLR, such as meniscal repair, extra-articular ligament reconstructions, and bone procedures [63] | Weight-bearing and walking gait recovery | |
Re-education to normal gait [63] | ||
Mid-stage | OKC, CKC, and functional exercises [63,80] | Restore quadriceps and knee flexor strength |
Strengthen the muscles that support and stabilize the joints both above and below the knee (triceps sura, hip, and core muscles) [62,125,127] | Stabilize ACL agonists, prevent dynamic valgus, improve movement quality | |
Postural and joint control exercises, proprioception exercises, reactivation or inhibition programs to re-establish muscular synergy, and flexibility exercises [62] | Restore neuromuscular control and balance and movement quality | |
Strength exercises targeting the upper body, deep water running in a swimming pool, stationary biking [62] | Fitness reconditioning | |
Late stage | Explosive development of force with isometric tasks, ballistic exercise (jumping), full OKC and CKC exercises [166,167,168] | Restore explosive neuromuscular performance |
Solve muscle strength imbalances/agonist weakness [86] | Optimizing the quality of sport-specific movement | |
Optimize neuromuscular activation [61,62] | ||
2D visual movement assessments [169] | ||
Engage in sport-specific tasks by simulating realistic environments and stimuli [170] | ||
On-field rehabilitation [171] | ||
Cardiovascular training [61] | Neuromuscular conditioning whilst fatigued | |
Prolonged exposure to effort [172] | ||
Meet the criteria for RTS (psychological readiness, muscle strength, graft healing at MRI, functional tests, etc.) [173,174,175,176] | Optimizing the RTS and reducing risk of reinjury |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franco, D.; Ambrosio, L.; Za, P.; Maltese, G.; Russo, F.; Vadalà, G.; Papalia, R.; Denaro, V. Effective Prevention and Rehabilitation Strategies to Mitigate Non-Contact Anterior Cruciate Ligament Injuries: A Narrative Review. Appl. Sci. 2024, 14, 9330. https://doi.org/10.3390/app14209330
Franco D, Ambrosio L, Za P, Maltese G, Russo F, Vadalà G, Papalia R, Denaro V. Effective Prevention and Rehabilitation Strategies to Mitigate Non-Contact Anterior Cruciate Ligament Injuries: A Narrative Review. Applied Sciences. 2024; 14(20):9330. https://doi.org/10.3390/app14209330
Chicago/Turabian StyleFranco, Domenico, Luca Ambrosio, Pierangelo Za, Girolamo Maltese, Fabrizio Russo, Gianluca Vadalà, Rocco Papalia, and Vincenzo Denaro. 2024. "Effective Prevention and Rehabilitation Strategies to Mitigate Non-Contact Anterior Cruciate Ligament Injuries: A Narrative Review" Applied Sciences 14, no. 20: 9330. https://doi.org/10.3390/app14209330
APA StyleFranco, D., Ambrosio, L., Za, P., Maltese, G., Russo, F., Vadalà, G., Papalia, R., & Denaro, V. (2024). Effective Prevention and Rehabilitation Strategies to Mitigate Non-Contact Anterior Cruciate Ligament Injuries: A Narrative Review. Applied Sciences, 14(20), 9330. https://doi.org/10.3390/app14209330