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Abstract: Nowadays, mobile–mobile interaction is becoming a fundamental methodology for
human–human networking services since mobile devices are the most common interfacing equip-
ment for recent smart services such as food delivery, e-commerce, ride-hailing, etc. Unlike legacy
ways of human interaction, on-site and in-person mutual recognition between a service provider
and a client in mobile–mobile interaction is not trivial. This is because of not only the avoidance of
face-to-face communication due to safety and health concerns but also the difficulty of matching
up the online user using mobiles with the real person in the physical world. So, a novel mutual
recognition scheme for mobile–mobile interaction is highly necessary. This paper comes up with
a novel cyber-physical secure communication scheme relying on the digital twin paradigm. The
proposed scheme designs the digital twin networking architecture on which real-world users form
digital twins as their own online abstraction, and the digital twins authenticate each other for a smart
service interaction. Thus, inter-twin communication (ITC) could support secure mutual recognition
in mobile–mobile interaction. Such cyber-physical authentication (CPA) with the ITC is built on
the dynamic BLE beaconing scheme with accurate proximity detection and dynamic identifier (ID)
allocation. To achieve high accuracy in proximity detection, the proposed scheme is conducted using
a wide variety of data pre-processing algorithms, machine learning technologies, and ensemble
techniques. A location-dependent ID exploited in the CPA is dynamically generated by the physical
user for their own digital twin per each mobile service.

Keywords: machine learning; digital twin; proximity detection; mutual authentication

1. Introduction

Smart mobile devices are becoming the most common tool in everyday life. The
performance and functionalities of such mobile devices have also highly improved. Various
smart systems based on mobile devices such as smart parking [1,2], navigation [3,4], and
rescue [5,6] have been come up with accordingly. In particular, smart mobile services based
on mobile–mobile interaction, e.g., food delivery, e-commerce, ride-hailing, and so on, have
grown rapidly. This is because mobile devices have the advantage of providing online
interaction easily through mobile applications.

Matching users who interact with each other is an important process in a digital
service. In the case of the food delivery service, a user who requests food is matched with
a delivery man. In the case of ride-hailing services, a user who reserves a car is matched
with a driver. In this way, the user can be matched with someone using the digital service.
However, the digital service does not guarantee that the user finds a matching person in
the physical world. Although the digital service provides information about the matching
person, the responsibility for finding the matching person in the physical world falls on
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the user. It creates a situation where the user should physically contact an unidentified
someone to check whether someone matches the user.

Before the user contacts an unidentified person to find the matching person, it is
hard for the user to know whether the person is a criminal, a patient with an infectious
disease, or a matching person. In this situation, some problems could occur when the
user physically contacts the person [7]. Let us assume the user waits for the package they
ordered. Someone rings the bell of his house. The person who rings the bell says that
they have a package. The user then opens the door to receive the package. Unfortunately,
the person who rang the bell was a criminal deceiving as a delivery man. In the end,
the user is put in danger. There are also health concerns due to infectious diseases such
as COVID-19. When people communicate face to face to interact, infection may occur
through contact. In this way, physical contact with the unidentified person cannot ensure
the user’s safety.

Digital twin architecture can be a solution to resolve problems that may arise from
interaction in the physical world. The characteristic of the digital twin is that activities in
the physical world are also performed in the digital world because the digital twin is an
online abstraction that reflects physical objects. Various physical objects are transformed
into digital twins such as city [8], vehicle [9], robot [10], and so on. So, it can be said that
interaction between digital twins equals interaction between physical objects. A method
of representing people as digital twins is also used [11]. Instead of unsafe interactions in
the physical world, users can interact without physical contact by using the digital twin.
Consequently, the system relying on digital twin architecture can provide secure interaction
to the user.

In interaction between the users, mutual recognition is required to find the other
person. Mutual recognition should provide functions that allow users to confirm the
identity of the matching person they want to interact with and ensure that the matching
person is within the interaction range to interact. In mutual recognition, proximity detection
is used to check the interaction range.

This paper proposes a novel smart interaction system using digital twin architecture
to prevent physical interaction. The contributions of the paper are as follows:

1. To convert physical interaction to digital interaction, the system uses digital twin
architecture. Based on representing physical objects to digital twins, the system
provides physically contactless interaction to the users.

2. Dynamic beaconing and proximity detection allow the users to find the matching user
in the physical world. Also, we improve the performance of proximity detection using
various pre-processing, machine learning models, and ensemble techniques.

3. The users match the matching users in the physical world with their digital twins
using location-dependent IDs. The location-dependent IDs contain the user’s location
and time information so that it ensures that the user who has the specific digital twin
is on site and in real time.

4. To sum up, the system provides secure interaction to the users without physical
contact. It can prevent the problems that occur in the physical contact situation.
Cyber-physical authentication (CPA) is offered with proximity detection, dynamic
beaconing, location-dependent ID, dynamic ID allocation, and digital twin architecture
for interaction.

