
Citation: AlMajali, A.; Al-Abed, L.;

Ahmad Yousef, K.M.; Mohd, B.J.;

Samamah, Z.; Abu Shhadeh, A.

Automated Vulnerability Exploitation

Using Deep Reinforcement Learning.

Appl. Sci. 2024, 14, 9331. https://

doi.org/10.3390/app14209331

Academic Editors: Xavier A.

Larriva-Novo and Andres Marin

Lopez

Received: 28 July 2024

Revised: 10 October 2024

Accepted: 10 October 2024

Published: 13 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Automated Vulnerability Exploitation Using Deep
Reinforcement Learning
Anas AlMajali 1,2,* , Loiy Al-Abed 1, Khalil M. Ahmad Yousef 1 , Bassam J. Mohd 1 , Zaid Samamah 1 ,
and Anas Abu Shhadeh 1

1 Department of Computer Engineering, The Hashemite University, Zarqa 13115, Jordan;
luaiehsan@outlook.com (L.A.-A.); khalil@hu.edu.jo (K.M.A.Y.); bassam@hu.edu.jo (B.J.M.);
zsamamah@yahoo.com (Z.S.); anas.essa79@gmail.com (A.A.S.)

2 Department of Computer Science and Engineering, American University of Sharjah,
Sharjah 26666, United Arab Emirates

* Correspondence: almajali@hu.edu.jo or aalmajali@aus.edu

Abstract: The main objective of this paper is to develop a reinforcement agent capable of effectively
exploiting a specific vulnerability. Automating pentesting can reduce the cost and time of the
operation. While there are existing tools like Metasploit Pro that offer automated exploitation
capabilities, they often require significant execution times and resources due to their reliance on
exhaustive payload testing. In this paper, we have created a deep reinforcement agent specifically
configured to exploit a targeted vulnerability. Through a training phase, the agent learns and stores
payloads along with their corresponding reward values in a neural network. When encountering
a specific combination of a target operating system and vulnerability, the agent utilizes its neural
network to determine the optimal exploitation options. The novelty of this work lies in employing
Deep Reinforcement Learning in vulnerability exploitation analysis. To evaluate our proposed
methodology, we conducted training and testing on the Metasploitable platform. The training phase
of the reinforcement agent was conducted on two use cases: the first one has one vulnerability, and
the second one has four vulnerabilities. Our approach successfully achieved the attacker’s primary
objective of establishing a reverse shell with a maximum accuracy of 96.6% and 73.6% for use cases
one and two, respectively.

Keywords: cybersecurity; vulnerability exploitation; penetration testing; risk assessment;
reinforcement learning; neural networks; machine learning

1. Introduction

Everyday, Information Technologies (IT) and Operation Technologies (OT) evolve
to provide more services to humans. On the other hand, new vulnerabilities and threats
appear in our systems, making them susceptible to cyber attacks. The arms race between
attackers and defenders will never stop. The great advancements in Artificial Intelligence
(AI) and Machine Learning (ML) helped solve problems that surpass human capabilities
like winning a game of GO [1].

Cybersecurity risk assessment can be conducted by experts to assess the security
posture of an organization. This process involves vulnerability and threat analysis, and
it is part of a larger process, which is risk management. The evaluation of vulnerabilities
in a system can be performed manually by experts or automatically using special tools
and algorithms. ML techniques can be utilized to automate vulnerability assessment
and evaluation, which reduces the cost and effort (time) required by security experts.
The impact of exploiting vulnerabilities can be catastrophic, affecting the confidentiality,
integrity, and availability of IT and OT systems. The impact can include financial loss,
reputational damage, and even physical harm [2].

Appl. Sci. 2024, 14, 9331. https://doi.org/10.3390/app14209331 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14209331
https://doi.org/10.3390/app14209331
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4031-670X
https://orcid.org/0000-0002-0737-4107
https://orcid.org/0000-0002-9805-1740
https://orcid.org/0009-0009-3184-1228
https://doi.org/10.3390/app14209331
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14209331?type=check_update&version=1

Appl. Sci. 2024, 14, 9331 2 of 18

By identifying vulnerabilities in an organization’s systems and networks, organi-
zations can implement patches, upgrade software, or modify configuration settings to
improve the security posture of their systems. On average, out of the total number of vul-
nerabilities reported by vulnerability scanners, only 82% were relevant results (identified
correctly), regardless of the vulnerabilities that scanners failed to report (18% were false
positives) [3]. Penetration testing provides organizations with a comprehensive evaluation
of their security posture by identifying potential weaknesses or vulnerabilities in their
systems and networks. This allows organizations to prioritize their efforts to improve
security and mitigate risk.

Reinforcement Learning (RL) algorithms provide a framework for the agent to learn
from its own experiences, by trial and error, to determine the optimal policy to follow
in a given situation. The approach taken by RL algorithms is inherently different from
supervised and unsupervised learning, as it involves a sequential decision-making process,
where the outcome of each action is dependent on the previous decisions made. Traditional
model-based approaches may fail in complex and changing environments. This makes RL
especially important, as it is capable of dealing with such environments. RL algorithms
can continuously learn from new situations and enhance their decision accordingly. This
makes RL irreplaceable for dealing with situations where the optimal solution is uncertain.

In this paper, our main objective is to utilize the power of AI in automating the
process of vulnerability exploitation. This can be accomplished by creating an AI agent that
performs penetration testing scenarios using a large number of payloads that are available
in the Metasploit framework [4]. By doing so, we aim to successfully identify the most
efficient payloads that can be used to exploit certain vulnerabilities. The identified most
efficient payloads can then be used to test vulnerabilities in other systems. Automating this
process using the power of AI and ML can significantly improve the efficiency of the risk
assessment process, which leads to improving risk management. Therefore, the novelty of
this work is employing Deep Reinforcement Learning (DRL) in vulnerability exploitation
analysis.

The RL agents are trained to conduct penetration testing by attempting to exploit vul-
nerabilities using their payloads from the Metasploit framework. The agent is encouraged
to pursue successful exploitation through a reward system, where successfully establishing
a session on the target machine through a given payload results in a high reward, and fail-
ure to do so results in a low reward. The ultimate goal is to determine the most effective
payload for exploiting identified vulnerabilities and analyzing their exploitability.

The main contributions of this paper are as follows:

1. Implemented vulnerability scanning supported by RL vulnerability exploitation anal-
ysis (Section 4).

2. Designed, trained, and implemented an RL agent to perform vulnerability exploita-
tion analysis by leveraging DRL, which performed better than Q-Tables in terms of
accuracy. DRL achieved a maximum accuracy of 96.6% for a single vulnerability
exploitation.

3. Tested the DRL learned model on multiple vulnerability scenarios.
4. Compared the results of using Q-Table versus using DRL in vulnerability exploita-

tion analysis.

The rest of the paper is organized as follows. Section 2 lays out the necessary back-
ground needed to understand our proposed DRL agent. Section 3 summarizes the latest
research work in automated penetration testing and the combination of AI, ML, and se-
curity risk assessment. Section 4 presents the detailed research methodology. Section 5
summarizes and discusses the results. Section 6 discusses concluding remarks and future
research opportunities.

