Biofilm Production Capability of Clinical Aeromonas salmonicida Subspecies salmonicida Strains under Stress Conditions
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. The Origin of the Clinical Isolates
2.2. Isolation and Identification of the Isolates
2.3. In Vitro Biofilm Investigations
2.4. The Determination of the Total Viable Cell Counts in Biofilms
2.5. Determination of Biofilm Biomass by the Crystal-Violet-Staining Method in Microtitration Plates
2.6. The Determination of Biofilm Production on the Liquid–Air Border (Pellicle Test)
2.7. Molecular Sequencing
2.8. Statistical Analyses
3. Results
3.1. Investigated Isolates
3.2. Results of the Biofilm Production
3.2.1. Biofilm Production in M9 Minimal Medium
3.2.2. Biofilm Production in Minimal ABTG Medium
3.2.3. Biofilm Production in Tryptone Soya Broth
3.2.4. Comparative Presentation of Biofilm Production between M9, ABTG and TSB
3.2.5. Results of the Pellicle Test (Air–Liquid Border)
- Pellicle test in minimal M9 medium
- Pellicle test in minimal ABTG medium
- Pellicle test in TSB medium
3.2.6. Detected Genes Responsible for the Biofilm Production in Analyzed Aeromonas salmonicida subsp. salmonicida Strains
4. Discussion
4.1. Optimal Conditions for Aeromonas salmonicida subsp. salmonicida to Form Biofilms
4.2. Reliability of Applied Methods in Aeromonas salmonicida subsp. salmonicida Biofilm Testing
4.3. Molecular Analysis
4.4. Future Perspectives and Possible Applicability of the Obtained Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Charette, S.J. Microbe Profile: Aeromonas Salmonicida: An Opportunistic Pathogen with Multiple Personalities: This Article Is Part of the Microbe Profiles Collection. Microbiology 2021, 167, 001052. [Google Scholar] [CrossRef] [PubMed]
- Connors, E.; Soto-Dávila, M.; Hossain, A.; Vasquez, I.; Gnanagobal, H.; Santander, J. Identification and Validation of Reliable Aeromonas Salmonicida Subspecies Salmonicida Reference Genes for Differential Gene Expression Analyses. Infect. Genet. Evol. 2019, 73, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Han, J.E.; Kwon, H.; Park, S.C.; Kim, J.H. Recent Insights into Aeromonas salmonicida and Its Bacteriophages in Aquaculture: A Comprehensive Review. J. Microbiol. Biotechnol. 2020, 30, 1443–1457. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.T.; Fernández-Bravo, A.; Sanchis, M.; Mayayo, E.; Figueras, M.J.; Charette, S.J. Investigation of the Virulence and Genomics of Aeromonas Salmonicida Strains Isolated from Human Patients. Infect. Genet. Evol. 2019, 68, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gudmundsdottir, B.; Hastings, T.; Ellis, A. Isolation of a New Toxic Protease from a Strain of Aeromonas Salmonicida Subspecies Achromogenes. Dis. Aquat. Organ. 1990, 9, 199–208. [Google Scholar] [CrossRef]
- Austin, B.; Austin, D.A. Aeromonadaceae Representative (Aeromonas salmonicida). In Bacterial Fish Pathogens; Springer: Cham, Switzerland, 2016; pp. 215–321. ISBN 978-3-319-32673-3. [Google Scholar]
- Attéré, S.A.; Gagné-Thivierge, C.; Paquet, V.; Leduc, G.; Vincent, A.T.; Charette, S.J. Aeromonas salmonicida Isolates from Canada Demonstrate Wide Distribution and Clustering among Mesophilic Strains. Genome 2023, 66, 108–115. [Google Scholar] [CrossRef]
- Tewari, R. Isolation of Aeromonas Salmonicida from Human Blood Sample: A Case Report. J. Clin. Diagn. Res. 2014, 8, 139–140. [Google Scholar] [CrossRef]