The paper is organized as follows. In Section 2, the background about authentication
and distance measurement schemes is introduced. In Section 3, the explanations of the
proposed system and the environment for the proximity detection experiment are described.
In Section 4, pre-processing and ensemble techniques that are used to improve the accuracy
of proximity detection are introduced. In Section 5, the results of the proximity detection
experiment are shown. In Section 6, an analysis of the results is described. Lastly, Section 7
concludes the paper.
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2. Background of Analysis
2.1. Authentication

Authentication to confirm the person’s identity is carried out in various ways. Authen-
tication can be classified into three types: Physical authentication (PA), Cyber authentication
(CA), and Cyber-Physical authentication (CPA). PA is the most common method to authen-
ticate identity. For example, when people enter the theater to watch a movie, they should
buy tickets and show them to a clerk. The clerk identifies the people to check whether
they have a valid identity on site. The characteristic of PA is that authentication is carried
out on site and in person. This makes it difficult for remote malicious users to interfere
with authentication. However, PA must require physical contact with an unidentified
person. When the user contacts the unidentified person to check their identity, the user
does not know whether the unidentified person is a criminal, a patient with an infectious
disease, or a normal person. This leads to a situation where the user’s safety is at risk from
physical contact.

Cyber authentication (CA) is another type of authentication. CA is carried out in the
digital world. For example, the digital signature is used to prove the author of a digital
document [12,13]. Digital ID is a common method to prove the user’s identity to the
system [14,15]. Blockchain is also used to enhance the integrity of data in the authentication
process [16,17]. The characteristic of CA is that authentication does not require physical
contact. So, there is no risk of problems from physical contact. However, there is a risk that
a remote malicious user can interfere with the authentication.

Cyber-physical authentication (CPA) is a novel authentication that combines PA and
CA. It authenticates the identity with physical and digital information. Amazon Key is
an example of the CPA [18]. It provides authentication for a delivery man. When the
delivery person arrives at a customer’s house, they request the Amazon system to open
the door. Then, the delivery person’s identity is authenticated by Amazon. If authenti-
cation is successful, the door opens. This service uses the physical environment of the
delivery person’s location and the digital process using the Amazon system. There is
another CPA [19]. The authors propose a delivery authentication system using a bar-code
and Kerberos authentication. In this system, the users must meet to check the bar code.
After that, the authentication using Kerberos is performed. In [20], users authenticate their
identity using digital information such as a username and password. Then, continuous
authentication is performed using RSSI obtained from the physical world.

The proposed system uses a digital twin to provide safety interaction. The system
takes physical information, such as a proximity level between users, and digital information,
such as a dynamic ID. Also, the dynamic ID, which is used for authentication, is generated
based on the user’s location. Because physical information and digital information are
used for authentication, it can be seen that CPA is applied to the system. Table 1 shows the
authentication types described.

Table 1. Three authentication classifications depending on the environment.

Authentication Type Technology Description

Physical Authentication (PA) Tickets The authentication process takes place only in the
physical world.Identity Document

Cyber Authentication (CA)
Digital Signature [12,13] The authentication process takes place only in the

digital world.Digital ID [14,15]
Blockchain [16,17]

Cyber-Physical Authentication (CPA) Amazon Key [18] The authentication process takes place in the physical world
and the digital world.Research in [19,20]
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2.2. Distance Estimation

Distance estimation is one of the methods that measure the distance between the users
to find the user’s location. Location-based systems (LBS) are widely used to find and
utilize a user’s location. There are various data sources used for LBS such as LiDAR [21,22],
sonar [23,24], and vision [25]. Additionally, wireless signals are popular methods to
find location [26–28]. In [26], authors introduce the localization method using WiFi in an
apartment environment. They use the RSS value of Wi-Fi and multiply it by a manually
set weight to reduce the time variance of the RSS. In [27], authors use the BLE signal and
fingerprinting approach. A denoising autoencoder is adopted to improve localization
performance. Wi-Fi and BLE have the advantage that they can be used indoors as well as
outdoors. In [28], BLE is better suited to indicate the location in more detail than Wi-Fi.
The Kalman filter is used to remove noise in RSS. Even if LBS is a valuable method to find
the user’s location, LBS needs environments with devices that provide indirect information
about location, such as Wi-Fi APs and BLE beacons. Also, the data for making LBS are
location-dependent so that LBS is sensitive to the environment.

Another method to measure the distance is a proximity-based system (PBS) that mea-
sures and utilizes the proximity between the users. Wireless signals such as Wi-Fi [29,30]
and BLE [31–34] are often used to measure proximity between users. In [29], a method
to check whether two mobile devices that can use Wi-Fi are close to each other, within
2 m, is proposed. In [30], the authors use Wi-Fi and BLE signals to estimate the proximity
between two users. In [31], proximity is used to select the beacon that is nearest to the
scanner. They demonstrate that the density of beacons can affect the accuracy of proximity
detection. In [32], Bayesian filtering is used to improve proximity accuracy. Beacons are
used in their experiments. However, using a beacon is not suitable for interaction between
people. This is because people rarely own beacons in their daily lives. In [33], the authors
use the Kalman filter to reduce signal fluctuation. Then, proximity detection is performed
using pre-processed RSSI data.