2. Background

In this section, we lay out the background of this work in two subsections that discuss
RL and vulnerability exploitation.

Appl. Sci. 2024, 14, 9331 3 of 18

2.1. Reinforcement Learning Fundamentals

Machine Learning (ML) has many subfields, including RL, which deals with the
problem of an agent that learns by trial and error (rewarded actions) to make decisions
in an environment [5]. The RL agent takes certain actions to get closer to a certain objec-
tive. The agent receives feedback in the form of a reward for each action taken, favoring
actions with a high reward and updating the decision-making policy accordingly. Opti-
mally, the agent converges to a policy of states and actions that maximizes the cumulative
average reward.

2.1.1. RL Using Q-Table

An RL agent is able to perceive and interpret its environment, takes actions, and learns
through trial and error. It does this by calculating Q-values and, later on, storing them in a
Q-Table. So, for a given state in an environment, a bunch of Q-values are assigned for each
action the agent takes. The Q-values are calculated according to Equation (1).

Q(S, A) = (1 − α)Q(S, A) + α(R + γmax(Q(S′, A′))) (1)

where:

• Q(S, A) is the Q-value for state S and action A.
• α is the learning rate, which determines the weight of the new information compared

with the existing Q-value. It is typically a value between 0 and 1.
• R is the immediate reward observed after taking action A in state S.
• γ is the discount factor, which determines the importance of future rewards compared

with immediate rewards. It is also typically a value between 0 and 1.
• S′ is the next state after taking action A in state S.
• A′ is the action with the maximum Q-value in the next state S′.
• max(Q(S′, A′)) represents the maximum Q-value for all possible actions in the next

state S′.

2.1.2. RL Using Deep Neural Networks

While the Q-Table is a very efficient method to store the estimated Q-value for each
state-action pair, it faces performance problems when dealing with large or continuous
state spaces. Storing large states’ data overwhelms the memory, and exploring every single
combination becomes impractical. Such problems are addressed by Deep Q-Network
(DQN), where Q-Table is replaced by NN. The NN takes the state as input and outputs
the Q-values for all possible actions. The DQN is capable of generalizing from the learned
patterns to explore unseen states and it has many useful applications like speech recognition,
natural language processing, and malware detection [6,7]. However, DQN designers should
be aware that training can be computationally expensive and susceptible to overfitting.

The standard DQN employs a single NN, which replaces the Q-Table. However, single-
NN DQN can experience stability issues during training. To address this, DQN actually
leverages two NNs: a policy network and a target network, as shown in Figure 1. The policy
network is responsible for making decisions based on the current state of the environment.
It takes the state as input and outputs a Q-value for each possible action. The agent then
chooses the action with the highest Q-value. The target network is a more stable version
of the policy network. It is periodically updated with the weights of the policy network,
but not at every training step. This helps to smooth out the learning process.

In the DQN model, the agent interacts with the environment through actions and
receiving rewards. Each interaction creates an experience: et = (st, at, rt+1, st+1)

where

• et: experience/interaction at time step t;
• st: state at time step t;
• at: action at time step t;
• rt+1: reward at time step t + 1;

Appl. Sci. 2024, 14, 9331 4 of 18

• st+1: next-state (i.e. state at time step t + 1).

Also, a DQN model uses a replay memory, which stores the agent’s experiences.
The following steps are executed during training:

• A small random sample of experiences is sampled from the replay memory.
• For each experience,

– The target network estimates the optimal Q-value for the next-state from the
sampled experiences. This is performed by applying st+1 as input to the target
network and then selecting the maximum q(s′, a′). The result is the target Q-value
(i.e., optimal Q-value).

– The policy network computes the estimated (i.e., predicted) Q-value (i.e., q(s, a)).
This is achieved by applying st as input to the network and then selecting the
Q-value corresponding to at.

– The difference (loss) between the predicted Q-value from the policy network and
the target Q-value is calculated.

– The weights of the policy network are adjusted to minimize the loss, effectively
making the policy network’s Q-value predictions closer to the more stable target
Q-values.

– Occasionally, the weights of the target network are updated to match those of the
policy network. This ensures the target network does not become too outdated.

et=(st, at, rt+1, st+1)

q(s,a0)

q(s,a1)

q(s,a2)

q(s,a3)

q(s,a0)

q(s,a1)

q(s,a2)

q(s,a3)

Policy Network Target Network

sample random
experience(s) from

replay memory

apply st
to policy
network

st
select

Q-value
q(st ,at)

based on at

apply st+1

to target
network

St+1

select
maximum
q(s ,a) estimated

Q-value

optimal Q-value, or
target Q-value

Figure 1. Deep Q-Networks (DQN).

It is important to mention that in this work, we opted for a single NN for policy learning.
Employing two NNs offered minimal performance improvements compared with the
increased complexity, and we did not experience any instability issues during training.

Additionally, to maintain simplicity in our DQN implementation and as Figure 1
shows, we opted for the well-established loss function, denoted as Loss, presented in
Equation (2):

Loss = E

[([
R + γ max

A′
Q
(
S′, A′)]− Q(S, A)

)2
]

(2)

where

Appl. Sci. 2024, 14, 9331 5 of 18

• Q(S′, A′) represents the estimated future reward for taking action A′ in the next state
S′, as predicted by the DQN network.

• E denotes the arithmetic mean.

This loss function combines the immediate reward (R) with the discounted estimate
of the future reward (γmax(Q(S′, A′))), guiding the agent to learn actions that maximize
long-term rewards, leading to successful exploitation.

2.2. Vulnerability Exploitation

Penetration testing is a test methodology in which assessors, typically working under
specific constraints, attempt to circumvent or defeat the security features of a system [8].
According to [9], penetration testing passes through the following phases: pre-engagement
interactions, intelligence gathering, threat modeling, vulnerability analysis, exploitation,
post-exploitation, and reporting. Once a vulnerability is identified in a system, it is analyzed
and tested for exploitability. Usually, this process is performed by blindly performing a
brute force attack that exhausts all possible attack vectors, which is not productive and
noisy [9]. Unseen protective measures and changes to the system may cause certain exploits
to fail. In this paper, we propose to perform the exploitation step in an automatic and
intelligent way using RL techniques.

Vulnerability exploitation is used as input for the next steps in penetration testing. So,
its results have to be accurate and efficient. In addition, if a vulnerability is exploitable,
then its severity can be estimated within the context of the tested system [10].

3. Related Work

The National Institute of Standards and Technology (NIST) assigns high vulnerability
severity values to vulnerabilities that are exposed and exploitable [10], which is impor-
tant to perform accurate risk assessment and management. In 2016, Defense Advanced
Research Projects Agency (DARPA) hosted the Cyber Grand Challenge (CGC) Final Event,
the world’s first all-machine cyber hacking tournament [11]. This event demonstrates
the importance of combining vulnerability exploitation and AI techniques to perform
penetration testing.