- Salehi, M.R.; Shadvar, S.; Sadeghian, M.; Doomanlou, M.; Abdollahi, A.; Manshadi, S.A.D.; Sardari, A.; Rahdar, H.A.; Feizabadi, M.M. Endocarditis with Aeromonas Salmonicida. IDCases 2019, 18, e00625. [Google Scholar] [CrossRef]
- Moore, C.; Khalid, M.; Patel, P.; Goldstein, J. Aeromonas Salmonicida Bacteremia Associated with Chronic Well Water Consumption in a Patient with Diabetes. J. Glob. Infect. Dis. 2017, 9, 82. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, J.; Cai, H.; Lin, M.; Zhang, Y.; Huang, L. Enhanced Hemolytic Activity of Mesophilic Aeromonas Salmonicida SRW-OG1 Is Brought about by Elevated Temperatures. Microorganisms 2022, 10, 2033. [Google Scholar] [CrossRef]
- Vasquez, I.; Hossain, A.; Gnanagobal, H.; Valderrama, K.; Campbell, B.; Ness, M.; Charette, S.J.; Gamperl, A.K.; Cipriano, R.; Segovia, C.; et al. Comparative Genomics of Typical and Atypical Aeromonas Salmonicida Complete Genomes Revealed New Insights into Pathogenesis Evolution. Microorganisms 2022, 10, 189. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.T.; Charette, S.J. To Be or Not to Be Mesophilic, That Is the Question for Aeromonas Salmonicida. Microorganisms 2022, 10, 240. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves Pessoa, R.B.; De Oliveira, W.F.; Marques, D.S.C.; Dos Santos Correia, M.T.; De Carvalho, E.V.M.M.; Coelho, L.C.B.B. The Genus Aeromonas: A General Approach. Microb. Pathog. 2019, 130, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Tortora, G.J.; Funke, B.R.; Case, C.L. Microbiology: An Introduction, Books a La Carte Edition, 11th ed.; Benjamin Cummings: San Francisco, CA, USA, 2016; ISBN 978-0-321-79667-7. [Google Scholar]
- Carballo, J. Adhesion of Aeromonas Salmonicida to Materials Used in Aquaculture. Bull. Eur. Assoc. Fish Pathol. 2000, 20, 77–82. [Google Scholar]
- Desbois, A.P.; Cook, K.J.; Buba, E. Antibiotics Modulate Biofilm Formation in Fish Pathogenic Isolates of Atypical Aeromonas salmonicida. J. Fish Dis. 2020, 43, 1373–1379. [Google Scholar] [CrossRef]
- Nowak, M.; Semba, D.; Misic, D.; Półbrat, T.; Stojanovic, D.; Stanojevic, S.; Trusek, A.; Zizovic, I. The transformation of cellulose acetate into a new biocidal polymer by effluent-free grafting in supercritical carbon dioxide. J. Supercrit. Fluids 2023, 202, 106058. [Google Scholar] [CrossRef]
- Merritt, J.H.; Kadouri, D.E.; O’Toole, G.A. Growing and Analyzing Static Biofilms. Curr. Protoc. Microbiol. 2006. [Google Scholar] [CrossRef]
- Donelli, G. (Ed.) Microbial Biofilms: Methods and Protocols; Methods in Molecular Biology; Springer: New York, NY, USA, 2014; Volume 1147, ISBN 978-1-4939-0466-2. [Google Scholar]
- Berlanga, M.; Guerrero, R. Living Together in Biofilms: The Microbial Cell Factory and Its Biotechnological Implications. Microb. Cell Factories 2016, 15, 165. [Google Scholar] [CrossRef] [PubMed]
- Čabarkapa, I.; Čolović, R.; Đuragić, O.; Popović, S.; Kokić, B.; Milanov, D.; Pezo, L. Anti-Biofilm Activities of Essential Oils Rich in Carvacrol and Thymol against Salmonella Enteritidis. Biofouling 2019, 35, 361–375. [Google Scholar] [CrossRef] [PubMed]
- Gerstel, U.; Romling, U. Oxygen Tension and Nutrient Starvation Are Major Signals That Regulate agfD Promoter Activity and Expression of the Multicellular Morphotype in Salmonella Typhimurium. Environ. Microbiol. 2001, 3, 638–648. [Google Scholar] [CrossRef]