The aforementioned PBS provides distance between the beacon and the user. However,
most studies use static beaconing that the position of the beacons is fixed. Because the
position of the beacon is fixed, deployment of the system is not flexible. Also, there is no
consideration for obstacles that interrupt physical interaction between users. It indicates
that the users should be in physical contact to use the system. So, we propose a novel
proximity detection that includes dynamic beaconing and consideration of obstacles that
prevent physical contact. In Table 2, the comparison of recent studies and our system
is represented.

Table 2. The recent studies and proposed system for distance estimation using wireless signal.

Scheme Objective Data Source Additional Equipments LD 1 Beaconing Type Filtering ML 2 DL 3

Research in [26] Positioning Wi-Fi Wi-Fi APs Y Static O O X

DABIL [27] Positioning Bluetooth Bluetooth Beacons Y Static O O O

Research in [28] Positioning Bluetooth Bluetooth Beacons Y Static X X X

Research in [29] Existence Detection Wi-Fi Wi-Fi APs Y Static X O X

Research in [30] Existence Detection Wi-Fi & Bluetooth Wi-Fi APs & Bluetooth Beacons Y Static X O X

Research in [31] Existence Detection Bluetooth Bluetooth Beacons N Static X X X

Research in [32] Distance Detection Bluetooth Bluetooth Beacons N Static O X X

Research in [33] Distance Detection Bluetooth Bluetooth Beacons N Static O O X

Research in [34] Distance Detection Bluetooth Mobile Devices N Dynamic X O X

Proposed System Distance Detection Bluetooth Mobile Devices N Dynamic O O O

LD 1: Location dependency, ML 2: Machine learning, DL 3: Deep learning.

3. Material and Methods

In this section, we explain the proposed system with proximity detection and materials
that are used to evaluate the system.
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3.1. System Design

There are two requirements for providing the mobile–mobile interaction system. One
is that the users should not contact an unidentified person for their safety. Therefore, users
must perform interactions in a physically contactless situation. The other is that the user
should find the matching person who interacts with the user on the system. To satisfy
the above requirements, the system uses digital twin architecture, dynamic beaconing,
location-dependent ID, and dynamic ID allocation.

3.1.1. Digital Twin Architecture

The system uses a digital twin architecture to provide secure interaction between
users. The digital twin is an abstracted digital object that reflects a physical object based
on information from the physical world. It is created based on the user’s identity informa-
tion and location information. The identity information is unique data held by each user.
The location information is current location data from a user’s mobile device in the physical
world. This is updated by receiving location information in real time. The characteristics
that digital twin maintains and updates the physical information allow the system to use
the cyber-physical system (CPS) property that indicates a close correlation between physical
and digital information.

3.1.2. Dynamic Beaconing

Beaconing technologies are common methods that find the user’s location [35] and
send the diverse information [36]. However, traditional beaconing only sends the data and
their location is fixed. It leads to a decrease in the system’s feasibility because the beacon
must be set and deployed before the user uses it.

To increase feasibility, the system uses dynamic BLE beaconing with the mobile device.
Dynamic BLE beaconing indicates that the mobile device acts as a beacon that not only
transmits data but also receives it. It allows users to receive the matching person’s ID
as well as to send their IDs. So, not only can one user authenticate the matching person,
but all users can authenticate each other. This makes it difficult for a malicious user to
interfere with the authentication because the malicious user would have to interfere with
the authentication process for all users, not just one user. Additionally, because BLE beacons
are implemented on mobile devices, the location of the beacon is not fixed. It allows users
to have and use BLE beacons easily and conveniently. Data received using dynamic BLE
beaconing are passed to the user’s digital twin through the mobile device.

3.1.3. Location-Dependent ID

In most digital systems, users often use IDs to prove their identity [37,38]. However, it
does not guarantee that the physical person who provides the ID information is the digital
user matched with the ID.

For matching the physical people and their digital twin, the system generates location-
dependent IDs that represent the user’s unique identity in real time, on site. The IDs are
generated using the user’s identity, location, and time information which are managed
in the digital twin. The ID ensures the identity of the user in a certain location and
time. In other words, the ID provides more detailed information about who the user is.
Therefore, the users can identify the matching person by only exchanging the ID in a
contactless situation.

3.1.4. Dynamic ID allocation

Dynamic ID allocation indicates that location-dependent IDs are only allocated when
the user performs the authentication process. Because the IDs are generated using time and
location information, the user has a unique ID each time they perform an authentication
process. Of course, the time and location information are automatically managed in the
user’s digital twin. Therefore, if the malicious user has the user’s identity information,
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it is difficult to interfere with the authentication process. Dynamic ID allocation using
location-dependent ID improves the security of the authentication process in the system.

3.2. System Architecture

The system architecture is shown in Figure 1. The system consists of two users,
the user’s mobile devices and the digital twin architecture. The user’s mobile device
performs BLE scanning, BLE advertising, and information transmission to the digital twin
from the user.

User

Digital Twin

User

Relationship Range

Data
Analysis

Data
Analysis

RSSI User ID

Authentication Token

Proximity detection process

Authentication process

Interaction

Figure 1. Mobile-based digital twin networks and inter-twin communication.

