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Abstract: Occlusion removal in light-field images remains a significant challenge, particularly when
dealing with large occlusions. An architecture based on end-to-end learning is proposed to address
this challenge that interactively combines CSPDarknet53 and the bidirectional feature pyramid net-
work for efficient light-field occlusion removal. CSPDarknet53 acts as the backbone, providing robust
and rich feature extraction across multiple scales, while the bidirectional feature pyramid network
enhances comprehensive feature integration through an advanced multi-scale fusion mechanism. To
preserve efficiency without sacrificing the quality of the extracted feature, our model uses separable
convolutional blocks. A simple refinement module based on half-instance initialization blocks is
integrated to explore the local details and global structures. The network’s multi-perspective ap-
proach guarantees almost total occlusion removal, enabling it to handle occlusions of varying sizes or
complexity. Numerous experiments were run on sparse and dense datasets with varying degrees
of occlusion severity in order to assess the performance. Significant advancements over the current
cutting-edge techniques are shown in the findings for the sparse dataset, while competitive results
are obtained for the dense dataset.

Keywords: light-field images; occlusion removal; CSPDarknet53; bidirectional feature pyramid
network (BiFPN); end-to-end learning; separable convolutional blocks; half-instance initialization
network (HINet); multi-scale fusion; sparse datasets; dense datasets

1. Introduction

Occlusion removal in light-field (LF) images is a pivotal task in the realm of computer
vision, particularly for applications involving object detection, recognition, and track-
ing [1–10]. Occlusions can lead to significant degradation in performance by masking
essential object features, resulting in misclassification, decreased accuracy, and unreliable
tracking. This challenge is particularly pronounced in dynamic environments where occlu-
sions frequently occur, making it imperative to develop effective occlusion removal techniques.

Different from a single-view image, which captures a snapshot of a scene from a fixed
viewpoint, in which the occlusion removal task is known as single-image inpainting [11–13],
the light-field nature captures not just the intensity of light, but also its directionality across
the entire scene by using light-field camera arrays [14–18]. The cameras are arranged in the
angular direction and each camera capture a single-view image, as illustrated in Figure 1.
This creates richer information that allows for post-capture effects like refocusing [15,19,20],
scene depth estimation [21–26] , angular and spatial super-resolution [27–33], saliency
detection [34,35], deblurring [36], reconstruction [37], and view synthesis [38–41].

Employing light-field imaging in occlusion removal tasks proves advantageous due
to its ability to capture multiple views of a scene, thereby mitigating occlusion issues
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encountered in conventional single-view imaging. This enables algorithms to reconstruct
occluded areas by leveraging information from unoccluded views, where obscured pixels
in one view remain visible in others. But the challenge becomes significantly pronounced
when dealing with large and complex occlusions that obscure critical details. Traditional
methods, often struggle with these scenarios due to their limited ability to capture extensive
contextual information and integrate multi-scale features effectively.

Figure 1. The left side shows a light-field camera system that focuses the scene through a microlens
array onto a photosensor. The right side displays the resulting sub-aperture image grid, with u and v
indicating angular resolution (different viewpoints) and w and h denoting spatial resolution within
each sub-aperture image.

Recent advancements have sought to address these limitations by incorporating more
sophisticated network architectures and multi-scale feature integration techniques. How-
ever, many of these methods still fall short when faced with large occlusions, primarily
due to their inadequate handling of global and local feature dependencies. To overcome
these challenges, a more holistic approach that combines robust feature extraction, efficient
multi-scale fusion, and meticulous image refinement is essential. In response to these is-
sues, we propose a novel architecture that synergistically combines CSPDarknet53 [42] and
the bidirectional feature pyramid network (BiFPN) [43] for efficient light-field occlusion
removal. CSPDarknet53, known for its robust and rich feature extraction capabilities across
multiple scales, serves as the backbone of our network. It effectively captures detailed
local features while maintaining a high degree of computational efficiency. To enhance the
integration of these features, we incorporate BiFPN, which facilitates advanced multi-scale
fusion and attention mechanisms. BiFPN’s ability to aggregate and refine features across
different scales ensures comprehensive integration, thereby improving the network’s ca-
pability to handle occlusions of varying sizes and complexities. Additionally, we employ
separable convolutional blocks within BiFPN to maintain computational efficiency without
compromising the quality of feature extraction. To further refine the reconstructed images
and address both local details and global structures, we integrate the Half-Instance Initial-
ization Network (HINet) [44]. HINet meticulously refines the images, ensuring that even
the smallest details are preserved while maintaining the integrity of the overall structure.
This multi-faceted approach allows our network to effectively handle occlusions, providing
a robust solution for comprehensive occlusion removal. We conducted many experiments
on multiple sparse and dense datasets with different degrees of occlusion severity to verify
the efficiency of the proposed approach. Our experimental results show significant im-
provements over the cutting-edge methods currently in use, with competitive quantitative
metrics for PSNR and SSIM and useful effectiveness in real-world applications.

To summarize, our contributions are threefold:

1. We introduce a synergistic combination of CSPDarknet53 and BiFPN, enhanced with
separable convolutional blocks, for robust and efficient feature extraction and multi-
scale fusion.

2. The integration of HINet for meticulous image refinement ensures comprehensive
occlusion removal, addressing both local and global features effectively.
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3. Our method is extensively evaluated on diverse datasets, demonstrating signifi-
cant improvements over state-of-the-art methods and practical effectiveness in real-
world applications.

This comprehensive approach not only achieves superior quantitative results but also
sets a new standard for future research in light-field occlusion removal. The source code
will be made available upon publication, facilitating further research and development in
this domain.

2. Related Work

Occlusion removal is a subset of image restoration that is focused on reconstructing
the areas of an image that are blocked or missing. In this section, we briefly overview
the related approaches for handling occlusion in single-view images, known as image
inpainting, as well as techniques specifically designed for LF image occlusion removal.
Table 1 provides a comparative summary that serves as a quick reference guide to the
advancements in this field, highlighting their key features and limitations.

Table 1. Overview of methods for image inpainting and light-field occlusion removal, detailing their
key features and limitations.