- Castelijn, G.A.A.; Van Der Veen, S.; Zwietering, M.H.; Moezelaar, R.; Abee, T. Diversity in Biofilm Formation and Production of Curli Fimbriae and Cellulose of Salmonella Typhimurium Strains of Different Origin in High and Low Nutrient Medium. Biofouling 2012, 28, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Lin, A. The Role of A-Layer in Polyunsaturated Fatty Acid (PUFA)-Mediated Effects on Aeromonas salmonicida subsp. Salmonicida; University of Tennessee at Chattanooga: Chattanooga, TN, USA, 2022. [Google Scholar]
- Talagrand-Reboul, E.; Jumas-Bilak, E.; Lamy, B. The Social Life of Aeromonas through Biofilm and Quorum Sensing Systems. Front. Microbiol. 2017, 8, 37. [Google Scholar] [CrossRef] [PubMed]
- Reith, M.E.; Singh, R.K.; Curtis, B.; Boyd, J.M.; Bouevitch, A.; Kimball, J.; Munholland, J.; Murphy, C.; Sarty, D.; Williams, J.; et al. The Genome of Aeromonas Salmonicida Subsp. Salmonicida A449: Insights into the Evolution of a Fish Pathogen. BMC Genom. 2008, 9, 427. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Chen, Y.; Yang, W.; Qiao, Z.; Zhang, X. Complete Genome Sequence of Fish-Pathogenic Aeromonas Hydrophila HX-3 and a Comparative Analysis: Insights into Virulence Factors and Quorum Sensing. Sci. Rep. 2020, 10, 15479. [Google Scholar] [CrossRef] [PubMed]
- Gavín, R.; Merino, S.; Altarriba, M.; Canals, R.; Shaw, J.G.; Tomás, J.M. Lateral Flagella Are Required for Increased Cell Adherence, Invasion and Biofilm Formation by Aeromonas spp. FEMS Microbiol. Lett. 2003, 224, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Qin, Y.; Mao, X.; Zheng, W.; Luo, G.; Xu, X.; Zheng, J. Silencing of Cyt-C4 Led to Decrease of Biofilm Formation in Aeromonas hydrophila. Biosci. Biotechnol. Biochem. 2019, 83, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Song, T.; Duperthuy, M.; Wai, S. Sub-Optimal Treatment of Bacterial Biofilms. Antibiotics 2016, 5, 23. [Google Scholar] [CrossRef]
- Allesen-Holm, M.; Barken, K.B.; Yang, L.; Klausen, M.; Webb, J.S.; Kjelleberg, S.; Molin, S.; Givskov, M.; Tolker-Nielsen, T. A Characterization of DNA Release in Pseudomonas Aeruginosa Cultures and Biofilms. Mol. Microbiol. 2006, 59, 1114–1128. [Google Scholar] [CrossRef]
- ISO 7218:1996/Amd 1:2001; International Organization for Standardization Microbiology of Food and Animal Feeding Stuffs—General Rules for Microbiological Examinations. ISO: Geneva, Switzerland, 2001.
- Tyrka, M.; Nowak, M.; Misic, D.; Półbrat, T.; Koter, S.; Trusek, A.; Zizovic, I. Cellulose Acetate Membranes Modification by Aminosilane Grafting in Supercritical Carbon Dioxide towards Antibiofilm Properties. Membranes 2021, 12, 33. [Google Scholar] [CrossRef]
- Stepanović, S.; Ćirković, I.; Mijač, V.; Švabić-Vlahović, M. Influence of the Incubation Temperature, Atmosphere and Dynamic Conditions on Biofilm Formation by Salmonella spp. Food Microbiol. 2003, 20, 339–343. [Google Scholar] [CrossRef]
- Prunic, B. Analysis of Possible Biofilm Formation from Different Salmonella Serovars Isolated from Animal Food in in Vitro Conditions. Ph.D.Thesis, University of Belgrade, Belgrade, Serbia, 2017. [Google Scholar]