Interaction between users requires mutual recognition to find and authenticate the
matching people. To recognize the user, the information representing the user‘s identity
is exchanged and authenticated by each user. Before the users exchange their identity
information, they must make sure that the matching people are within a distance where
communication is possible. The system uses proximity detection using a BLE signal to
measure the distance between users. The green lines in Figure 1 indicate what kinds of data
are sent to each user for proximity detection. The user can distinguish who sends the BLE
signal by referring to the user ID in the BLE packet. If the user checks that the sender is the
matching person, the RSSI value is passed to the user’s digital twin. The user’s digital twin
measures the proximity level with the RSSI value. Based on measuring the proximity level,
it is recognized that the matching person is within the communication distance to perform
the mutual authentication. After that, information to perform mutual authentication is
transmitted to the digital twin. The red lines in Figure 1 show the data exchanged for the
authentication process. The authentication tokens generated using user ID are sent to each
user’s digital twin through the physical world. The digital twins compare the received
token and the token they have. If two tokens are the same, the authentication is successful.

An example case in which the system can be used is described. This is a case where
the user can be identified only with the proximity level information in the interaction
between users. In this case, the user knows a location where the other user is located,
and the user can be confident that the person in that location is the other user. A parcel
delivery service is one example. The delivery person rings the bell in front of the recipient’s
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house. The recipient moves to the door. The delivery person and the recipient each check
whether the other party is at the door with proximity detection. After that, they can perform
authentication in a contactless situation.

3.3. Authentication and Proximity Detection Framework

Before the users interact with the matching users, they should carry out mutual recog-
nition. Mutual recognition serves to find the matching users in the physical world and
authenticate whether they are the matching people who interact with the user. Only after
mutual recognition is complete can users safely interact with matched users. Therefore,
a method to perform mutual recognition is a critical issue in the system. To explain mutual
recognition, a framework is illustrated in Figure 2. This shows mutual recognition consist-
ing of proximity detection and authentication. Proximity detection is used to measure the
distance between the user and the matching person who interacts with the user. Proximity
detection consists of 2 steps. The first step is a pre-processing step, which aims to reduce
RSSI data fluctuations. The Kalman filter (KF), denoising autoencoder (DAE), and Kalman
filter implemented autoencoder (KFAE) are used as methods that reduce fluctuation in
RSSI data. Pre-processing models can be applied up to 2 times. The types of pre-processing
are listed in Table 3, resulting in 1 raw and 7 pre-processed pieces of data after this step. It
is worth noting that the pre-processing step is automatically carried out without additional
human-based effort. This allows the system to be easily deployed to a new environment
only with raw RSSI data. That is, the various pre-processed data and the classification
models are automatically created and used to improve the accuracy of proximity detection.
Eight classification models classify proximity levels with pre-processed data. The types
of classification models are MLP, 1D-CNN, and SVM. By using 8 classification models, 8
results are obtained. The soft voting method of an ensemble technique is then applied to
enhance classification accuracy. Finally, if the obtained proximity level is below the system-
defined distance threshold, it means that the two users participating in the interaction are
ready for mutual authentication.

Proximity Detection

Classififation ( Ensemble )

RSSI Data
Preprocessing. 1

KF DAE KFAE

Preprocessing. 2

KF DAE KFAE

Type

MLP

CNN

SVM

Classifier. 1 Classifier. 2 Classifier. 8Classifier. 3

… … … …

Proximity Level
Proximity Check

Authentication

Token Comparison

Token Generation
Received
User ID

User ID

Authentication Token

Digital Twin

Identity Information

Location Information

Time Information

Figure 2. Framework for authentication and proximity detection process.
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Table 3. Data pre-processing notation table.

Seq. Processing 1 Processing 2 Notation

1 - - Raw

2 Kalman Filter - KF

3 Kalman Filter Using AE - KFAE

4 Denoising Autoencoder - DAE

5 Kalman Filter Denoising Autoencoder KF + DAE

6 Kalman Filter Using AE Denoising Autoencoder KFAE + DAE

7 Denoising Autoencoder Kalman Filter DAE + KF

8 Denoising Autoencoder Kalman Filter Using AE DAE + KFAE

Figure 3 shows the execution time when proximity detection is used in the system. TTP
is the train time of pre-processing models. TTC is the train time of classification models. The
point to note here is that TTP and TTC are the times that are executed only once before the
system is applied. TScan is the time it takes to collect BLE signals to be used for proximity
detection. TPre is the time taken to use pre-processing models to remove fluctuations in
the collected RSSI values. TCla is the time taken to classify the 8 pre-processed data into
8 classification models. TEns is the time taken to classify the final proximity level using
soft voting on the results of the 8 classification models. TScan, TPre, TCla, and TEns are spent
repeatedly each time proximity detection is used.

Proximity Detection

Execution Time TTP TPreTScan

Start BLE Scan

Train 

Preprocessing Model
Train 

Classification Model

TTC

Start

Preprocessing
Start

Classification

Start

Ensemble

TCla TEns

Figure 3. Time diagram about proximity detection.