Name Key Features Limitations

Image Inpainting

Anisotropic Diffusion [45] Effective for small occlusions Produces over-blurred results for larger areas, sensitive to noise, and requires
careful tuning of parameters.

PDEs [46] Fills missing areas using PDEs Struggles with large occlusions, less effective for complex textures,
and computationally intensive for high resolutions.

PatchMatch [47] Identifies and copies similar textures Fails to create semantically coherent structures, limited by the availability of
suitable patches, and can produce visible seams.

Partial Convolution [11] Encodes contextual features Limited by invalid pixel artifacts, may require careful initialization,
and struggles with large occlusions.

RFR [48] Hierarchical vector quantized VAE Blurry results for large continuous holes, sensitive to the choice of
hyperparameters, and can be slow in inference.

LBAM [49] Attention mechanisms in encoder–decoder Requires large datasets for training, potentially slow convergence,
and struggles with complex occlusions due to semantic limitations.

Single Image Inpainting [50] Propagates information to light-field views Limited to central view inpainting, struggles with depth variability, and may
not adequately capture occlusions from different angles.

Light-Field Occlusion Removal

Synthetic Aperture [51] Resampling captured light Struggles with large occlusions, limited in handling dynamic scenes,
and requires extensive pre-processing.

Energy Minimization [52] Distinguishes occlusion from background Limited to specific depth ranges, sensitive to noise,
and computationally expensive.

Layered Imaging [4] Depth-independent all-in-focus imaging Limited to specific scene types, requires accurate depth information,
and struggles with occlusions in dense environments.

K-means Clustering [53] Iterative reconstruction framework Ineffective for complex structures, sensitive to initialization, and struggles
with real-time applications.

DeOccNet [54] End-to-end network with ASPP Results often blurry, struggles with large occlusions, and requires substantial
training data.

Mask4D [55] 4D convolution for spatial layout Requires extensive computational resources, complex implementation,
and potentially slow inference times.

GANs [56] Synthesizes results with reconstructed backgrounds Struggles with very large occlusions, sensitive to training instability,
and requires large datasets.

Shifted Lenslet Filtering [57] Extracts features from lenslet images High memory and preprocessing requirements, struggles with dense light
fields, and may fail in complex scenes.

ISTY Framework [58] Modularizes feature extraction Challenges with varying disparity ranges, requires careful parameter tuning,
and still struggles with large occlusions.

Hybrid CNN-Transformer [59] Combines CNNs and Transformers Still performs poorly in big occlusions, complexity in training, and potential
inefficiencies in real-time applications.

Ours CSPDarknet53 with BiFPN + HINet Layer Challenges with very complex occlusions, sensitivity to hyperparameters,
and requires extensive fine-tuning.

2.1. Image Inpainting

Single-image inpainting aims to reconstruct the missing or masked regions in a single
image with realistic content. Traditional techniques, such as anisotropic diffusion [45] and
partial differential equations [46], have been effective for small occlusions but often produce
over-blurred results when dealing with larger occlusions. Patch-based methods [47,60]
have been developed to address this limitation by identifying and copying similar textures
from other parts of the image. However, these methods can struggle with generating
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semantically coherent structures for larger missing areas. Recent advancements in deep
learning algorithms, along with the availability of extensive datasets of single RGB images,
have enabled the effective filling of these masked regions without needing information
beyond the mask. Reference [11] introduced a specialized convolutional layer structure
called Partial Convolution, which plays a significant role by encoding contextual features
and avoiding artifacts from invalid pixels within the masked region through masked and re-
normalized convolution. Building on this, ref. [48] introduced Recurrent Feature Reasoning
(RFR), which is a two-stage model based on hierarchical vector-quantized variational
auto-encoder for reconstructing large continuous holes by recurrently inpainting parts
of the image and averaging the generated feature groups when they contain no invalid
pixels. Another method, developed by [49], involves Learnable Bidirectional Attention
Maps (LBAMs). This method replaces Partial Convolution with attention mechanisms in
both the encoder and decoder, allowing the decoder to focus on filling only the masked
regions. Unlike Partial Convolution, LBAM uses soft attention maps and differentiable
mask updates, which provide greater flexibility and stability during model training.

Despite these improvements, single-image inpainting techniques often require large
datasets for training and can struggle with reconstructing complex occlusions solely based
on learned semantics. In the context of light-field imaging, single-image inpainting has been
used to address light-field completion, which involves filling entire light-field views with
consistent information. Instead of directly addressing the 4-D manifold, refs. [50,61] applied
single-image inpainting to the central view (CV) image and propagated the information to
the remaining views. Their approach used the single-image inpainting method for the CV
image with a given inpainting mask, focusing on transferring the inpainted information to
other views within the light field. Other methods have incorporated additional information
such as edges and segmentation masks to improve the inpainting results.

2.2. Light-Field Occlusion Removal

LF imaging has gained traction due to the development of portable plenoptic cameras,
which capture both the spatial and angular information of light rays, enabling a richer
representation of scenes. This 4D light radiation field allows for the inference of depth
information and reconstructing occluded objects more accurately than single-view methods.
Early research leveraged the synthetic aperture focusing method, as proposed by [51],
which involved resampling the captured light to blur the foreground and focus on the
background. Despite enhancements to this approach, including alternative cost functions
and dense multi-camera setups for recording light-field video, these methods struggled
with large occlusions and lacked the ability to distinguish between foreground occlusion
pixels and background occluded pixels. Ref. [52] addressed this limitation by labeling
each pixel in every view through energy minimization to distinguish between occlusion
and background. They later improved this technique by introducing a depth-free, all-in-
focus synthetic aperture imaging method based on LF visibility analysis. However, these
methods were limited to specific depth ranges, leaving objects at other depths blurred.
Ref. [4] addressed this limitation by dividing scenes into visible layers, enabling depth-
independent all-in-focus imaging. Ref. [53] developed an iterative reconstruction approach
within a global optimization framework by using k-means clustering to classify occlusion
and background pixels, refining results using a coarse-to-fine strategy.