Most of the work that we investigated in the literature which combines machine
learning, vulnerability assessment, and penetration testing focused on post-exploitation
and attack-path optimization [12–14]. Next, we discuss the most recent related work.

Chaudhary et al. [13] investigated using ML to automate penetration testing, which
helps discover vulnerabilities in computer systems. The authors created a training environ-
ment where an agent could explore testing a network environment and find sensitive data.
By training the agent in various environments, they aimed to make this method adaptable
and work in different situations. The authors also suggested that future work could involve
training the agent for more advanced tasks, like performing a deep analysis of the system
and exploiting additional vulnerabilities.

Maeda and Mimura [15] proposed a new approach that combined deep RL with
PowerShell Empire, a tool that attackers use after penetrating the system (post-exploitation).
This created intelligent agents that can make decisions according to the compromised
system’s state. To train these agents, the authors experimented with the following models:
A2C, Q-learning, and SARSA. Interestingly, the A2C model was able to gain the highest
reward overall. Finally, the authors tested the trained agents in a completely new network
environment. The A2C model was particularly successful in gaining administrative control
over a critical system component, which is the domain controller.

Instead of performing regular penetration testing , Hu et al. [16] used deep RL to
automate the operation. The authors’ system works in two stages. First, they use the
Shodan search engine to find relevant server data and build a realistic network topology.
Then, a tool called MulVAL generates a map of possible attack routes within this network.
Traditional search methods are used to analyze this map and identify all potential attack
paths. This information is then converted into a format suitable for deep RL algorithms.

Appl. Sci. 2024, 14, 9331 6 of 18

In the next stage, a specific deep RL method called DQN takes over. Its goal is to identify
an attack path in the network by exploiting certain vulnerabilities. The authors tested their
system with thousands of different network scenarios. The DQN method achieved high
accuracy in finding the optimal attack path, reaching up to 86%. In the remaining cases, it
still provided valid alternative solutions. In addition, the framework could potentially be
used in defense training to automatically recreate attacks in a training environment.

Schwartz and Kurniawat [17] explored using a type of AI called model-free RL to
automate pentesting. Their approach involved creating a fast and efficient simulation
environment to train and test autonomous pentesting agents.

Within this simulator, they tested Q-learning in two forms: a basic table-based version
and one that utilizes artificial neural networks. The results were promising: both versions
successfully identified the most effective attack paths across various network layouts and
sizes, without needing a pre-built model of action behavior. However, these algorithms
were only truly effective for smaller networks with a limited number of possible actions.
The researchers acknowledged this limitation and called for further development of scalable
RL algorithms that can handle larger, more complex networks in more realistic settings.

Ghanem and Chen [18] presented a novel approach to penetration testing that lever-
ages the power of RL. Their idea was to train an AI agent to actively seek out and exploit
vulnerabilities in computer systems. To achieve this, they proposed modeling the penetra-
tion testing process as a Partially Observed Markov Decision Process (POMDP). This model
captures the uncertainty involved in real-world hacking scenarios. The agent would then
learn through trial and error, using an external solver to make the best decisions based on
the information it gathers. The main benefit of this approach is the potential for automated
and regular testing, freeing up human security specialists for other tasks. Additionally,
the ability of the AI to learn and adapt could lead to more accurate and reliable penetration
testing compared with traditional methods.

While promising, it’s important to note that their research focused on the planning
stage of penetration testing, not the entire process. Further development is needed to create
a truly comprehensive AI-powered penetration testing system.

Ghanem and Chen [19] proposed an Intelligent Automated Penetration Testing System
(IAPTS) to automate penetration testing for small- and medium-size networks using RL.
The main objective of this work is to minimize human intervention in the penetration testing
process. The system works by integrating with industrial penetration testing modules and
learning from human expertise while performing their tasks. The system relies on RL to
learn from human expertise, then uses this knowledge to penetrate similar future scenarios.
This reduces human errors that result form tiredness, omission, and stress. However, this
system requires human expert supervision in the early learning stages. In addition, this
approach is not efficient for large networks. In [20], the authors solved the scalability
problem by dividing the network being tested hierarchically as a group of clusters and
solving each cluster separately.

Zennaro and Erdődi [21] used Capture The Flag (CTF) competitions to analyze the
trade-off between model-free learning and a priori knowledge. The authors demonstrate
that providing a priori knowledge to the model-free RL agent reduces the complexity of
solving the CTF challenges, allowing the challenges to be solved in a reasonable amount
of time.

Erdődi et al. [22] proposed a formalization to simulating SQL injection attacks using
Q-learning RL agents utilizing two RL algorithms: the standard tabular Q-learning and
DQN. The authors model the attack process as a capture-the-flag challenge, formulating
it as a Markov decision process and as a reinforcement learning problem. Their agents
learn to exploit SQL injection vulnerabilities, not just for a specific scenario, but to develop
generalizable policies applicable to performing SQL injection attacks against any system.
The authors analyze the effectiveness and convergence speed of the learned policies against
challenges with varying complexity and the learning agent’s complexity. The simulation

Appl. Sci. 2024, 14, 9331 7 of 18

results provide a proof-of-concept support for using RL agents to perform autonomous
penetration testing and security assessment.

Tran et al. [23] proposed an architecture called Cascaded Reinforcement Learning
Agents (CRLA) to address the challenge of large action spaces encountered in autonomous
penetration testing. The authors formulated their problem as a discrete-time RL task
modeled by a Markov decision process (MDP). The proposed RL architecture leverages
an algebraic action decomposition strategy, which involves hierarchically structuring RL
agents, each tasked with learning within a smaller action subset while still receiving
the same external reward signal. This model-free approach eliminates the need for do-
main knowledge in action decomposition, enabling CRLA to efficiently navigate large
action spaces and find optimal attack policies faster and more stably than single DQN
agents. The authors use simulated environments from CybORG in a variety of scenar-
ios with different configurations of hosts and action spaces to test their architecture,
where all showed that CRLA had superior performance compared with the baseline
single-agent Dueling DQN (DDQN), which is the core RL algorithm the authors used in
their work.

Yi and Liu [24] proposed an algorithm called MDDQN, which integrates one of the
attack graph tools, the multi-stage vulnerability analysis language (MulVAL) and DDQN
algorithm for intelligent penetration testing path design, to address the limitations of
previous methods.

The authors’ experimental results show that the MDDQN algorithm improves the
convergence speed and attack path planning efficiency. However, the MDDQN algorithm
cannot autonomously scan the constructs and access network information. This means
that MDDQN relies on an external source to provide this information, which can limit its
effectiveness in real-world scenarios.

Unlike previous research that investigated and analyzed post-exploitation stages of
the “Cyber Kill Chain”, our approach uses RL to focus on the earlier, pre-exploitation
stage. Particularly, we trained an AI agent to pick the right payload to exploit the system.
Given an operating system (OS) and a vulnerability, the agent can choose the most effective
payload from the Metasploit framework to establish a remote connection between the
victim and the attacker. This process has the potential to make security assessments faster
and more accurate. By automating payload selection, our method goes beyond simply
identifying a vulnerability; it checks if it can actually be exploited. Overall, our research
contributes to the field of vulnerability exploitation and security assessments by providing
a unique solution to the vulnerability exploitation stage of the security assessment cycle.