After the proximity detection step is complete, a user ID is generated based on the
user identity information, user location information, and time information in the digital
twin. So, the ID is only valid at a specific location and time. In the authentication step,
a token that is generated with the user’s ID is used to authenticate the user’s identity. Like
this, tokens that use the ID are also only valid at a specific location and time. In the physical
world, it is transmitted to the other user. When the user receives the token, it is passed to
the user’s digital twin. In the digital twin, the token received from the physical world is
compared with the token it has. If these tokens are the same, authentication is successful.

3.4. Experiment Environment

Environments where the proximity detection experiment is conducted are described.
Figure 4a shows a photo from the experiment. The Chungbuk National University building
is used as an experimental environment. Cellular networks and university-provided Wi-Fi
networks are also available within the building. The average temperature is 26.3 ◦C when
we collect the data. Proximity detection in the system measures the distance between the
users with mobile devices using dynamic beaconing. So, the functions of an advertiser and
a scanner are performed in the mobile device with the application. The model of the mobile
device is Galaxy 7 manufactured by Samsung Electronics. They have applications that
advertise and scan BLE signals. Android Studio is used to make the applications. Three
different environments are used to collect the BLE signals. Because the system provides
mobile–mobile interaction without physical contact, proximity detection is conducted
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without physical contact. By placing closed doors between the mobile devices, a situation is
created where there is no physical contact. Figure 4b–d show the material of doors used in
the experiment. Figure 4e shows the location of the advertiser and the scanner. The distance
between the advertiser and the scanner is set at 0.5 m, 1.0 m, 1.5 m, 2.0 m, 2.5 m, 3.0 m,
3.5 m, and 4.0 m. The lying mobile devices are positioned 1.0 m above the floor.

Scanner

Advertiser

0.5m

4.0m

(a) (b) (c) (d)

0.5m 1.0m 1.5m 2.0m 2.5m 3.0m 3.5m 4.0m−0.6m

1.0m

Advertiser Scanner

Closed door

(e)

Figure 4. The experiment environments for proximity detection. (a) Setting of the advertiser and
scanner for RSSI data collection. (b) Steel door. (c) Wood door. (d) Glass door. (e) Location of the
advertiser and scanner.

Table 4 describes the structure and parameters of the machine learning models. Ubuntu
version 18.04, Python version 3.7.12, and TensorFlow library version 2.10.0 are used to
implement machine learning models. In the case of SVM models, a linear kernel is used for
training. Input size and output size are fixed as 30 and 8, regardless of the types of machine
learning models. The 670 RSSI set is used as the train data and the 300 RSSI set is used as
the test data. A total of 10 percent of the train data is used as the validation set.

Table 4. Specifications of machine learning models for training.

MLP Specification

Layer type Input
layer

Hidden
Layer

Hidden
Layer

Hidden
Layer

Hidden
Layer

Hidden
Layer

Output
Layer -

Layer size 30 64 32 16 32 64 8 -

Activation
function - relu relu relu relu relu softmax -

Batch size 16

Epoch size 150

1D-CNN Specification

Layer type Input
layer

Hidden
Layer

Hidden
Layer

Hidden
Layer

Hidden
Layer

Hidden
Layer

Hidden
Layer

Output
Layer

Layer size 30 Kerenl: 3
Filter: 4

Max
pooling

Kernel: 3
Filter: 2 Flatten 64 32 8

Activation
function - relu - relu - relu relu softmax

Batch size 16

Epoch size 150
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4. Research and Analysis

Before evaluating the performance of our proximity detection, we explain data pro-
cessing methods to reduce fluctuation in RSSI data. RSSI data without pre-processing are
called raw data. The raw data are shown in Figure 5a. As seen in Figure 5a, the fluctuation
is shown in the raw data. The fluctuation can affect the accuracy of proximity classification.
So, we use pre-processing models to reduce the fluctuation of RSSI data. We use three types
of pre-processing: Kalman filter (KF), Kalman filter implemented using an autoencoder
(KFAE), and Denoising autoencoder (DAE). These pre-processings can be applied up to
two times. Notations about overall pre-processing are represented in Table 3. The results of
pre-processing are represented in Figure 5. The following introduces how to implement
pre-processing methods.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5. RSSI data with various pre-processing types. (a) Raw RSSI data. (b) RSSI data with KF.
(c) RSSI data with DAE. (d) RSSI data with KFAE. (e) RSSI data with KF + DAE. (f) RSSI data with
KFAE + DAE. (g) RSSI data with DAE + KF. (h) RSSI data with DAE + KFAE.

4.1. Kalman Filter

The first pre-processing method is the Kalman filter. The Kalman filter is often used to
reduce the fluctuation of data [39,40].

Kalman filter consists of two procedures. The first procedure is called prediction.
The prediction procedure calculates the predicted action estimate and predicted estimate
covariance. This procedure is represented in Equation (1).

x̂−k = Ax̂k−1

P−
k = APk−1 AT + Q

(1)
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where x̂−k , P−
k , A, Q are the estimated value at time k, estimate error covariance, the action

transition matrix, and noise covariance matrix, respectively.
The second procedure is called an update. The update procedure is divided into calculat-

ing Kalman gain, x̂k, and error covariance. These parts are shown in Equations (2)–(4).
We calculate the Kalman gain (Kk),

Kk = P−
K Ĥ(HP−

k Ĥ + R)−1 (2)

We calculate the predicted value (x̂k),

x̂k = x̂k
− + Kk(zk − Hx̂k

−) (3)

We calculate the predicted error covariance (Pk),

Pk = P−
k − Kk HP−

k (4)

where Kk, Pk, xk, zk, H, and R are Kalman gain, predicted error covariance, predicted value,
measured value, observation matrix, and noise covariance matrix, respectively.