Despite these advancements, traditional methods based on handcrafted features and
stereo matching techniques struggled in scenes with complex structures and heavy occlu-
sions, leading to the exploration of learning-based approaches. The advent of learning-
based methods has significantly advanced LF occlusion removal. DeOccNet, proposed
by [54], was the first end-to-end network for LF occlusion removal, utilizing a deep
encoder–decoder model with residual atrous spatial pyramid pooling. This model also
introduced a mask embedding approach to generate training datasets, allowing for effective
supervised learning. However, DeOccNet’s results were often blurry and struggled with
large occlusions. Subsequent improvements came with Mask4D, presented by [55], which
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maintained the spatial layout of SAIs and employed 4D convolution to fully extract angular
information, thereby improving de-occlusion performance. Ref. [56] leveraged Generative
Adversarial Networks to semantically inpaint occluded regions, synthesizing the results
with reconstructed backgrounds to produce occlusion-free images. Ref. [57] introduced a fil-
ter for extracting features from shifted lenslet images to reconstruct occluded regions. While
effective for sparse LFs, this method faced challenges with dense LFs due to assumptions
about background visibility and the high memory and preprocessing requirements.

To address both sparse and dense LF images, [58] introduced the ISTY framework for
light-field de-occlusion, which modularizes the process into three distinct roles: extracting
light-field features, defining occlusions, and inpainting occluded regions. The framework
effectively manages the challenges posed by varying disparity ranges and enhances perfor-
mance in both sparse and dense LF datasets. While these CNN-based methods showed
promise, they were limited by the inherent local receptive field of CNNs, leading to incom-
plete occlusion removal and quality decline in complex scenes. To mitigite this limitation,
a sophisticated approach proposed by [59] that synergistically combines Convolutional
Neural Networks (CNNs) and Swin Transformers was developed to advance occlusion
removal; CNNs were employed in the shallow layers to capture intricate local features
and details, while Swin Transformers were used in the deeper layers to model the global
patterns of large occlusions. The network leverages the global receptive field capabilities
of Transformers to handle extensive occlusions, while CNNs mitigate the Transformers’
challenges in fine-detail extraction. This hybrid architecture, integrating both global and
local feature extraction, results in a comprehensive approach to restoring occlusion-free
images. However, because of the way they handle local and global feature dependencies,
many of these techniques still perform poorly in big occlusions. Robust feature extraction,
effective multi-scale fusion, and careful image refining are some necessary components of a
more comprehensive strategy to overcome these obstacles.

Unlike earlier techniques that relied on handcrafted features or limited CNN architec-
tures, our approach synergizes the robust multi-scale feature extraction of CSPDarknet53
with the efficient multi-scale fusion capabilities of BiFPN, enhancing the network’s ability to
handle complex and large occlusions. Additionally, the incorporation of the Half-Instance
Initialization Network blocks ensures meticulous image refinement, addressing both local
and global structures more effectively than prior methods.

3. The Proposed Method
3.1. Architecture Overview

Our proposed architecture for light-field occlusion removal integrates CSPDarknet53
with the BiFPN and the HINet blocks, as detailed in Figure 2. The system comprises
three key components: multi-scale feature extraction, multi-scale feature fusion, and image
refinement sub-network. Reliable and multi-scale feature extraction is provided by the
backbone, CSPDarknet53. This is supplemented by BiFPN, which improves feature inte-
gration via sophisticated multi-scale fusion and a swish attention mechanism. To further
refine the occluded areas, the HINet block is utilized, focusing on both local details and
global structures. The network’s efficiency is maintained through separable convolutional
blocks, ensuring high performance without compromising resources. We show significant
improvements over current approaches, offering efficient occlusion removal across various
scenarios. Because of this multi-perspective method, our network handles occlusions well
and provides a reliable solution for accurate occlusion removal. The complete process can
be summarized as

Iout = tanh(HINet(Conv3×3(BiFPN(CSPDarknet53(L0))X6))) (1)
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Figure 2. An overview of our three-part architecture: a multi-scale feature extraction, a multi-scale
feature fusion, and an image refining subnetwork.

3.2. Multi-Scale Feature Extraction

The CSPDarknet53 architecture is utilized by the multi-scale feature extraction module
to extract a wide range of detailed multi-scale features from the input light-field images.
Because of its intricate architecture that uses cross-stage partial connections to enhance
performance, CSPDarknet53 is well known for its effective and efficient feature extraction
capabilities. The 5D tensor L0 ∈ RU×V×H×W×C is used to describe the input light-field
images. The angular dimensions U and V denote the number of viewpoints captured
within the light field, while the spatial dimensions H and W correspond to the height and
width of each viewpoint, respectively. For this study, the spatial resolution is set at H = 256
and W = 192, with an angular resolution of 5 × 5. The number of channels C indicates
the color depth or feature channels of the images. In order to increase the channel depth
and extract earlier features that will enhance the feature representation, these images are
stacked along the channel dimension, leading to a total size of 5 × 5 × 256 × 192 × 75 and
pass through an initial convolution layer:

Fin = Conv(L0) (2)

In this initial layer, a 3× 3 convolution is employed with a stride of 1 and padding of 1,
followed by a ReLU activation function. This configuration allows for a comprehensive
extraction of spatial features while preserving the spatial dimensions of the input tensor.

The CSPDarknet53 architecture comprises Five CSPBlocks, each designed to encapsu-
late features at different sizes and degrees of abstraction. Within each block, downsampling
procedures are employed to decrease spatial dimensions while enhancing feature depth.
This downsampling is executed through convolutional operations with a kernel size of
3 × 3 and a stride of 2, effectively halving the spatial dimensions.