4. Methodology

In this section, we combine the details of our experimental setup with a breakdown of
the main methods we employed.

4.1. Experimental Setup

In this subsection, we discuss the experimental setup that we used to test two use
cases: CouchDB and a Group of Vulnerabilities (GV). Table 1 shows the specification of
the machines that were used in the testing and training of the use cases presented in the
following subsections.

Table 1. Testing and training simulation setup.

Attacker Victim

2 GB of RAM DDR4 4 GB of RAM DDR4

1 CPU, 2 Cores (AMD Ryzen 7 4th gen)
2.90 GHz

1 CPU, 2 Cores (AMD Ryzen 7 4th gen)
2.90 GHz

Kali Linux 6.1.0 64-bit Windows 10 64-bit

Appl. Sci. 2024, 14, 9331 8 of 18

4.1.1. Use Case 1, CouchDB

In our previous work [25], RL and Q-Table were used to perform vulnerability ex-
ploitation. We specifically tested our approach on Apache CouchDB version 3.1.0 [26],
which is vulnerable to remote code execution attacks [27]. This vulnerability is a major
security concern because it could be widely exploited by attackers.

To train our RL agent, we used a virtual machine to emulate the attacker that has the
Kali Linux OS and another virtual machine which emulates the victim that has the Windows
10 OS. This setup simulates a real-world attack scenario. We then used a different setup for
the deployment phase, in which the victim machine has the Windows 11 OS. In this work
and for this use case, we used the same setup to test the same vulnerability (i.e., CouchDB),
but this time using DRL instead of Q-Table. This single vulnerability with 194 payloads that
are designed to exploit it serves as a good use case to test the two RL techniques (Q-Table
and DRL).

4.1.2. Use Case 2, Group of Vulnerabilities

In this use case, a Group of Vulnerabilities (GV) was used to test the RL agent. This
GV is listed in Table 2. What is common between those vulnerabilities is that they all allow
remote code execution by the attacker. A total of 256 payloads were used to train the model.
Those payloads were used to try and exploit each one of the vulnerabilities listed in Table 2
in an effort to create an RL agent that can be generalized to a group of vulnerabilities.
Q-Table and DRL were separately used to train the model and deploy it later. Having a GV
is more challenging to the model, as the state now has more vulnerabilities and more actions
to choose from. The actions are the payloads that are used for vulnerability exploitation.

In use case 2, we used a machine that has the Kali Linux OS to emulate the attacker
and a machine that has the Ubuntu OS to emulate the victim’s machine for the training
and deployment phases. This use case has multiple vulnerabilities (four, in this case) and
256 payloads that can be used with any of the vulnerabilities, which creates a complex
environment for an RL agent. This creates a good testing use case for using Q-Table and
DRL compared with the single vulnerability use case (Section 4.1.1).

Table 2. Group of vulnerabilities.

CVE Description

CVE-2011-3556 [28]
Unspecified vulnerability in the Java Runtime
Environment component in Oracle Java SE JDK

and JRE

CVE-2007-2447 [29] The MS-RPC functionality in smbd

CVE-2004-2687 [30] distcc 2.x, as used in XCode 1.5 and others

CVE-2012-1823 [31] sapi/cgi/cgi_main.c in PHP

4.2. RL Training and Deployment: Q-Table

In this subsection, we discuss Q-Table’s training and deployment for use cases 1 and 2.
The state ‘S’ of the system refers to the combination of an OS and a certain vulnerability.
The Metasploit payloads that are used to exploit the vulnerability and change its state to a
compromised OS represent the actions that can be performed ‘A’. Table 3 summarizes the
states, actions, and RL parameters that exist in the system.

In the following list, we explain how the RL parameters influence the training process:

• Learning rate (α): This controls how much weight the agent gives to new information
versus past experiences. A higher value means the agent prioritizes new information,
while a lower value emphasizes past experiences.

• Discount factor (γ): This balances the value of immediate rewards (benefits right now)
with future rewards (benefits later).

Appl. Sci. 2024, 14, 9331 9 of 18

• Exploration rate (ϵ): This represents how often the agent tries random actions instead
of the one it thinks is best. A higher value means the agent explores more, and a lower
value means it sticks with what it knows works.

• Decay rate: The rate at which ϵ is decayed to favor the exploitation of known actions
with a high reward over the exploration of random actions.

During the training phase of the Q-Table on the Apache CouchDB vulnerability, we ran
seven trials, each running for 500 episodes of exploitation. After training, a vulnerable
Apache CouchDB 3.1.0 machine was used to deploy the trained agent. The agent managed
to exploit the vulnerable machine in 8.10 s.

Table 3. RL States, actions, and parameters.

States (S) Actions (A) RL Parameters

Vulnerable OS (e.g., Windows
with CouchDB) referred to by
“vulnerable_OS” in Figure 2

Each payload from Metasploit
represents an action that can
be used to exploit the
vulnerable OS

Alpha: The learning rate,
Gamma: The discount factor,
Epsilon: The exploration rate,
The decay rate

Exploited OS, attack
succeeded. Referred to by
“exploited_OS” in Figure 2

Use case 1 has 194 actions (i.e.,
payloads). Use case 2 has
256 actions.

Our approach involved training an AI agent using RL utilizing the Metasploit frame-
work. Metasploit offers a vast collection of payloads for exploiting vulnerabilities in
different OSs. The RL algorithm trains the agent to pick the most effective payload for
the job. It accomplishes this by using Metasploit’s RPC API to automate tasks within
the framework.

While not all payloads work for every situation, the RL approach helps the agent make
smart choices and successfully exploit the vulnerability. Figure 3 shows this process. The
following points summarize the training process presented in Figures 2 and 3, given the
state of the system (OS and vulnerability):

1. The agent sends a request to get ta payload to exploit the vulnerability from MSFRPC.
2. The agent chooses a certain payload to use. Here is how the agent decides which

payload to use: with probability ϵ, the agent selects a random payload to be executed
(i.e., an action). On the other hand, with probability (1 − ϵ), the agent selects the best
known payload. This is an ϵ-greedy approach.

3. The agent sends a payload from Metasploit to try and exploit the vulnerability
(take action).

4. After using a payload, the agent observes the outcome (new system state) and receives
a reward (success or failure signal). This process repeats for a set number of times.
As the agent learns, it relies less on random choices (ϵ decreases) and focuses on the
most successful payloads. Figure 2 demonstrates the complete training process using
Q-Tables.

Our agent considers a successful exploit to be one that opens a reverse shell session.
This might not be the goal for every payload in Metasploit, as some might aim for different
types of access (like a VNC session). But, for our purposes, a reverse shell signifies success.