The result of the Kalman filter is shown in Figure 5b. RSSI data in Figure 5b are
obtained by applying the Kalman filter to the data in Figure 5a.

4.2. Autoencoder

Another method to reduce the fluctuation of RSSI data is a denoising autoencoder.
The denoising autoencoder is one type of autoencoder. Autoencoders are often used for
RSSI pre-processing [41,42]. The structure of the autoencoder consists of an encoder and
a decoder. The encoder parts make input data into compressed data, which is a small
dimension compared with the dimension of input data. Then, the parts of the decoder
restore the original data using compressed data. This structure can be expressed as

X′ = D(E(X)) (5)

where X and X′ are the input and output of the autoencoder, respectively. E() expresses a
part of the encoder process and D() expresses a part of the decoder process.

The autoencoder is a type of neural network that consists of several layers. The outputs
of the perceptron are calculated with the outputs of the previous layer and their weight
values. Expressing this as an equation, it is

Xi = ϕ(Xi−1Wi−1 + bi) (6)

where Xi is the output of the ith layer. Wi and bi are the weight matrix and the bias vector
between the ith layer and the i + 1th layer, respectively. ϕ is the activation function.

The denoising autoencoder has the same dimensions of input data and output data,
but different values. The input data are data with noise and the output data are data from
which noise has been removed. We define noise as fluctuation in RSSI data. Therefore,
the input data and output data for denoising autoencoder learning are raw data that
have fluctuation and data with fluctuations removed, respectively. Output data without
fluctuations are made manually. The method to make output data is the following. Values
that differ by more than three from the average value in the input data set are replaced with
the average value of the input data set. A method to make output data uses Equation (7).

Ini =

{
Ini, i f |Ini − AVG(In)| ≤ 3

AVG(In), i f |Ini − AVG(In)| > 3
, (7)

where Ini is the ith data in the input data. AVG(In) is the average value of input data.
The Kalman filter implemented autoencoder is used similarly to the denoising autoen-

coder. The difference with the denoising autoencoder is that data applied with the Kalman
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filter are output data when it is trained. The results of the denoising autoencoder and the
Kalman filter implemented autoencoder are shown in Figure 5c and Figure 5d, respectively.

4.3. Ensemble

To explain the need for ensemble techniques, we show two examples of the classi-
fication results. Table 5 shows the classification accuracy of each proximity level using
various pre-processing methods. The red words in the table indicate which pre-processing
is applied to each proximity level to achieve the highest accuracy. In the results, we iden-
tify that the proximity level that is well classified differs depending on the type of the
pre-processing method.

Table 5. Classification accuracy of each proximity level according to pre-processing type (classification
model: MLP, environment: steel door).

P.P Type 0.5 m 1.0 m 1.5 m 2.0 m 2.5 m 3.0 m 3.5 m 4.0 m

Raw 0.97 0.85 0.96 0.99 0.98 0.87 0.96 0.81

KF 0.75 0.69 0.84 0.97 0.99 0.65 0.98 0.92

KFAE 0.72 0.63 0.34 0.97 0.32 0.59 0.91 0.39

Deno 0.59 0.86 0.51 0.21 0.90 0.55 0.91 0.66

KF + Deno 0.64 0.62 0.57 1.00 0.68 0.36 0.34 0.71

KFAE + Deno 0.67 0.74 0.20 0.87 0.47 0.47 0.94 0.19

Deno + KF 0.62 0.80 0.41 0.92 0.29 0.57 0.87 0.77

Deno + KFAE 0.57 0.82 0.42 0.00 1.00 0.55 0.86 0.76
The red words indicate the highest accuracy at each proximity level.

The results of proximity detection are shown in Figures 6 and 7. Figure 6 is the result
of using raw data and MLP. Figure 7 results from using KFAE and DAE data and MLP.
However, the results of pre-processed data have high accuracy for certain proximity levels.
For example, the results in Figure 7 are more accurate than the raw data when classifying
0.5 m and 3.0 m. The proximity level that is well classified by the classifier varies depending
on the pre-processing method. Therefore, improvements in accuracy can be expected by
using an ensemble that combines the results of each classifier using different pre-processing
data. In the ensemble process, the results of the machine learning models are aggregated
into an average.