Fk+1 = Downsample(CSPBlockk(Fk))) (3)

for k ∈ {0, 1, 2, 3, 4}, where F0 = Fin and k represents each block number.
Each CSPBlock begins by splitting the input tensor Fk into two parts, SplitL(Fk) and

SplitR(Fk). This splitting is typically achieved by channel-wise division, where the number
of channels in Fk is evenly divided between the left and right segments, and processes
each part independently through a series of ResBlocks, where each ResBlock consists of
two layers of convolutions to capture complex features effectively and aids in gradient
flow efficiency. This method minimizes computation and aids in gradient flow efficiency.
The first convolution is a 1 × 1 convolution followed by batch normalization and a ReLU
activation function. The second is a 3 × 3 convolution with padding of 1, again followed by
batch normalization and a ReLU activation function. Mathematically, the operations in a
ResBlock can be described as follows:

Fres = ReLU(BN(Conv1×1(Fk))) + Fk (4)

Fout = ReLU(BN(Conv3×3(Fres))) (5)
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The output from each ResBlock is then concatenated as follows:

Fconcat = Concat(ResBlock(SplitL(Fk)), ResBlock(SplitR(Fk))) (6)

After concatenation, the combined features are processed through a final 1× 1 convolu-
tion, which adjusts the feature dimensionality and prepares it for subsequent processing stages:

Fout = Conv1×1(Fconcat) (7)

The output Fout from each of the five CSPBlocks represent the features captured at
varying scales, effectively encompassing both fine and coarse details extracted from the
light-field images. The multi-scale representation achieved through this architecture is
critical for accurately modeling complex visual patterns, particularly in scenarios where
nuanced feature representation is paramount. The combination of downsampling and
residual connections facilitates the maintenance of spatial coherence within the extracted
features while enabling deeper levels of feature abstraction. After traversing the CSPBlocks,
the enriched feature representations are directed to the subsequent BIFPN module for
integration and enhancement.

3.3. Multi-Scale Feature Fusion

The multi-scale features retrieved by the CSPDarknet53, symbolized as {Pi}, i ∈ {3, 4, 5, 6, 7},
where each Pi represents a feature map at a different scale, are integrated by the multi-
scale feature fusion module using six BiFPN layers. In this case, the greatest resolution
is represented by P3 and the lowest by P7. The BiFPN layer uses these features as input,
processes them, and fuses them to improve object representation at various sizes. To strike
a compromise between computing efficiency and semantic richness, the BiFPN begins at
P3 and concludes at P7. Feature maps from P3 to P7 avoid the high computational costs
associated with lower-level features (such as P1 and P2) while capturing the high-level
semantic information required for tasks such as occlusion removal. This design optimizes
overall performance and feature integration by aligning with the CSPDarknet53 backbone.

The feature maps P3 to P7 have the following dimensions:

P3 ∈ R
H
8 ×W

8 ×C3 , P4 ∈ R
H
16×

W
16×C4 , P5 ∈ R

H
32×

W
32×C5 , P6 ∈ R

H
64×

W
64×C6 , P7 ∈ R

H
128×

W
128×C7

where Ck represents the channel depth of each feature map. These multi-scale features
are effectively fused across BiFPN layers to enhance the model’s ability to perform oc-
clusion removal, capturing both low-resolution and high-level semantic features, as well
as finer details.

The BiFPN architecture as shown in Figure 3 consists of several key components:
lateral connections, weighted bidirectional feature fusion process, and both bottom-up
and top-down pathways to combine features from different scales. This bidirectional
strategy gathers both high-level semantic information and low-level details, ensuring
comprehensive feature fusion. In the lateral connection phase, each input feature map
is processed through a 1 × 1 convolution to adjust its channel dimensions. This step is
crucial for ensuring that feature maps from different scales can be effectively combined.
The operation is defined as

Platk = Conv1×1(Pk)

This transformation enables the integration of features from different scales while preserv-
ing their spatial information.

In the bottom-up and top-down pathways, each BiFPN layer uses separable convolu-
tion blocks in both upward and downward paths to process and integrate features.

Top-Down: To match the resolution of higher-resolution maps, low-resolution feature
maps are upsampled. The process is outlined below:
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Upsample(Pi) → Convolutionup → Featureup

where Convolutionup is a separable convolution block applied after upsampling. Bottom-
Up: In order to match the resolution of lower-resolution maps, high-resolution feature
maps are downsampled. The process is outlined below:

Downsample(Platk) → Convolutiondown → Featuredown

where Convolutiondown is a separable convolution block applied after downsampling.
Each separable convolution block consists of (1) depthwise convolution, which oper-

ates on each input channel separately; (2) pointwise convolution, which merges the depth-
wise convolution’s outputs and (3) batch normalization and swish activation, which are
applied to the outputs of the pointwise convolution to normalize and activate the features.

The output feature map Fsep from the separable convolution blocks is defined as

Fsep = DepthwiseConv(PointwiseConv([Pi])) (8)

where [Pi] are the input feature maps to the BiFPN layer.
Weighted Bidirectional Feature Fusion Process: To integrate features from different

levels in an adaptable manner, weighted feature fusion is employed by the BiFPN layers,
wherein the significance of every input feature map is determined by dynamically learned
weights. In order to achieve efficient multi-scale feature integration, the feature maps
are first pushed to normalized weights. The following is a representation of the adaptive
multi-scale feature fusion process:

Pfused = Convfusion

(
Swish

(
∑

i
wi · Pi

))
(9)

While swish is an attention mechanism used to improve feature representation and dynam-
ically weight the contributions of various feature levels, wi represents the learned weight
for each feature map pi and Convfusion is a convolution operation applied to the combined
feature map. Several essential elements are involved in this process: while swish activation
is performed on the weighted sum of features to add non-linearity and improve feature
representation, ReLU activation is applied to the learnable weights before normalization.

Figure 3. The structure of a bi-directional feature pyramid network layer.
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The swish attention mechanism can be represented mathematically as follows:

Pi,up = Swish
(

WT
i · Pi + Wup

i · Upsample(Pi+1)
)

(10)

Pi,down = Swish
(

WT
i · Pi + Wdown

i · Downsample(Pi−1)
)

(11)

For each feature map Pi, Wup
i and Wdown

i indicate the weights applied after the up-
sampling and downsampling procedures, respectively. WT

i denotes the weight matrix
applied to the feature map. The procedures that modify the feature maps’ resolution are
Upsample(Pi+1) and Downsample(Pi−1). For each layer of the six cascaded BIFPN layers,
this fusion procedure is performed for each of the five feature maps [Pi]. A set of refined fea-
ture maps at different scales is output at each BiFPN layer {Pfused

3 , Pfused
4 , Pfused

5 , Pfused
6 , Pfused

7 }.
The final output of the BiFPN is a concatenation of all fused feature maps across the levels,
which can be summarized as

Foutput = Concat(Pfused
3 , Pfused

4 , Pfused
5 , Pfused

6 , Pfused
7 )

Finally, we send {Foutput} to the refine module for further image refining at the final
BiFPN layer to enhance the quality of the output by leveraging the most representative
features captured during multi-scale feature fusion.