To train the agent, we designed a reward system. It gets a high reward (+100) for
successfully exploiting a vulnerability with a reverse shell and a penalty (−10) if it fails.
These values encourage the agent to prioritize successful exploits and avoid failures.

Since our system only cares about achieving a reverse shell or not, the rewards are
kept simple (+100 or −10). This prevents any confusion during training.

The agent’s choices are limited to payloads in Metasploit that can specify a local ma-
chine and port. To make decisions, the agent relies on its Q-Table, which stores information
from past experiences. When facing a new situation (OS and vulnerability), the agent
checks its Q-Table to find the best payload for the job.

Appl. Sci. 2024, 14, 9331 10 of 18

Start

Set max_episods

Set ε, α, γ, Set count = 0

Set the state S = vulnerable_OS,

declare action A

Initialize the Q-Table (Q(S, A))

Set Rand to random value [0,1]

If count <

max_episode

Select a

payload

(Action)

A = random payload (action) from

Metasploit

A = the payload (action) with the

highest reward in the Q-Table.

Does the payload

succeed in creating

a reverse shell?

Execute the selected payload

(i.e. perform the action)

Reward = 100

S = exploited_OS
Reward = -10

Update Q(S, A) with the Reward value (Equation 1),

Increment count,

Decay ε (according to the decay rate)

S = vulnerable_OS (reset the state to test new Actions)

Yes

With probability ε With probability 1- ε

Yes,

Attack

succeeded

No, Attack

failed

Stop
No

Figure 2. The flowchart of the training process using Q-Tables.

Figure 3. The learning process of the RL agent.

We tested the agent’s decision-making results by letting it recommend a payload.
The chosen payload was successfully delivered to the target machine and opened a special
remote connection (reverse shell session), proving the agent’s decision was a good one.
This process is illustrated in Figure 4, where the agent picks the payload with the highest
reward value. In this case, the payload name can be seen in the first row of Figure 4,
which is apache_couchdb_erlang_rce, and is used by MSFRPC to exploit the vulnerability.

Appl. Sci. 2024, 14, 9331 11 of 18

The goal of this payload is to open a reverse shell by the attacker with the victim machine.
The remaining lines in the figure demonstrate the verbosity of the command, which ends
by indicating a shell that connects the attacker with the victim machine.

For the second use case (GV), the same methodology was used, but instead of targeting
CouchDB, the vulnerabilities listed in Table 2 were targeted. The state of the system now
includes an uncompromised OS with a list of vulnerabilities that can be exploited using
certain actions (Metasploit payloads), which may change the state of the system to a
compromised OS. While the first use case has one vulnerability and 194 actions, the second
use case has four vulnerabilities and 256 actions (i.e., payloads).

Figure 4. Successful reverse shell established based on the agent’s recommended payload.

4.3. RL Training and Deployment: DRL

DRL offers a promising approach for automating penetration testing by enabling
agents to learn optimal exploitation strategies within the Metasploit framework. This
subsection explores the specifics of DRL training and deployment in this context, focusing
on its advantages over Q-learning.

4.3.1. Training Specifics for Metasploit Integration

Here, the DRL agent leverages the Metasploit RPC (MSFRPC) API to interact with the
environment. The agent is trained using the DQN algorithm in a simulated environment
replicating target systems.

The reward function plays a crucial role during the training process. In this case,
a successful reverse shell session established through a chosen payload for a specific OS
and vulnerability combination signifies a positive reward, while unsuccessful attempts
receive negative rewards. The MSFRPC API provides the agent with available payloads for
a given scenario.

4.3.2. DRL Deployment in Metasploit Environment

Deploying a DRL agent trained in simulations within the Metasploit environment
required the continuous monitoring of the agent’s behavior and logging of its actions, which
are essential for evaluating its performance, identifying potential biases, and ensuring
responsible use. In this work, we evaluated the performance using the following metrics:
success rate and the moving average of the rewards. In addition, DRL has a great advantage
over Q-Tables; the deployment (testing) phase is dynamic and achieves continuous learning,
which increases the accuracy of the results.

4.3.3. Testing Considerations

After training the agents, the agents are ready for testing. Testing the DRL agent
required developing a comprehensive set of test cases covering various scenarios, including
different OSs, vulnerabilities, and available payloads, as shown in the next section. Such
test cases allow us to evaluate the agent’s effectiveness, efficiency, and robustness in
diverse situations.

Appl. Sci. 2024, 14, 9331 12 of 18

4.3.4. Advantages over Q-Learning

While Q-learning is a popular RL technique, DRL offers several advantages in this
specific application:

• Scalability: Q-learning requires storing Q-values for all possible state-action pairs,
making it impractical for large state and action spaces. DRL, using function approxi-
mation techniques like NNs, can efficiently handle complex environments with vast
state and action spaces like the one encountered in penetration testing. In the case of
GV, adding one extra vulnerability doubles the size of the Q-Table, whereas in DRL,
the same DQN can handle this complexity without bloating its size, making it much
more scalable.

• Continuous Learning: DRL agents can continuously learn and improve their perfor-
mance over time by interacting with the environment. Q-learning typically requires
manual updates to the Q-Table (e.g., new states), making it less suitable for dynamic
environments where vulnerabilities and available payloads might change. This jus-
tifies the improvement in the accuracy of the system when using DRL over Q-Table,
given that the learning continues after the deployment phase in DRL.

• Generalization: DRL agents can learn from past experiences and generalize their
knowledge to unseen situations because of using NNs. This allows the agents to adapt
to different vulnerabilities and OSs. Q-learning, on the other hand, struggles with
generalization and requires retraining for each new scenario. In our future work, we
plan to test vulnerabilities that were not used in the training phase. This is the ultimate
goal of this line of research.

By leveraging the strengths of DRL, this approach paves the way for autonomous
penetration testing tools that can learn, adapt, and efficiently navigate complex landscapes
within the Metasploit framework.

The two use cases, CouchDB (Section 4.1.1) and GV (Section 4.1.2), were tested using
DRL instead of Q-Table. The results are presented and discussed in the next section.

5. Results and Discussion

In this section, we present the results in two subsections. The first subsection presents
the results of the vulnerability exploitation of CouchDB using Q-Table and DRL (use case
1). The second subsection presents the results of vulnerability exploitation for GV using
Q-Table and DRL (use case 2). Table 4 presents the execution time of the model training
and the execution time of the actual vulnerability exploitation. Vulnerability exploitation
was conducted using the payload with the highest reward selected after the training.

Table 4. Execution time of model training and vulnerability exploitation.

Use Case Execution Time (Model Training,
Vulnerability Exploitation)

CouchDB using Q-Table 2.5 h, 8.1 s

CouchDB using DRL 2.5 h, 8 s

GV using Q-Table 4.3 h, 8 s

GV using DRL 4.5 h, 8 s

5.1. CouchDB Using Q-Table and DRL

Figure 5 and Table 5 summarize the results for exploiting CouchDB using Q-Table.
To assess the performance of the RL agent, we plotted the moving average of Q-values,
which provides a smoothed representation of the agent’s learning progress over time.
A moving average plot for Q-values demonstrates the trend of the agent’s Q-value estimates,
highlighting how they change as the agent interacts with the environment and learns from
its experiences.