- Morgan, J.A.; Rhodes, G.; Pickup, R.W. Survival of Nonculturable Aeromonas Salmonicida in Lake Water. Appl. Environ. Microbiol. 1993, 59, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Rodger, H.D. Fish Disease Causing Economic Impact in Global Aquaculture. In Fish Vaccines; Birkhäuser Advances in Infectious Diseases; Adams, A., Ed.; Springer: Basel, Switzerland, 2016; pp. 1–34. ISBN 978-3-0348-0978-8. [Google Scholar]
- Dias, C.; Borges, A.; Saavedra, M.J.; Simões, M. Biofilm Formation and Multidrug-Resistant Aeromonas Spp. from Wild Animals. J. Glob. Antimicrob. Resist. 2018, 12, 227–234. [Google Scholar] [CrossRef]
- Vincent, A.T.; Bernatchez, A.; Frey, J.; Charette, S.J. A Mesophilic Aeromonas Salmonicida Strain Isolated from an Unsuspected Host, the Migratory Bird Pied Avocet. Microorganisms 2019, 7, 592. [Google Scholar] [CrossRef] [PubMed]
- Igbinosa, I.H.; Igbinosa, E.O.; Okoh, A.I. Detection of Antibiotic Resistance, Virulence Gene Determinants and Biofilm Formation in Aeromonas Species Isolated from Cattle. Environ. Sci. Pollut. Res. 2015, 22, 17596–17605. [Google Scholar] [CrossRef]
- Craveiro, S.S.P. Aeromonas spp.: Evaluation of Genomic Diversity and Biofilm Forming Ability. Ph.D. Thesis, Universidade de Lisboa, Lisbon, Portugal, 2013. [Google Scholar]
- Parrilli, E.; Tutino, M.L.; Marino, G. Biofilm as an Adaptation Strategy to Extreme Conditions. Rend. Lincei Sci. Fis. E Nat. 2022, 33, 527–536. [Google Scholar] [CrossRef]
- Ricciardelli, A.; Casillo, A.; Vergara, A.; Balasco, N.; Corsaro, M.M.; Tutino, M.L.; Parrilli, E. Environmental Conditions Shape the Biofilm of the Antarctic Bacterium Pseudoalteromonas Haloplanktis TAC125. Microbiol. Res. 2019, 218, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Cherifi, T.; Jacques, M.; Quessy, S.; Fravalo, P. Impact of Nutrient Restriction on the Structure of Listeria Monocytogenes Biofilm Grown in a Microfluidic System. Front. Microbiol. 2017, 8, 864. [Google Scholar] [CrossRef]
- Roy, P.K.; Ha, A.J.; Mizan, M.F.; Hossain, M.I.; Ashrafudoulla, M.; Toushik, S.H.; Nahar, S.; Kim, Y.K.; Ha, S.D. Effects of Environmental Conditions (Temperature, pH, and Glucose) on Biofilm Formation of Salmonella Enterica Serotype Kentucky and Virulence Gene Expression. Poult. Sci. 2021, 100, 101209. [Google Scholar] [CrossRef]
- Karaca, B.; Akcelik, N.; Akcelik, M. Biofilm-Producing Abilities of Salmonella Strains Isolated from Turkey. Biologia 2013, 68, 1–10. [Google Scholar] [CrossRef]
- Bamford, N.C.; MacPhee, C.E.; Stanley-Wall, N.R. Microbial Primer: An Introduction to Biofilms—What They Are, Why They Form and Their Impact on Built and Natural Environments: This Article Is Part of the Microbial Primer Collection. Microbiology 2023, 169, 001338. [Google Scholar] [CrossRef]
- Mac Aogáin, M.; Mooij, M.J.; McCarthy, R.R.; Plower, E.; Wang, Y.P.; Tian, Z.X.; Dobson, A.; Morrissey, J.; Adams, C.; O’Gara, F. The Non-Classical ArsR-Family Repressor PyeR (PA4354) Modulates Biofilm Formation in Pseudomonas Aeruginosa. Microbiology 2012, 158, 2598–2609. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ziesche, L.; Frank, O.; Michael, V.; Martin, M.; Petersen, J.; Schulz, S.; Wagner-Döbler, I.; Tomasch, J. The CtrA Phosphorelay Integrates Differentiation and Communication in the Marine Alphaproteobacterium Dinoroseobacter Shibae. BMC Genom. 2014, 15, 130. [Google Scholar] [CrossRef] [PubMed]
- Belas, R. Biofilms, Flagella, and Mechanosensing of Surfaces by Bacteria. Trends Microbiol. 2014, 22, 517–527. [Google Scholar] [CrossRef]