3.4. Refinement Module

To refine the image, the refine module starts with a 3 × 3 convolution, which cuts
down the number of channels to 3. These channels are then fed directly to a single stage
of the HINet network. The single-stage of the HINet as illustrate in Figure 4 , is a U-
Net-shaped architecture that employs an encoder–decoder designed to enhance feature
extraction and image reconstruction. On the encoder side, a downsampling is carried out
with a convolution of kernel size 4. Half-Instance Normalization Blocks (HIN Blocks) are
used to process features while downsampling the channels twice.

Figure 4. The structure of the Half-Instance Normalization Layer.

The HIN Block is essential for enhancing feature representation while maintaining
efficiency. The input features Fin ∈ RCin×H×W are processed and generate intermediate
features Fmid ∈ RCout×H×W , using a 3 × 3 convolutional layer. Intermediate features Fmid
are split into two equal parts: Fmid1 and Fmid2, each with Cout/2 channels. Fmid1 undergoes
instance normalization (IN) with learnable affine parameters. Fmid2 remains unchanged by
passing it through identity to retain contextual information. The concatenation of the two
portions occurs over the channel dimension. The residual features Rout are obtained by
processing the concatenated features via a 3 × 3 convolutional layer sandwiched between
two leaky ReLU activations (with a leaky factor of 0.2). Taking the supplied features as
input Fin for the convolutional layer of size 1, a shortcut link is made to them. By adding
the shortcut features to the residual features Rout, the final output Fout is produced.

An upsampling operation was accomplished on the decoder side by using a kernel size
of 2 in a transposed convolutional layer. To minimize information loss during resampling,
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features are refined using a single residual block [62]. The encoder’s features are then
combined with the upsampled features. After being processed via a 3 × 3 convolutional
layer, the input features Fin with dimensions RCin×H×W are fed into the ResBlock via a
leaky ReLU activation function with a leaky factor of 0.2. Introducing non-linearity enables
the network to learn more intricate patterns. A second leaky ReLU activation is applied
after the features flow through a third 3 × 3 convolutional layer. By collecting increasingly
complex details and patterns in the incoming data, this further refines the features. To create
a residual connection, the given features are used as input Fin for a convolutional layer
of size 1, and the processed features from the second activation are summed to create the
final output Fout of the ResBlock. The final occlusion-free light-field image is obtained by
feeding the result of the refinement module through a Tanh activation function.

3.5. Loss Function

In our proposed architecture for light-field occlusion removal, Mean Squared Error
(MSE) is employed as the primary loss function to optimize the performance of the network.
The MSE loss function is defined as

LMSE =
1
N

N

∑
i=1

(Ii
out − Ii

gt)
2, (12)

where Ii
out represents the predicted pixel value at the i-th position and Ii

gt denotes the corre-
sponding ground-truth pixel value, with N indicating the total number of pixels. The mean
squared difference between true and anticipated pixel values is measured by this loss
function, which gives a quantitative indicator of how well the occlusion removal occurred.

The integration of MSE within our architecture facilitates precise supervision during
training and plays a crucial role in minimizing pixel-wise errors across various scales and
levels of detail, directly contributing to the effectiveness of occlusion handling by penalizing
deviations between the reconstructed and true images. This ensures that the model learns
to produce accurate and high-quality results and enhances the practical applicability of the
method in real-world scenarios.

4. Experiments
4.1. Experimental Setup

Using the methodology outlined in [58], we trained and tested our network as follows:
Training dataset: We train our LF occlusion removal network using a dataset that

combines real-world occlusion scenarios with synthetic occlusion generation in a manner
identical to the mask embedding method indicated by [54]. This method establishes
occluded LF images by embedding occlusion masks into occlusion-free LF images, thereby
simulating a range of occlusion conditions. A variety of disparity scenarios are represented
in the LF images by the random placement of one to three occlusion masks during the
mask-embedding procedure. In addition to the 80 mask images used in the [54] approach,
21 more thick and large real occlusion images were added to enhance the training dataset,
tackling the challenge of removing large occlusions. We make sure that our LF images only
include objects with negative disparity in order to provide ground-truth occlusion-free
images.We used 1418 light-field images (out of 2957 total) from the DUTLF-V2 dataset [63],
a dense LF dataset taken with the Lytro Illum camera [64], for this purpose. Our model is
able to learn and generalize occlusion elimination over a wide range of real-world scenarios
because of the precise selection and augmentation of the training data.

Testing dataset: We use four synthetic sparse LF scenes (4-Syn) and nine synthetic
sparse LF scenes (9-Syn), which were created by [54,59], respectively, to assess our network’s
performance on sparse light fields (LFs). Because Stanford CD scene [65] is a real sparse LF
image with ground truth accessible, we include it in our quantitative comparison. From the
DUTLF-V2 test dataset [63], we chose 615 LFs for dense LFs and an extra 33 real occlusion
images. For the purpose of evaluating multi-disparity occlusion scenarios, which we refer
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to as Single Occ and Double Occ, respectively, we employ a mask-embedding technique
with a disparity range of [1, 4]. We employ several real-world sparse and dense occlusion
LF scenes that are publicly available for qualitative comparison. A thorough assessment of
our method’s performance in sparse LF environments is given by the sparse LF dataset,
which includes scenes taken by [59] and the Stanford CD scene [65]. The Stanford Lytro
dataset [66] and EPFL-10 [67], both taken with the Lytro Illum camera, form the dense LF
dataset. Our network’s ability to handle intricate occlusions in dense LF environments is
thoroughly evaluated because of the variety of occlusion scenarios and disparity levels
provided by these datasets.