Proximity 0.5 m 1.0 m 1.5 m 2.0 m 2.5 m 3.0 m 3.5 m 4.0 m
0.5 m 323 13 6 0 0 0 1 0

1.0 m 33 310 91 33 0 77 0 3

1.5 m 3 17 185 5 8 34 8 0

2.0 m 5 20 3 248 1 9 41 3

2.5 m 0 0 32 11 349 39 6 15

3.0 m 0 6 43 29 1 182 5 4

3.5 m 6 0 7 33 11 0 306 0

4.0 m 0 4 3 11 0 29 3 345

Precision 0.873 0.838 0.5 0.670 0.943 0.492 0.827 0.932

MLP & Raw RSSI data
(Wood door)

Figure 6. Confusion matrix when using MLP and raw data from wood door.
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Proximity 0.5 m 1.0 m 1.5 m 2.0 m 2.5 m 3.0 m 3.5 m 4.0 m
0.5 m 334 31 15 0 0 0 1 0

1.0 m 31 195 82 52 0 6 8 1

1.5 m 2 25 46 52 0 28 2 1

2.0 m 1 1 2 2 0 1 0 0

2.5 m 0 0 3 130 211 17 83 109

3.0 m 2 118 211 87 36 294 106 113

3.5 m 0 0 11 29 59 24 54 7

4.0 m 0 0 0 18 64 0 116 139

Precision 0.902 0.527 0.124 0.005 0.570 0.795 0.146 0.376

MLP & KFAE + DAE RSSI data
(Wood door)

Figure 7. Confusion matrix when using MLP and KFAE + DAE data from wood door. The red
rectangles indicate that the accuracy using pre-processing has improved compared to the accuracy
using raw data at specific proximity levels.

5. Results

In this section, we show the performance of the proposed proximity detection scheme
that uses pre-processing, machine learning models, and ensemble techniques. We compare
the proposed proximity detection without pre-processing and ensemble techniques to
describe performance improvement. The differences in accuracy and execution time are
shown in the section.

5.1. Accuracy

Figure 8 represents results of accuracy using raw data with machine learning models
and the log distance path loss model (LDPL) [43,44]. The LDPL is a common method to
measure distance from the signal transmitters with their RSSI value. As a result, machine
learning models have better accuracy than the LDPL model. This is because LDPL is based
on the assumption that RSSI values decrease with increasing distance. Because the sources
that interfere with the signal propagation make sure that the RSSI value may not decrease
as the distance increases, a decrease in the accuracy of the LDPL model occurs.

Steel Wood Glass

0.0
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0.4

0.6

0.8

1.0

A
c
c
u

ra
c
y

Door Material

 MLP

 CNN

 SVM

 LDPL0.923
0.951

0.660

0.314

0.759

0.674

0.391

0.446

0.850 0.844

0.632

0.562

Figure 8. Accuracy for each classification type when using raw data according to door material.
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Deep learning models such as MLP and 1D-CNN generally have higher accuracy than
SVM. Additionally, it is confirmed that the accuracy varies depending on the material of the
door. Next, we show the accuracy of proximity detection using the proposed pre-processing
and ensemble.

Figures 9a and 10a show proximity accuracy using the ensemble and the error reduc-
tion rate compared with using raw data when the steel door is between the scanner and
the advertiser. As a result, MLP and 1D-CNN have better classification performance than
SVM. Also, ensembles can improve accuracy. It was seen that the ensemble can improve
accuracy regardless of the type of classifier. Likewise, Figures 9b and 10b represent the
accuracy and the error reduction rate when the wood door is between the scanner and
the advertiser. Also, MLP and 1D-CNN show better classification performance than SVM.
In the case of MLP and 1D-CNN, the ensemble can improve accuracy. However, in the
case of SVM, the accuracy was seen to decrease. The glass door between the scanner and
the advertiser produces similar results as the wood door. Figures 9c and 10c represent the
accuracy and the error reduction rate when the wood door is between the scanner and the
advertiser. In this case, MLP and 1D-CNN show higher accuracy than SVM, and it was
confirmed that accuracy improved when the ensemble was used. However, the accuracy of
SVM is decreased using the ensemble.
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Figure 9. Proximity detection accuracy applied by ensemble for each classification model types.
(a) Steel door. (b) Wood door. (c) Glass door.
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Figure 10. Error reduction rate of ensemble compared with the model using raw data. (a) Steel door.
(b) Wood door. (c) Glass door.

As an aspect of accuracy, deep learning models have better performance than machine
learning models, regardless of the environment. Additionally, it has been confirmed that
ensemble provides good effects in deep learning models such as MLP and 1D-CNN. Since
the ensemble process uses the results of eight classifiers, the performance of the classifiers is
also important. Although the accuracy of a classifier using pre-processed data is lower than
that of a classifier using raw data, we confirmed in the previous section that the accuracy of
classifying a specific distance can be high.
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5.2. Execution Time

The execution time of proximity detection is affected by the classification model type
and ensemble. We compare the execution time that varies depending on the experimental
environment, whether an ensemble is used, and each classification model.

The results of the execution time for each experimental environment are shown in
Tables 6–8. Since the ensemble applies various pre-processing to raw data, TTP and TPre
data exist. In addition, TEns data are the ensemble process time using the results of each
single classification model. Therefore, the fact that the ensemble takes longer to run than
the raw model is determined.

Table 6. Execution time for proximity detection when the environment is a steel door.