- Ellison, C.; Brun, Y.V. Mechanosensing: A Regulation Sensation. Curr. Biol. 2015, 25, R113–R115. [Google Scholar] [CrossRef] [PubMed]
- Ebanks, R.O.; Goguen, M.; Knickle, L.; Dacanay, A.; Leslie, A.; Ross, N.W.; Pinto, D.M. Analysis of a Ferric Uptake Regulator (Fur) Knockout Mutant in Aeromonas Salmonicida Subsp. Salmonicida. Vet. Microbiol. 2013, 162, 831–841. [Google Scholar] [CrossRef] [PubMed]
- Fish, J.T. Groundwater Water Treatment for Iron and Manganese Reduction and Fish Rearing Studies Applied to the Design of the Ruth Burnett Sport Fish Hatchery, Fairbanks, Alaska. Aquac. Eng. 2009, 41, 97–108. [Google Scholar] [CrossRef]
Pellicle Test at 8 °C | Pellicle Test at 16 °C | Pellicle Test at 25 °C | |||||||
---|---|---|---|---|---|---|---|---|---|
Strain | M9 | ABTG | TSB | M9 | ABTG | TSB | M9 | ABTG | TSB |
FN187 | − | + | + | − | + | +++ | − | + | +++ |
F410 | − | +++ | + | ++ | + | +++ | − | − | +++ |
F461 | +++ | + | + | + | ++ | + | ++ | +++ | − |
F710 | − | +++ | + | + | + | ++ | − | − | +++ |
F203 | − | − | +++ | − | +++ | +++ | + | − | +++ |
F142 | − | + | ++ | ++ | + | − | − | + | ++ |
F303 | − | + | +++ | − | + | +++ | − | +++ | ++ |
F262 | + | + | ++ | − | ++ | +++ | − | +++ | ++ |
F458 | + | − | +++ | ++ | + | +++ | − | ++ | +++ |
F352 | ++ | ++ | +++ | − | − | +++ | ++ | − | +++ |
Investigated Isolates/Strains | Reference Strain GCA_000196395.1 | F352 | F187 | F410 | F710 | F262 | F1413 | F458 |
---|---|---|---|---|---|---|---|---|
Reference strain GCA_000196395.1 | 0.46 | 0.48 | 0.12 | 0.48 | 0.46 | 0.48 | 0.46 | |
F352 | 0.46 | 0.13 | 0.04 | 0.13 | 0.00 | 0.13 | 0.00 | |
F187 | 0.48 | 0.13 | 0.04 | 0.00 | 0.13 | 0.00 | 0.13 | |
F410 | 0.12 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | |
F710 | 0.48 | 0.13 | 0.00 | 0.04 | 0.13 | 0.00 | 0.13 | |
F262 | 0.46 | 0.00 | 0.13 | 0.04 | 0.13 | 0.13 | 0.00 | |
F1413 | 0.48 | 0.13 | 0.00 | 0.04 | 0.00 | 0.13 | 0.13 | |
F458 | 0.46 | 0.00 | 0.13 | 0.04 | 0.13 | 0.00 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aksentijević, K.; Rajewska, A.D.; Wojnarowski, K.; Cholewińska, P.; Korzeniowska, M.; Steinbauer, P.; Palić, D.; Misic, D. Biofilm Production Capability of Clinical Aeromonas salmonicida Subspecies salmonicida Strains under Stress Conditions. Appl. Sci. 2024, 14, 9365. https://doi.org/10.3390/app14209365
Aksentijević K, Rajewska AD, Wojnarowski K, Cholewińska P, Korzeniowska M, Steinbauer P, Palić D, Misic D. Biofilm Production Capability of Clinical Aeromonas salmonicida Subspecies salmonicida Strains under Stress Conditions. Applied Sciences. 2024; 14(20):9365. https://doi.org/10.3390/app14209365
Chicago/Turabian StyleAksentijević, Ksenija, Aleksandra Daria Rajewska, Konrad Wojnarowski, Paulina Cholewińska, Malgorzata Korzeniowska, Peter Steinbauer, Dušan Palić, and Dusan Misic. 2024. "Biofilm Production Capability of Clinical Aeromonas salmonicida Subspecies salmonicida Strains under Stress Conditions" Applied Sciences 14, no. 20: 9365. https://doi.org/10.3390/app14209365
APA StyleAksentijević, K., Rajewska, A. D., Wojnarowski, K., Cholewińska, P., Korzeniowska, M., Steinbauer, P., Palić, D., & Misic, D. (2024). Biofilm Production Capability of Clinical Aeromonas salmonicida Subspecies salmonicida Strains under Stress Conditions. Applied Sciences, 14(20), 9365. https://doi.org/10.3390/app14209365