Training details: An angular and spatial resolution of (U×V×X×Y) = (9 × 9 × 600 × 400)
is present in the LF images in the DUTLF-V2 dataset. The 300 × 200 spatial resolution is
applied to the central 5 × 5 pictures for our needs. To achieve a resolution of (256 × 192),
we arbitrarily center-crop and flip images horizontally during training. To implement
occlusion embedding, we employ the mask-embedding technique to randomly pick, mix,
and shuffle one or more masks in RGB images. We optimize our model using the ADAM
optimizer with (β1, β2) = (0.5, 0.9) and a batch size of 4. Because of the restricted GPU
memory, the λ1 and λ2 parameter values are set to 0.01 and 120 , respectively. A learning
rate of 0.001 is used initially and is halved every 150 epochs. Using the PyTorch framework,
500 epochs of training are completed in 20 h on a single 4090 Nvidia Geforce GPU.

4.2. Experimental Results
4.2.1. Quantitative Results

We assess how accurate the de-occluded images are quantitatively by comparing our
model to cutting-edge LF occlusion removal techniques: DeOccNet [54], as well as the
approaches given by Zhang et al. [57] and ISTY [58]. We also analyze the information
obtained from different views in light fields (LFs) by contrasting our model with single-
image inpainting techniques, namely, RFR [48] and LBAM [49]. We used the same learning
approach and mask embedding for a fair comparison inside the dense LF dataset and
trained DeOccNet from scratch on our dataset. We applied the ISTY [58] approach using
the provided authors’ weights. Because of the restricted nature of the training data for
RFR [48] and LBAM [49], and because Zhang et al. [57] do not provide access to their source
codes, the quantitative findings for all three approaches are derived directly from ISTY [58].
The quantitative findings are presented in Table 2. For assessing the image quality, we
utilized PSNR and SSIM, two well-known metrics used in LF occlusion-removal studies.

Table 2. Quantitative comparison on the sparse and dense LF dataset using PSNR and SSIM.
↑ indicates that a higher result is better; red indicates the best result, while blue indicates the second-
best result.

LF Type Sparse (Syn) Sparse (Real) Dense (Syn)

Name 4-Syn 9-Syn CD Single Occ Double Occ

PSNR ↑

RFR [48] 19.89 20.69 21.13 26.28 23.25
LBAM [49] 21.11 23.04 21.56 27.92 24.83

DeOccNet [54] 23.74 23.70 22.70 28.67 25.85
Zhang et al. [57] 14.46 22.00 20.19 23.15 18.01

ISTY [58] 26.42 27.04 25.17 32.44 28.31
Ours 27.32 27.48 25.68 30.70 29.34

SSIM ↑

RFR [48] 0.668 0.672 0.646 0.867 0.801
LBAM [49] 0.677 0.725 0.803 0.899 0.827

DeOccNet [54] 0.701 0.715 0.741 0.914 0.847
Zhang et al. [57] 0.683 0.758 0.832 0.900 0.823

ISTY [58] 0.836 0.849 0.870 0.947 0.902
Ours 0.862 0.853 0.886 0.838 0.850

While DeOccNet [54] shows limited performance overall, it achieves decent results
across both datasets. With the exception of single-disparity occlusions in sparse LFs,
Zhang et al. [57] do not consistently produce improved results. Although ISTY [58] shows a
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reasonable inference time and practical applicability, the pre-trained inpainting models suf-
fer from catastrophic forgetting, and the inpainting knowledge used is currently suboptimal
due to limited training data. Furthermore, it requires more parameters for dense light fields
(LFs) than for sparse ones, making it twice as large as DeOccNet [54]. The single-image
inpainting techniques RFR [48] and LBAM [49] perform better on dense LF images because
they are adept at handling occlusion-free scenes. But, since these models cannot use the
background information from LFs, they perform worse on sparse LFs. As quantitative
measures show, our proposed solution outperforms existing LF occlusion removal and
inpainting models in sparse light fields (LFs) and performs competitively in dense LFs.

4.2.2. Qualitative Results

We show some qualitative comparisons of real-world sparse light fields (LFs) be-
tween our approach and other cutting-edge techniques in Figure 5. Scenes 3 and 4 feature
fewer occlusions and simpler textures, whereas the publicly accessible real-world CD
scene and synthetic scenes 1 and 2, which have significant and complex occlusions, are
compared. Occlusion artifacts are preserved, and hazy outputs are produced around occlu-
sions by DeOccNet [54]. This restriction shows that it cannot precisely remove occlusions
and restore distinct features. In comparison to DeOccNet, ISTY [58] shows higher per-
formance, handling occlusions better in the sparse, dense LFs. But there remains space
for improvement, as indicated by the final images’ perceived occlusion artifacts. In the
sparse LF dataset, the strategy that we propose shows strong de-occlusion performance
through using information about occluded objects from various viewpoints in addition
to effectively differentiating occlusions from background parts. In comparison to both
DeOccNet and ISTY, our approach performs better because of its sophisticated feature
extraction and integration strategies, which also lead to fewer occlusion artifacts and more
precise reconstructions.

Figure 5. Qualitative comparisons of the sparse LF dataset. Selected areas of the outputs are
highlighted with red boxes for detailed comparison. Our method reconstructs sharper occlusion-free
CV images by effectively utilizing occluded background information from other views.
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Figure 6’s dense LF dataset illustrates how DeOccNet [54] struggles to handle dense
and complicated occlusions, as seen by the outputs’ frequent blurriness and retention of
notable occlusion artifacts. When it comes to complex, multi-disparity occlusions, ISTY [58]
performs better than DeOccNet and our approach, producing clearer outputs and fewer
occlusion artifacts. Nevertheless, residual artifacts are still a problem for all of them.
Although it falls short of ISTY, our suggested approach performs competitively in the dense
LF dataset. This is mainly because our method does not include inpainting techniques,
which are especially useful for dense LFs where inpainting expertise may greatly help
reconstructing scenes without occlusion.

Figure 6. Qualitative comparisons on the dense LF dataset, with selected areas marked by red boxes
for focused analysis, highlighting distinct differences among the methods.

4.2.3. Performance Evaluation on Real-World Scene Data

In Figure 7, we test our method on real-world scenes provided by Wang [54]. Our
method demonstrates significant improvements in occlusion removal compared to existing
methods such as DeOccNet and ISTY. The evaluation is based on two factors: (1) the preser-
vation integrity of non-occluded areas, and (2) the restoration accuracy in occluded regions.
Our method performs particularly well in scenes with thin and repetitive occlusions, while
it exhibits limitations in handling larger, more irregular occlusions.