Appl. Sci. 2024, 14, 9331 13 of 18

Figure 5 shows the results after running the agent for 500 episodes each time. We
chose this number of episodes because running for more episodes would not improve the
results any further, but it would take much longer and use more computer power.

For each run, the success rate (SR) was calculated. This is simply the number of
reverse shell sessions successfully established by the agent (x) out of the total number of
runs (N), as shown in Equation (3).

SR = x/N (3)

Finding the perfect settings for the agent’s learning (α and γ) can be tricky, but they
play a big role in how well it performs. Our results (Table 5) show that starting with settings
in the middle range (around 0.6) for both how much the agent learns from new things (α)
and how often it tries random actions (γ) leads to the best results.

(a) 1, 0.6, 0.4, 0.01, 80.4% (b) 1, 0.4, 0.6, 0.01, 81.4% (c) 0.6, 0.6, 0.4 0.01, 88.4%

(d) 1, 0.4, 0.6 0.001, 82.2% (e) 0.6, 0.4, 0.6, 0.001, 86.2%
Figure 5. Rewards’ moving average for CouchDB using Q-Table in the training phase for 5 scenarios
where the values of ϵ, α, γ, rate of decrease, and success rate are shown, respectively, under each figure.

Table 5. Experiment parameters and results for CouchDB exploitation using Q-Table.

Trial Epsilon Alpha Gamma Decay Rate SR %

1 1 × 101 6 × 10−1 4 × 10−1 1 × 10−2 80.4
2 1 × 101 4 × 10−1 6 × 10−1 1 × 10−2 81.4
3 6 × 10−1 6 × 10−1 4 × 10−1 1 × 10−2 88.4
4 1 × 101 4 × 10−1 6 × 10−1 1 × 10−3 82.2
5 6 × 10−1 4 × 10−1 6 × 10−1 1 × 10−3 86.2

This is because this balance allows the agent to learn effectively while also exploring
new possibilities. We also found that gradually reducing the random actions (exploration)
over time leads to better success rates. In short, all our tests were successful after running
the training for 500 episodes. This shows that 500 episodes is enough training time for
the agent.

On the other hand, Figure 6 and Table 6 summarize the results for exploiting CouchDB
using DRL. Figure 6 demonstrates that the moving average of the rewards has already
converged before 500 episodes, similarly to Figure 5. Table 6 shows interesting results
for this scenario. The accuracy improved overall compared with when a Q-Table was
used. This can be explained by the continuous learning characteristic of the DRL agent

Appl. Sci. 2024, 14, 9331 14 of 18

as it interacts with the environment. By using DRL, a maximum accuracy of 96.6% was
achieved, compared with 88.4 using Q-Table.

(a) 1.0, 0.6, 0.4, 0.01, 89.2% (b) 1, 0.4, 0.6, 0.01, 90.2% (c) 0.6, 0.6, 0.4, 0.01, 96.6%

(d) 1.0, 0.4, 0.4, 0.01, 91.2% (e) 0.6, 0.4, 0.6, 0.001, 94.6%
Figure 6. Rewards’ moving average for CouchDB using DRL in the training phase for 5 scenarios
where the values of ϵ, α, γ, rate of decrease, and success rate are shown, respectively, under each figure.

Table 6. Experiment parameters and results for CouchDB exploitation using DRL.

Trial Epsilon Alpha Gamma Decay Rate SR %

1 1 × 101 6 × 10−1 4 × 10−1 1 × 10−2 89.2%
2 1 × 101 4 × 10−1 6 × 10−1 1 × 10−2 90.2%
3 6 × 10−1 6 × 10−1 4 × 10−1 1 × 10−2 96.6%
4 1 × 101 4 × 10−1 6 × 10−1 1 × 10−3 91.2%
5 6 × 10−1 4 × 10−1 6 × 10−1 1 × 10−3 94.6%

5.2. GV Using Q-Table and DRL

Figure 7 and Table 7 present the results of exploiting GV using Q-Table. Figure 7
demonstrates that the moving average of the reward converges for different scenarios and
hyperparameter values of ϵ, α, γ, and the rate of decay. Table 7 demonstrates the success
rate for exploiting GV using Q-Table. It is notable that the success rate is much lower
than that presented in Table 5. The lower success rate (the best trial achieved 71.2%) can
be attributed to considering a larger search space. In this case, the RL agent evaluated
four vulnerabilities instead of just one, along with a wider range of actions (256 compared
with 194).

Table 7. Experiment parameters and results for GV exploitation using Q-Table.

Trial Epsilon Alpha Gamma Decay Rate SR %

1 7 × 10−1 1 × 10−1 8 × 10−1 1 × 10−2 69.5
2 1 × 101 3 × 10−1 4 × 10−1 1 × 10−2 71.2
3 6 × 10−1 3 × 10−1 4 × 10−1 1 × 10−2 70.6
4 5 × 10−1 9 × 10−1 8 × 10−1 1 × 10−2 22.8
5 7 × 10−1 1 × 10−1 8 × 10−1 4 × 10−1 18.1

Figure 8 and Table 8 present the results of exploiting GV using DRL. Throughout our
experimentation, we conducted five trials with different hyperparameters for the RL agent,

Appl. Sci. 2024, 14, 9331 15 of 18

and the details of these trials can be found in Table 8, where the best success rate 73.6% was
achieved in Figure 8b.

(a) 0.7, 0.1, 0.8, 0.01, 69.5% (b) 1, 0.3, 0.4, 0.01, 71.2%, (c) 0.6, 0.3, 0.4, 0.01, 70.6%

(d) 0.5, 0.9, 0.8, 0.01, 22.8% (e) 0.7, 0.1, 0.8, 0.40, 18.1%
Figure 7. Rewards’ moving average for GV using Q-Table in the training phase for 5 scenarios where
the values of ϵ, α, γ, rate of decrease, and success rate are shown, respectively, under each figure.

In Figure 8, we present the results of these trials. Figure 8a shows that the agent has
achieved an optimal policy with a notable success rate, reaching 72.1% in terms of the
number of successful episodes. This trial stands out as the best-performing one due to the
well-balanced value of ϵ, allowing for a trade-off between exploration and exploitation.
Additionally, the success rate is relatively high, indicating that the agent has effectively
learned an optimal policy.

Figure 8b exhibits a high success rate; however, the agent has not yet attained an
optimal policy. The value of epsilon encourages the agent to prioritize exploration over
exploitation, resulting in ongoing learning without fully converging to an optimal solution.
Similarly, in Figure 8c, we observe a similar trend of high success rates but the absence
of an optimal policy, even though the value of epsilon balances between exploration
and exploitation.