Model Type TTP TTC TScan TPre TCla TEns

Raw_MLP 0 ms 16,511 ms 4000 ms 0 ms 38 ms 0 ms

Ensemble_MLP 21,337 ms 16,925 ms 4000 ms 83 ms 40 ms 0.29 ms

Raw_1D-CNN 0 ms 18,507 ms 4000 ms 0 ms 40 ms 0 ms

Ensemble_1D-CNN 21,337 ms 18,832 ms 4000 ms 83 ms 40 ms 0.29 ms

Raw_SVM 0 ms 356 ms 4000 ms 0 ms 0.2 ms 0 ms

Ensemble_SVM 21,337 ns 427 ms 4000 ms 83 ms 1.3 ms 0.06 ms

Table 7. Execution time for proximity detection when the environment is a wood door.

Model Type TTP TTC TScan TPre TCla TEns

Raw_MLP 0 ms 16,497 ms 4000 ms 0 ms 38 ms 0 ms

Ensemble_MLP 20,891 ms 16,898 ms 4000 ms 82 ms 40 ms 0.29 ms

Raw_1D-CNN 0 ms 18,425 ms 4000 ms 0 ms 39 ms 0 ms

Ensemble_1D-CNN 20,891 ms 18,749 ms 4000 ms 82 ms 39 ms 0.29 ms

Raw_SVM 0 ms 657 ms 4000 ms 0 ms 0.21 ms 0 ms

Ensemble_SVM 20,891 ms 751 ms 4000 ms 82 ms 1.2 ms 0.06 ms

Table 8. Execution time for proximity detection when the environment is a glass door.

Model Type TTP TTC TScan TPre TCla TEns

Raw_MLP 0 ms 16,579 ms 4000 ms 0 ms 38 ms 0 ms

Ensemble_MLP 21,357 ms 17,026 ms 4000 ms 83 ms 40 ms 0.29 ms

Raw_1D-CNN 0 ms 18,568 ms 4000 ms 0 ms 39 ms 0 ms

Ensemble_1D-CNN 21,357 ms 18,929 ms 4000 ms 83 ms 40 ms 0.29 ms

Raw_SVM 0 ms 459 ms 4000 ms 0 ms 0.19 ms 0 ms

Ensemble_SVM 21,357 ms 522 ms 4000 ms 83 ms 1 ms 0.06 ms

As a result, TCls and TEns of SVM take a shorter time than MLP and 1D-CNN. In ad-
dition, methods using ensembles take longer than methods using raw data because they
use pre-processing. Considering the time results and accuracy results, it can be seen that
there is a trade-off in accuracy and time between deep learning models such as MLP and
1D-CNN and machine learning models such as SVM. Methods using raw data and methods
using ensembles also have the above trade-off.

6. Discussion

Because the system determines whether an authentication process starts based on
measured proximity levels, the performance improvement of proximity detection increases
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the system’s stability. Results of proximity detection experiments show that using an
ensemble and various pre-processing results in reduced error rates compared to only using
raw data. We find that MLP and 1D-CNN are better than SVM in the system with pre-
processing and ensemble. Additionally, execution times for using raw data and using the
ensemble are shown. So, a trade-off between accuracy and time is found.

Although the stability of the system is enhanced by increasing the accuracy of the
proximity detection, potential challenges remain. Proximity detection may decrease the
accuracy when the user moves while the mobile device scans the BLE signal. Because hu-
man movement affects the RSSI value, the proximity level measured using RSSI may be
measured incorrectly. To reduce this negative effect on the user’s movement, the system
recommends that the authentication process should be carried out after the user stops
at the location where the user promised to meet the matching person. Also, proximity
detection can be used to determine that the user is within a specific distance. For example,
let us assume the system requires that a matched person be within 2.0 m of the user. Then,
1.0 m is the same as 2.0 m and 2.5 m is the same as 3.0 m. This can make the system
become error-tolerant.

The system can be used for a traditional mobile–mobile interaction system that sup-
ports a user-matching system. In the case of the delivery service, a delivery person matches
with a buyer. When the delivery person arrives at the buyer‘s house, the delivery person
and the buyer use the system for mutual recognition in a contactless situation. In the case
of the ride-hailing system, a driver matches with a passenger. After the driver arrives
at the location where the passenger requested, the passenger finds the car of the driver.
The passenger finds the car of the driver and confirms that it is the car they called by using
mutual recognition of the system. By using the system, users can recognize each other in a
contactless situation. This reduces risks, such as crimes, infectious diseases, etc., that arise
in a contact situation. Consequently, the safety of the user is increased with the system.

7. Conclusions

The paper proposes a novel contactless interaction system with digital twin architec-
ture. To provide contactless interaction, proximity detection is used to find the matching
people in the physical world. Based on dynamic beaconing, we improve the system’s
feasibility. Additionally, location-dependent ID and dynamic ID allocation improve the
security of the system by generating a unique ID using a user’s identity, location, and time
information managed by a digital twin. To summarize, the system allows users to interact
with each other without risks of contact situations.

In the experiment, we find that the type of pre-processing affects the accuracy of
proximity detection. In other words, the accuracy of specific proximity levels, which are
measured by the models, increases according to the type of pre-processing. Based on this
fact, we use the ensemble that aggregates the results of models to improve the performance
of proximity detection. Future work involves using various pre-processing methods and
comparing them to maximize these effects.
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