In the first row (bike_01), our method is particularly effective in removing thin occlu-
sions, such as the basket grid in the foreground. The grid structure, which occludes part
of the background (i.e., the cars in the scene), is accurately removed without introducing
significant artifacts in the unoccluded areas. The red boxes highlight the areas of focus
where our method shows clear improvements. The multi-scale feature extraction and
refinement in the BiFPN allow for more accurate distinction between foreground occlusions
and background content. Compared with DeOccNet, which loses important background
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information and generates blurred results, our method restores the background with a
higher level of detail. This is supported by the higher PSNR (13.51) and SSIM (0.536) values,
which indicate better recovery quality. Moreover, ISTY produces slightly better results than
DeOccNet but still fails to maintain the clarity of finer details, particularly in regions with
complex textures, such as the ground and parked vehicles.

Figure 7. Analyzing occlusion removal effectiveness across real-world scenes. The first row (bike_01)
highlights our method’s success with thin occlusions, achieving higher PSNR and SSIM, as indicated
by the red boxes. In contrast, the second row (Trees_Back) reveals limitations, as the method
encounters challenges with larger, irregular occlusions, resulting in visible residues.

However, in the second row (Trees_Back), where the occlusions consist of large and
irregular objects like tree trunks and branches, the performance of our method decreases.
While our approach performs slightly better than both DeOccNet, the results are still not
ideal. The occluded background, in this case, is partially recovered, but there are visible
occlusion residues, as shown in the red box. The PSNR (17.89) and SSIM (0.535) values
reflect this, indicating an improvement over one of the competing methods but still showing
that the recovery quality is not optimal. Both our method and DeOccNet face challenges
in dealing with dense occlusions, leading to blurred and incomplete reconstructions in
the occluded regions. This limitation can be attributed to the complexity and size of the
foreground occlusions. Large occlusions obscure significant portions of the scene, causing
a serious loss of background information. Despite our method’s multi-scale feature fusion
strategy, which helps mitigate this issue to some extent, it still struggles to fully recover
the background in heavily occluded areas. Future work may address this challenge by
enhancing the model’s global perception capabilities and potentially leveraging more
comprehensive camera array setups for better occlusion removal.

4.2.4. Evaluation of Computational Efficiency and Scalability

Assessing computational efficiency and scalability is crucial for evaluating the per-
formance of occlusion removal methods. Our proposed model, as detailed in Table 3,
demonstrates a balance between complexity and performance, though certain trade-offs
are evident. With 52.59 M parameters, our model is larger than Zhang et al. (2.7 M) and
DeOccNet (39.0 M), while being smaller than larger architectures like LBAM (69.3 M) and
ISTY (80.6 M). Notably, despite having more parameters than DeOccNet and Zhang et al.,
our model is still relatively efficient compared to LBAM and ISTY, indicating an optimized
approach that achieves comparable or better performance with fewer parameters. In terms
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of inference time, although models such as DeOccNet (10 ms), LBAM (12 ms), and ISTY
(24 ms) process faster, this speed often comes at the expense of reduced feature extraction
capacity or lower performance. Our model, with an average inference time of 138.8 ms,
strikes a balance between lightweight models like DeOccNet and LBAM and computa-
tionally heavier ones like Zhang et al. (3050 ms). This demonstrates that, while not the
fastest, our model’s design enables comprehensive multi-scale feature extraction, enhancing
occlusion removal without overwhelming computational resources.

Table 3. Overview of each model’s parameters and average inference time (Inf) for processing
256 × 192 light-field images on an Nvidia Geforce RTX 4090 GPU. ↓ indicates that smaller results
are better.

Model LBAM [49] DeOccNet [54] Zhang et al. [57] ISTY [58] Ours

Params ↓ 69.3 M 39.0 M 2.7 M 80.6 M 52.59 M
Inf ↓ 12 ms 10 ms 3050 ms 24 ms 138.8 ms

Regarding scalability, the model’s computational demand (138.8 ms) and parameter
count (52.59 M) suggest that it remains scalable for higher-resolution tasks or larger datasets
without overburdening the system. This is crucial for applications that require a balance
between accuracy and performance, particularly in real-time or resource-constrained en-
vironments. Although our method introduces a higher computational load compared to
simpler architectures, its multi-scale processing capabilities and refinement layer contribute
to superior occlusion reconstruction. Overall, the added complexity from CSPDarknet53,
six BiFPN layers, and the HiNet refinement module enhances the model’s capacity to handle
detailed and high-resolution inputs. This leads to superior occlusion region reconstruction,
justifying the marginal increase in computational cost. Importantly, the model remains
scalable and efficient for more demanding tasks, striking a balance between accuracy and
reasonable resource usage.

4.3. Ablation Study

In this section, we conduct a thorough ablation study to assess the contributions of
various components in our proposed architecture, as illustrated in Table 4 and Figure 8.
Our ablation study aims to identify the optimal number of BiFPN layers required for model
convergence and evaluate the effects of selectively omitting key modules, including the
complete removal of the BiFPN layers and the exclusion of the HiNet refinement module
on the network’s overall performance in light-field occlusion removal. The network is
retrained using the same training data.

Our study begins by evaluating the model’s performance across configurations with
3, 5, 6 (our baseline), and 7 BiFPN layers, as well as a variant that omits all BiFPN layers.
The baseline model, featuring 6 BiFPN layers, consistently outperformed the others, achiev-
ing the highest performance metrics. As marked in red in the table, it attained an average
PSNR of 28.104 dB and an SSIM of 0.858. This result underscores the model’s effective
balance between complexity and feature extraction, enabling it to capture rich, multi-scale
contextual information crucial for accurately reconstructing occluded regions. Reducing
the number of BiFPN layers to 3 or 5 resulted in a noticeable decline in performance metrics.
This decrease can be attributed to the model’s reduced capacity to capture rich contextual
features, as fewer layers limited its ability to aggregate multi-scale information. The lack of
sufficient multi-scale representations led to inadequate feature aggregation and impaired
the model’s ability to discern occluded regions effectively. Interestingly, increasing the
number of BiFPN layers to 7 did not yield a proportional improvement in performance.
This suggests that, while additional layers can enhance feature interactions, they may also
introduce complexity and noise, resulting in diminishing returns and potential overfitting.
This highlights the importance of balancing model depth with effective generalization
across diverse input conditions.