Figure 8d indicates that neither the success rate nor the agent’s policy is satisfactory.
In this trial, the agent struggles to achieve significant progress in learning and fails to reach
an optimal policy. On the other hand, Figure 8e reveals that the agent has reached an
optimal policy; however, the success rate is relatively low compared with the other trials.

By analyzing these figures, we can observe the varying outcomes of the different
trials, showcasing the impact of different hyperparameters on the agent’s learning process
and performance.

Similarly to the results presented in Section 5.1, using DRL again achieved better
accuracy by having a higher overall success rate than Q-Table. This was noted, as DRL
scored a maximum success rate of 73.6% (Table 8) compared with 71.2% (Table 7) for Q-
Table. This can be explained again by the continuous learning characteristic of the DRL agent
as it interacts with the environment.

Appl. Sci. 2024, 14, 9331 16 of 18

(a) 0.7, 0.1, 0.8, 0.01, 72.1% (b) 1, 0.3, 0.4, 0.01, 73.6% (c) 0.6, 0.3, 0.4, 0.01, 73.1%

(d) 0.5, 0.9, 0.8, 0.01, 40.6% (e) 0.7, 0.1, 0.8, 0.40, 40%
Figure 8. Rewards’ moving average for GV using DRL in the training phase for 5 scenarios where the
values of ϵ, α, γ, rate of decrease, and success rate are shown, respectively, under each figure.

Table 8. Experiment parameters and results of GV exploitation using DRL.

Trial Epsilon Alpha Gamma Decay Rate SR %

1 7 × 10−1 1 × 10−1 8 × 10−1 1 × 10−2 72.1
2 1 × 10−1 3 × 10−1 4 × 10−1 1 × 10−2 73.6
3 6 × 10−1 3 × 10−1 4 × 10−1 1 × 10−2 73.1
4 5 × 10−1 9 × 10−1 8 × 10−1 1 × 10−2 40.6
5 7 × 10−1 1 × 10−1 8 × 10−1 4 × 10−1 40.0

6. Conclusions and Future Work

In this paper, we utilized RL to perform vulnerability exploitation. We built two RL
agents: the first one uses Q-Table and the second one uses DRL. The state of the RL agent is
identified by the OS and vulnerability under investigation. The actions of the RL agent are
identified by the Metasploit payloads that can be used to exploit the given vulnerabilities.
An exploitation is considered successful if the payload was able to create a reverse shell
with the attacker. Both RL agents (i.e., the one using Q-Table and the one using DRL) were
trained and tested on two use cases. The first use case has one vulnerability, while the
second use case has four vulnerabilities.

Our results demonstrate that using DRL outperformed Q-Table in the two use cases.
In the first use case, DRL had a maximum success rate of 96.6%, while Q-Table had 88.4%.
For the second use case, DRL had a maximum success rate of 73.6%, while Q-Table had
71.2%. The DRL agent’s higher success rate stems from its ability to continuously learn and
adapt during deployment, unlike the static Q-Table approach.

This research introduces a new way to automate tasks during pentesting, making them
faster and less expensive. Our method uses an AI agent trained with RL to take advantage
of the Metasploit framework. By automating the exploitation process, our approach frees
up security specialists to focus on other important tasks. This can significantly reduce the
time and resources needed to identify and address vulnerabilities in computer systems.

For future work, we plan to build a general agent that can exploit new vulnerabilities
on which it was not trained. To achieve this, we are considering adding more informa-
tion to the agent’s decision-making process like the Common Weakness Enumeration
(CWE). This information could be used to make better decisions and exploit new scenarios
and vulnerabilities.

Appl. Sci. 2024, 14, 9331 17 of 18

Author Contributions: Conceptualization, A.A., L.A.-A., Z.S., K.M.A.Y. and B.J.M.; methodology,
A.A., L.A.-A., Z.S., K.M.A.Y. and B.J.M.; software, L.A.-A., Z.S. and A.A.S.; validation, L.A.-A., Z.S.
and A.A.S.; formal analysis, A.A., L.A.-A., K.M.A.Y., B.J.M. and Z.S.; investigation, A.A., L.A.-A.,
K.M.A.Y., B.J.M. and Z.S.; data curation, A.A., L.A.-A., K.M.A.Y., B.J.M. and Z.S.; writing—original
draft preparation, A.A., L.A.-A., K.M.A.Y., B.J.M. and Z.S.; writing—review and editing, A.A.,
K.M.A.Y. and B.J.M.; visualization, A.A., L.A.-A., K.M.A.Y. and B.J.M.; supervision, A.A.; project
administration, A.A.; funding acquisition, A.A. All authors have read and agreed to the published
version of the manuscript.

Funding: The work in this paper was supported, in part, by the Open Access Program from the
American University of Sharjah.

Institutional Review Board Statement: This paper represents the opinions of the author(s) and does
not mean to represent the position or opinions of the American University of Sharjah.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

IT Information Technology
OT Operation Technology
RL Reinforcement Learning
DRL Deep Reinforcement Learning
ML Machine Learning
DQN Deep Q-Network
R Reward
NIST National Institute of Standards and Technology
DARPA Defense Advanced Research Projects Agency
CTF Capture The Flag
GV Group of Vulnerabilities
SR Success Rate
CWE Common Weakness Enumeration

References
1. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,

V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [CrossRef]
[PubMed]

2. Perera, S.; Jin, X.; Maurushat, A.; Opoku, D.G.J. Factors Affecting Reputational Damage to Organisations Due to Cyberattacks.
Informatics 2022, 9, 28. [CrossRef]

3. Perkal, Y. Is Your Vulnerability Scanner Giving You Reliable Results? 2022. Available online: https://securityboulevard.com/20
22/10/is-your-vulnerability-scanner-giving-you-reliable-results/ (accessed on 12 October 2024).

4. Metasploit. Metasploit-Framework. 2023. Available online: https://www.metasploit.com/ (accessed on 22 June 2024).
5. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
6. Dong, S.; Wang, P.; Abbas, K. A survey on deep learning and its applications. Comput. Sci. Rev. 2021, 40, 100379. [CrossRef]
7. Shu, L.; Dong, S.; Su, H.; Huang, J. Android malware detection methods based on convolutional neural network: A survey. IEEE

Trans. Emerg. Top. Comput. Intell. 2023, 7, 1330–1350. [CrossRef]
8. Nieles, M.; Dempsey, K.; Pillitteri, V.Y. NIST Special Publication 800-12. DRAFT Revis. 2017, 1. [CrossRef]
9. Kennedy, D.; O’Gorman, J.; Kearns, D.; Aharoni, M. Metasploit: The Penetration Tester’s Guide; No Starch Press: San Francisco, CA,

USA, 2011.
10. NIST. NIST Special Publication 800-30 Revision 1-Guide for Conducting Risk Assessments. 2012. [CrossRef]
11. DARPA. Cyber Grand Challenge (CGC). 2016. Available online: https://www.darpa.mil/program/cyber-grand-challenge

(accessed on 25 February 2024).
12. Maddala, S.; Patil, S. Agentless automation model for post exploitation penetration testing. In Proceedings of the Intelligent