We also investigated the contribution of the HiNet refinement module by training a
version of our model without it. The exclusion of the HiNet layer led to a significant de-
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crease in both PSNR and SSIM, emphasizing its critical role in enhancing detail and texture
in the output. The HiNet layer enables selective refinement of feature maps produced by
the preceding BiFPN layers, particularly enhancing intricate textures and edges, which sig-
nificantly improves the clarity of reconstructed occluded regions. In summary, our ablation
study demonstrates that the baseline model with 6 BiFPN layers is pivotal for achieving
optimal performance in occlusion removal. Both the appropriate number of BiFPN layers
and the inclusion of the HiNet refinement module are crucial for the model’s effectiveness
in reconstructing occluded regions, validating our architectural design choices.

Table 4. Conducting ablation studies on our method and its variants across sparse and dense light-
field datasets. Performance is evaluated using PSNR and SSIM (PSNR/SSIM), with top results
marked in red. ↑ indicates that a higher result is better.

LF Type Sparse (Syn) Sparse (Real) Dense (Syn)

Name 4-Syn 9-Syn CD Single Occ Double Occ

PSNR ↑

Ours w/o BiFPN 20.04 20.56 20.28 28.31 27.62
Ours w/ 3 BiFPN

Layers 26.73 26.99 24.90 26.36 27.06

Ours w/ 5 BiFPN
Layers 26.47 27.27 25.17 30.59 29.25

Ours w/ 7 BiFPN
Layers 24.59 25.42 23.71 29.05 27.56

Ours w/o
Refinement 26.53 27.16 24.85 27.84 26.51

Ours 27.32 27.48 25.68 30.70 29.34

SSIM ↑

Ours w/o BiFPN 0.547 0.534 0.701 0.789 0.812
Ours w/ 3 BiFPN

Layers 0.828 0.841 0.833 0.795 0.822

Ours w/ 5 BiFPN
Layers 0.832 0.849 0.863 0.835 0.847

Ours w/ 7 BiFPN
Layers 0.748 0.784 0.805 0.830 0.835

Ours w/o
Refinement 0.829 0.838 0.849 0.824 0.845

Ours 0.862 0.853 0.886 0.838 0.850

Figure 8. A visual exploration of model elements: unveiling the role of each component in our
ablation study.

5. Limitations and Future Directions

While the proposed architecture represents a significant advancement in occlusion
removal for light-field images, several limitations must be addressed to further enhance its
robustness and practical applicability, particularly in handling large foreground occlusions
that obscure significant scene areas, leading to background information loss. Although the
multi-scale feature fusion strategy offers some mitigation, background recovery in heavily
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occluded regions remains inadequate. Future work should enhance global context aware-
ness and advanced depth estimation techniques, as well as explore more extensive camera
array configurations to improve recovery in complex scenes.

One limitation is the high computational complexity associated with the architecture,
which can hinder deployment in resource-constrained environments. Future work should
focus on reducing the number of network parameters without compromising performance.
Techniques such as network pruning, quantization, and knowledge distillation could be
employed to compress the model. Additionally, exploring lightweight backbone networks
architectures could yield a more efficient configuration. Another challenge is the limited
generalization of the model across complex occlusion scenarios. The model may struggle
with unseen occlusion patterns that were not well represented in the training dataset. To ad-
dress this, expanding the training datasets to include a wider range of real-world occlusions
is essential. Incorporating self-supervised or unsupervised learning approaches could fur-
ther enhance the model’s ability to learn from unlabelled data. Moreover, the model may
struggle to handle large disparities effectively.

In cases where occlusions span multiple depth planes, the current architecture may
not adequately capture the necessary context. Introducing 3D or volumetric approaches
that account for spatial relationships within the light-field data could significantly enhance
the model’s ability to manage large disparities. Finally, while the model excels at removing
occlusions, it does not currently incorporate inpainting techniques to fill in areas left by
these removals. This can lead to incomplete reconstructions in certain cases. Future work
should explore integrating inpainting mechanisms or generative adversarial networks to
generate plausible content in occluded regions, thereby enhancing the completeness and
quality of the output. In summary, while this architecture marks a significant advancement
in occlusion removal, addressing these limitations will improve its robustness and practical
applicability in diverse real-world scenarios.

6. Conclusions

For efficient occlusion removal in light-field images, we have presented a compre-
hensive architecture in this work that combines CSPDarknet53 and the BiFPN. Using
sophisticated feature extraction and multi-scale fusion techniques, this architecture tackles
the significant difficulty of handling large and complicated occlusions. Robust feature
extraction is provided by CSPDarknet53, while feature integration is improved by BiFPN.
Efficiency is guaranteed without sacrificing feature extraction quality because of the in-
corporation of separable convolutional blocks. Furthermore, thorough image refining is
made possible by the HINet, which efficiently addresses both local and global details.
The network can thoroughly handle occlusions of different sizes and complexity thanks
to this multi-perspective method. The originality of the proposed method lies in its effi-
cient multi-scale feature extraction through CSPDarknet53, which reduces computational
overhead while effectively managing occlusions. The dynamic feature fusion introduced
by BiFPN ensures that both fine and coarse details are preserved, even in large occlusions.
Additionally, the integration of HINet provides meticulous refinement by addressing local
occlusion details and global structures, leading to smoother and more accurate reconstruc-
tions. The use of separable convolutions also enhances computational efficiency without
sacrificing performance, making the method scalable for larger datasets and applicable
in real-world scenarios. Numerous studies on diverse datasets with different degrees of
occlusion severity show notable gains over cutting-edge techniques. Overall, the proposed
architecture represents a significant advancement in occlusion removal, enhancing the
accuracy of light-field imaging. By effectively addressing complex occlusions, it offers
promising applications across various fields and sets the stage for further development in
real-world scenarios.
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