Computing, Information and Control Systems: ICICCS 2019, Madurai, India, 15–17 May 2019; Springer: Berlin/Heidelberg, Germany,
2020; pp. 529–539.

http://doi.org/10.1038/nature16961
http://www.ncbi.nlm.nih.gov/pubmed/26819042
http://dx.doi.org/10.3390/informatics9010028
https://securityboulevard.com/2022/10/is-your-vulnerability-scanner-giving-you-reliable-results/
https://securityboulevard.com/2022/10/is-your-vulnerability-scanner-giving-you-reliable-results/
https://www.metasploit.com/
http://dx.doi.org/10.1016/j.cosrev.2021.100379
http://dx.doi.org/10.1109/TETCI.2023.3281833
http://dx.doi.org/10.6028/NIST.SP.800-12r1
http://dx.doi.org/10.6028/NIST.SP.800-30r1
https://www.darpa.mil/program/cyber-grand-challenge

Appl. Sci. 2024, 14, 9331 18 of 18

13. Chaudhary, S.; O’Brien, A.; Xu, S. Automated Post-Breach Penetration Testing through Reinforcement Learning. In Proceedings
of the 2020 IEEE Conference on Communications and Network Security (CNS), Avignon, France, 29 June–1 July 2020; pp. 1–2.
[CrossRef]

14. Benito, R.; Shaffer, A.; Singh, G. An Automated Post-Exploitation Model for Cyber Red Teaming. In Proceedings of the
International Conference on Cyber Warfare and Security, Towson, MD, USA, 9–10 March 2023; Volume 18, pp. 25–34.

15. Maeda, R.; Mimura, M. Automating post-exploitation with deep reinforcement learning. Comput. Secur. 2021, 100, 102108.
[CrossRef]

16. Hu, Z.; Beuran, R.; Tan, Y. Automated Penetration Testing Using Deep Reinforcement Learning. In Proceedings of the 2020 IEEE
European Symposium on Security and Privacy Workshops (EuroS & PW), Genoa, Italy, 7–11 September 2020; pp. 2–10. [CrossRef]

17. Schwartz, J.; Kurniawati, H. Autonomous penetration testing using reinforcement learning. arXiv 2019, arXiv:1905.05965.
18. Ghanem, M.C.; Chen, T.M. Reinforcement Learning for Intelligent Penetration Testing. In Proceedings of the 2018 Second World

Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), London, UK, 30–31 October 2018; pp. 185–192.
[CrossRef]

19. Ghanem, M.C.; Chen, T.M. Reinforcement learning for efficient network penetration testing. Information 2019, 11, 6. [CrossRef]
20. Ghanem, M.C.; Chen, T.M.; Nepomuceno, E.G. Hierarchical reinforcement learning for efficient and effective automated

penetration testing of large networks. J. Intell. Inf. Syst. 2023, 60, 281–303. [CrossRef]
21. Zennaro, F.M.; Erdődi, L. Modelling penetration testing with reinforcement learning using capture-the-flag challenges: Trade-offs

between model-free learning and a priori knowledge. IET Inf. Secur. 2023, 17, 441–457. [CrossRef]
22. Erdődi, L.; Sommervoll, A.A.; Zennaro, F.M. Simulating SQL injection vulnerability exploitation using Q-learning reinforcement

learning agents. J. Inf. Secur. Appl. 2021, 61, 102903. [CrossRef]
23. Tran, K.; Standen, M.; Kim, J.; Bowman, D.; Richer, T.; Akella, A.; Lin, C.T. Cascaded Reinforcement Learning Agents for Large

Action Spaces in Autonomous Penetration Testing. Appl. Sci. 2022, 12, 1265. [CrossRef]
24. Yi, J.; Liu, X. Deep Reinforcement Learning for Intelligent Penetration Testing Path Design. Appl. Sci. 2023, 13, 9467. [CrossRef]
25. AlMajali, A.; Al-Abed, L.; Mutleq, R.; Samamah, Z.; Shhadeh, A.A.; Mohd, B.J.; Yousef, K.M.A. Vulnerability Exploitation Using

Reinforcement Learning. In Proceedings of the 2023 IEEE Jordan International Joint Conference on Electrical Engineering and
Information Technology (JEEIT), Amman, Jordan, 22–24 May 2023; pp. 281–286.

26. Apache. Apache CouchDB. 2023. Available online: https://couchdb.apache.org/ (accessed on 10 February 2023).
27. Justicz, M.; Touzet, J. CouchDB Vulnerability. 2023. Available online: https://www.rapid7.com/db/modules/exploit/linux/

http/apache_couchdb_cmd_exec/ (accessed on 10 February 2023).
28. NIST. CVE-2011-3556. 2011. Available online: https://nvd.nist.gov/vuln/detail/CVE-2011-3556 (accessed on 6 June 2024).
29. MITRE. CVE-2007-2447. 2007. Available online: https://cve.mitre.org/cgi-bin/cvename.cgi?name=2007-2447 (accessed on 6

June 2024).
30. NIST. CVE-2004-2687. 2004. Available online: https://nvd.nist.gov/vuln/detail/CVE-2004-2687 (accessed on 6 June 2024).
31. NIST. CVE-2012-1823. 2012. Available online: https://nvd.nist.gov/vuln/detail/cve-2012-1823 (accessed on 6 June 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/CNS48642.2020.9162301
http://dx.doi.org/10.1016/j.cose.2020.102108
http://dx.doi.org/10.1109/EuroSPW51379.2020.00010
http://dx.doi.org/10.1109/WorldS4.2018.8611595
http://dx.doi.org/10.3390/info11010006
http://dx.doi.org/10.1007/s10844-022-00738-0
http://dx.doi.org/10.1049/ise2.12107
http://dx.doi.org/10.1016/j.jisa.2021.102903
http://dx.doi.org/10.3390/app122111265
http://dx.doi.org/10.3390/app13169467
https://couchdb.apache.org/
https://www.rapid7.com/db/modules/exploit/linux/http/apache_couchdb_cmd_exec/
https://www.rapid7.com/db/modules/exploit/linux/http/apache_couchdb_cmd_exec/
https://nvd.nist.gov/vuln/detail/CVE-2011-3556
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2007-2447
https://nvd.nist.gov/vuln/detail/CVE-2004-2687
https://nvd.nist.gov/vuln/detail/cve-2012-1823

	Introduction
	Background
	Reinforcement Learning Fundamentals
	RL Using Q-Table
	RL Using Deep Neural Networks

	Vulnerability Exploitation

	Related Work
	Methodology
	Experimental Setup
	Use Case 1, CouchDB
	Use Case 2, Group of Vulnerabilities

	RL Training and Deployment: Q-Table
	RL Training and Deployment: DRL
	Training Specifics for Metasploit Integration
	DRL Deployment in Metasploit Environment
	Testing Considerations
	Advantages over Q-Learning

	Results and Discussion
	CouchDB Using Q-Table and DRL
	GV Using Q-Table and DRL

	Conclusions and Future Work
	References

